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Abstract
Activity monitors provide an objective mechanism for evaluating patient function. It is unclear
what similarities or unique information may be yielded using different analyses. Fifteen patients
scheduled to undergo shoulder arthroplasty and fifteen matched control subjects wore tri-axial
accelerometer activity monitors bilaterally at the lower (wrist) and upper (biceps) arm for 3 days.
Measures of central tendency, variance, sample entropy, and asymmetry were calculated. A novel
technique to evaluate time distribution of activity intensity was also performed. Within both
groups there was a difference in central tendency and variance when comparing dominant and
non-dominant limbs for both the lower (Controls: Mean Activity, P < 0.001; Max Activity, P <
0.001; Patients: Mean Activity, P = 0.044; Max Activity, P = 0.009) and upper (Controls: Mean
Activity, P < 0.001; Max Activity, P = 0.046; Patients: Mean Activity, P = 0.002; Max Activity, P
= 0.049) arm. Within group differences were also present for lower arm entropy in both groups
(Controls, P < 0.001; Patients P = 0.041), and at the upper arm for patients (P = 0.003). There
were differences between groups for the asymmetry index for both the lower (P = 0.033) and
upper arm (P = 0.005), and maximum activity level of the lower arm (P = 0.05). Between group
differences were present for time distribution of activity intensity, as the involved upper arm of
patients was inactive for a greater time than controls (P = 0.013). These results highlight unique
information provided by multiple analysis methods, and include a novel approach of evaluating
the distribution of time spent across variable intensity activities.

Keywords
Inertial sensor system; Measurement; Evaluation

1. Introduction
A full return to functional activities is a key goal for patients who have sustained an injury.
Evaluation of functional recovery may be performed by measuring movement biomechanics
in a laboratory setting. These measures, however, are often expensive and do not adequately
replicate the patient’s natural living environment. Function may also be captured with self-
report questionnaires. This form of assessment is limited as the accuracy of the reporting is
dependent on patient recall and perception of activity (Matthews et al., 2002; Ward et al.,
2005). Activity monitors provide an alternative mechanism for evaluating patient function.
The devices are typically small in size, relatively inexpensive, and record data for multiple
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days. Tri-axial digital accelerometers embedded within the activity monitor provide
objective data regarding movement characteristics. In light of the advantages of activity
monitors, it is not surprising there are a growing number of applications for their use in
measuring human movement (Acuna et al., 2010; Aminian et al., 1999; Bouten et al., 1997;
Crouter et al., 2006; Currie et al., 1992; Frost, 1978).

One of the more recent applications of activity monitors is measurement of limb use after
injury to assess the impact of disease on movement, and the effectiveness of intervention in
normalizing limb use (Acuna et al., 2010; Aminian et al., 1999; Lang et al., 2007; Uswatte et
al., 2005). The non-injured extremity is often used to establish what is normal for an
individual with injury. Thus, side-to-side comparisons are an integral component of the
evaluation process. Statistical tests including measures of central tendency and variance are
easily performed and may reveal asymmetries in limb performance. Unfortunately, these
statistical tests do not provide a measurement of the asymmetry magnitude (Kaufman et al.,
2012). Alternatively, an asymmetry index provides insight to side-to-side differences, and
the magnitude of these differences (Kaufman et al., 1996). A measurement of the percent
difference between two limbs, the index ascribes a single value to the level of asymmetry
between two sides (Zifchock et al., 2008). Therefore, it quantifies the imbalance between the
sides of an individual, or permits comparisons of asymmetry levels between groups.

Sample entropy is an alternative approach for assessing side-to-side differences in limb
activity. Frequently utilized to evaluate physiological measures such as blood pressure and
heart rate, entropy analysis has also been a component of gait evaluation across a spectrum
of pathologies (Kaipust et al., 2012; Tochigi et al., 2012). Based on the concept that normal,
unimpaired human movement is more complex than pathological movement, sample entropy
measures the probability that two sequences remain similar at the next point of interest in a
time series. This measurement of randomness indicates that lower sample entropy values
represent a less random signal produced by an injured limb. A more random signal produced
by a healthy limb would be associated with a higher sample entropy value. Unlike statistical
measures or asymmetry indexes, sample entropy values provide insight to the presence of
what is deemed desirable variability.

Identification of activity deficits of an extremity may not be appreciated with bilateral
comparisons. For example, the dominant arm may be more active than the non-dominant
arm in asymptomatic individuals. Thus, a side-to-side difference in activity levels may be
normal. Furthermore, comparing peak or mean values between limbs may mask how much
activity the limb is undergoing throughout the course of a day. Previous investigators have
developed algorithms for classifying physical activity. Oshima et al. (2010) collected tri-
axial accelerometer data from 63 uninjured subjects while they performed discrete activities
in a laboratory setting. After analyzing the data to calculate a cutoff value, the investigators
were able to correctly distinguish between household and locomotive activities more than
98% of the time (Oshima et al., 2010). While this algorithm calculation technique is useful
for correlating activity monitor data with the type of activity being performed, it does not
provide insight into the percentage of the day spent performing activities of different
intensity. For example, one limb may be inactive or undergoing small magnitude movement
accelerations for a greater percentage of the day when compared to the contralateral limb, or
when compared to an uninjured individual. This may represent a gradual degradation in
function. Thus, evaluating the distribution of activity intensity may be a useful means by
which to assess impairment of the limbs.

Multiple analysis techniques are available for the interpretation of human movement
captured by tri-axial accelerometer-based activity monitors. It is unclear what similarities or
unique information may be yielded based on different analyses. Therefore, the purpose of
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this study was to report the results of activity monitor data collected from patients with end-
stage shoulder osteoarthri-tis, and a matched group of asymptomatic subjects. Analysis
methods of upper extremity activity included statistical measures of central tendency and
dispersion of scores (variability), sample entropy, and asymmetry analysis. A fourth analysis
method utilized in the study was a novel approach developed to evaluate differences in
activity intensity during the course of a day.

2. Methods
2.1. Subjects

The study sample consisted of two groups each with 15 subjects, comprised of 15 patients
scheduled to undergo shoulder arthroplasty (SA), and a control group of 15 age and gender
matched individuals. All subjects were required to be between 50 and 85 years in age, have
no neurological or cognitive impairments that would interfere with completion of testing or
inability to follow instructions, and be an independent ambulator. All patients were required
to have no other upper extremity injury or pain complaints at the time of testing. All control
subjects were required to have no upper extremity injury at the time of testing, no symptoms
in either upper extremity, and no history of shoulder surgery to either arm. Individuals who
did not meet all participation criteria were not eligible for study enrollment. All testing
procedures were approved by the Mayo Clinic Institutional Review Board. Informed consent
was obtained from study participants prior to initiating data collections.

2.2. Data collection
2.2.1. Activity monitors—Custom built tri-axial accelerometry based activity monitors
developed at Mayo Clinic were utilized for all data collections. Each self-contained sensor
contained a tri-axial MEMS accelerometer (analog, ±16 g, Analog Devices, part number
ADXL326), microcontroller (12 bit ADC, Texas Instruments), power source (Tadiran
battery, semiconductor voltage regulator), and onboard data storage (NAND flash memory,
0.5 GB memory chip, Micron). The battery life capacity for each device was 10 continuous
days with a sampling frequency of 100 Hz. Precision and accuracy of the devices were
determined to be within ±0.09 g.

2.2.2. Procedures—Monitors were worn inside a pocket attached to Velcro straps, which
were secured bilaterally to the upper arms at the mid-biceps, and the lower arms at the wrist.
Data were collected over three consecutive days in subjects’ natural living environment,
including work and non-work activities. Sleep time was not included in the data collection
period of interest.

2.3. Data processing
2.3.1. Acceleration signal—All subsequent filtering and analysis methods were applied
uniformly to the signal of all data sets and did not vary between body segments nor motor
tasks. An anti-aliasing single-pole RC low-pass filter was implemented at the output of the
accelerometer and before the input to the analog-to-digital converter (ADC), with the upper
3 dB cutoff frequency set to 50 Hz and a rolloff of 10 dB/decade. The ADC was set to a
sampling rate of 100 samples/s with 12 bits/sample. After testing was completed data was
off-loaded onto a personal computer via a USB drive for post-processing and analysis. The
tri-axial raw signal was reported in the x, y, and z axes, with axis orientations defined in the
anatomical position. Additionally, the raw signals were high-pass filtered using a 4th order
Butterworth digital design at 0.1 Hz to remove the gravitational component (Bouten et al.,
1997). All analyses were independently performed for each body segment using custom
Matlab programs (MathWorks, Natick, MA).
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2.3.2. Activity—The filtered signals were parsed into 60-s (1 min) epochs. For each epoch,
a single value was obtained by summing the vector magnitudes of the three axes (Eq. (1))
(Hagstromer et al., 2007).

(1)

where n is the number of data points within a 60-s epoch and ax, ay, az are the tri-axial
accelerations, respectively. Activity is in units of acceleration (m/s2) over each 60s epoch.
The average activity for each limb segment was determined each day by calculating the
arithmetic mean of the epoch activity value within 1 day for each subject. A within-subject
ensemble average activity value was calculated for each limb segment over the 3 days of
collection. Additionally, the epoch with the maximum activity (MA) was identified for each
limb segment for each day analyzed.

2.3.3. Sample entropy—Sample entropy is defined as “the negative natural logarithm of
an estimate of the conditional probability that subseries (epochs) of length, m, that match
point wise within a tolerance, r, also match at the next point (Richman and Moorman,
2000).” The algorithm determines if subsequent data epochs match within the tolerance, ‘r’,
until there is not a match and keeps track of matches in counters A(k) and B(k) for all
lengths, ‘k’ up to ‘M’. The sample entropy values are calculated by

(2)

Sample entropy values were calculated for each acceleration signal (x, y, and z) separately
for each segment on each day analyzed, and combined entropy over the three axes was
determined using the vector sum of the individual sample entropy values from each axis.
The selections of M and r values are those typically used in the calculation of entropy for
physiologic time series (Pincus and Goldberger, 1994). Software available at PhysioNet was
used to calculate the sample entropy (Goldberger et al., 2000).

2.3.4. Asymmetry index—Asymmetry between limbs for the lower arm and upper arm
was quantified using the daily mean activity counts (counts/min) using the following index:

(3)

(4)

where I represents the involved limb, U is the uninvolved limb, and Ax is the asymmetry
index. For control subjects, I, or involved limb, for use in Eqs. (3) and (4) was the subject’s
limb that matched the dominancy of the patient’s involved limb.

The resulting asymmetry index is a unitless value between positive infinity and negative
infinity, with positive values indicating greater activity in the uninvolved limb and negative
values indicating greater activity in the involved limb. Smaller values represent greater
symmetry (perfect symmetry = 0). The asymmetry index results can be multiplied by 100 to
represent them as an asymmetry percentage. The asymmetry index was selected because it
was designed to allow the data to form a normal or Gaussian distribution (Kaufman et al.,
1996).
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2.3.5. Activity bins—A novel technique to evaluate activity over the course of the day
included the use of activity bins, which were created to calculate the amount of time subjects
were inactive, and the time spent performing activities categorized as low and high intensity.
To facilitate between-group comparisons, activity levels for the control and patient groups
were normalized to the average maximum value of the control group. The epoch activity
count data for control subjects and patients for each day was subsequently divided into
activity bins based on the percentage of the control group maximum activity value (CMA)
as follows:

Inactive: Activity <110m/s2/min epoch (Hagstromer et al., 2007)

Low activity: 110 m/s2/min epoch ≤ Activity ≤33% of CMA

High activity: Activity >33% of CMA

where 33% of CMA is greater than 110 m/s2 in a segment that experiences accelerations
above 0.01 m/s2. The epochs in each bin were summed to determine the percentage of each
day spent at the different activity levels, and the total percent time spent in each bin was
averaged across days for analysis for each segment and each limb.

2.4. Statistical analysis
Measures of central tendency and dispersion were captured using the statistical mean and
standard deviation for the minimum, mean, and maximum activity counts for each limb
segment and group. Side-to-side within group differences were calculated for the lower and
upper arm for minimum, mean and maximum activity counts, and entropy using paired t-
tests. Between group differences were evaluated for the lower and upper arm for minimum,
mean, and maximum activity counts with a univariate ANOVA. To account for limb
dominance, the limb of interest for control subjects was matched to the involved limb of a
patient. For example, if a male patient whose involved limb was his non-dominant arm, a
male control subject’s non-dominant arm was utilized for comparison. Between group
differences were also evaluated for the time spent across activity bins. Hotelling’s T-Square
was utilized to detect statistical significance for differences in activity for the lower and
upper arm between groups. A t-test was applied to the asymmetry index results to compare
between the control and patient groups for the lower and upper arm separately. When
statistical significance was achieved, post hoc testing was performed with a univariate
ANOVA to determine where differences were occurring. Statistical testing was performed
using commercially available software (SAS Institute Inc., Cary, NC). Statistical
significance was established at α ≤ 0.05.

3. Results
The sample consisted of 30 subjects, including nine females and six males in each group. All
of the control subjects were right-hand dominant. Two patients were left-hand dominant,
and 13 right-hand dominant. There were 10 patients whose right arm was the involved limb
and six with left arm involvement. There were no differences between groups for age,
height, or weight (Table 1). There was also no difference between groups for total time spent
wearing the activity monitors (Controls, Mean = 745 min (SD, 105); Patients, Mean = 770
min (SD, 85); P = 0.591).

For measures of central tendency and dispersion of activity level, the control group
exhibited side-to-side differences at the lower and upper arm. Both the average and
maximum activity was higher in the dominant arm compared to the non-dominant arm
(Table 2). Side-to-side differences within the patient group were also evident in the lower
and upper arm, with the non-involved arm average and maximum activity greater than the
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involved arm (Table 2). There was no side-to-side difference in either group for the
minimum activity of the lower or upper arm (Table 2).

Between group comparisons indicated there was a significant difference in the maximum
activity of the lower arm (P = 0.05), with the patients exhibiting significantly greater activity
in their involved side compared to the matched limb in control subjects (Table 2). There
were no differences between groups for the average (P = 0.307) or minimum (P = 0.961)
activity at the lower arm, and there were no differences between groups for activity of the
upper arm (Minimum, P = 0.336; Mean, P = 0.603; Maximum, P = 0.147) (Table 2).

When evaluating side-to-side differences within groups, both groups demonstrated
significant differences in entropy at the lower arm. Control subjects demonstrated
significantly greater lower arm entropy on the dominant arm (Mean, 0.5306; SD, 0.16)
compared to the non-dominant arm (Mean, 0.4375; SD, 0.12) (P < 0.001). Patients had
significantly greater lower arm entropy on the non-involved limb (Mean, 0.4919; SD, 0.20)
than the involved limb (Mean, 0.4326; SD, 0.19) (P = 0.041). For the upper arm, there was a
significant side-to-side difference in entropy for patients, with the non-involved limb
entropy significantly higher in the non-involved arm (Mean, 0.2436; SD, 0.12) than the
involved arm (Mean, 0.1932; SD, 0.10) (P = 0.003). There was no side-to-side difference in
upper arm entropy for the control group (D: Mean, 0.2352; SD, 0.08; ND: Mean, 0.2112,
SD, 0.06; P = 0.370).

There were significant differences between groups based on the asymmetry index for both
the lower and upper arm (Table 3). Control subjects presented with almost no asymmetry in
the lower arm while the patients exhibited 13% greater mean activity in the uninvolved
lower arm when compared to their involved side (Table 3). Similarly, at the upper arm
control subjects exhibited low asymmetry while the patients had 17% greater mean activity
in the uninvolved upper arm when compared to the involved side (Table 3).

Between group differences were also present when evaluating the time spent across activity
bins (Fig. 1). With inactive, low, and high activity bins combined in a multivariate analysis,
there was a significant difference between groups for the upper arm (P = 0.035). Post hoc
analysis indicated differences were occurring for the amount of time spent in inactivity, with
patients not using their involved upper arm 20% of the time, compared to 14% of inactive
time for the matched upper arm of control subjects (P = 0.013) (Fig. 1). Control subjects
spent a greater amount of time in the low and high activity bins compared to patients (Fig.
1). Neither of these differences, however, were statistically significant (P = 0.477). There
were no differences between groups for time spent across activity bins for the lower arm (P
= 0.125) (Fig. 1).

4. Discussion
To date, there is no consensus regarding which analysis technique to use or what type of
information the researcher or clinician may wish to ascertain from data obtained from tri-
axial accelerometers worn on the extremities. This study has reported the results of multiple
analyses methods for evaluating upper extremity function. Each analysis method provides a
different means by which to interpret tri-axial accelerometer data. Ultimately, selection of
one or more analysis methods is dependent on the questions of interest. Additionally, data
from this study indicate a side-to-side comparison alone is inadequate when evaluating
upper extremity function in patients, as an effect of limb dominance was present in control
subjects. Finally, these data support distinguishing between the upper and lower arm, as the
activity level of each segment was variable in control subjects and patients.
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We performed a novel analysis that evaluated the time distribution of activity intensity.
These activity bins differentiated the amount of time subjects spent in inactivity, and
performing low and high intensity activities. Defining the maximum value, and thus the
range for the low and high intensity bins, was based on the control group. Control subjects
were matched to patients for gender and age. Thus, interpreting the time spent in activities of
low and high intensity for patients was based on a group of asymptomatic peers.
Furthermore, the limb of interest for activity bin analysis was chosen based on whether the
dominant or non-dominant extremity of the patient was involved. The activity bin data
revealed there was a greater amount of inactivity time for the upper arm of patients
compared to control subjects. While the amount of time control subjects spent in low and
high intensity activities was greater than patients, these values did not reach statistical
significance. In contrast, measures of central tendency and variability did not identify any
differences between groups for the upper arm, and the only difference between groups for
the lower arm was the maximum activity level.

The within subject entropy results highlighted the role of dominancy in the control subjects
and the effect of impairments in the patient group. In the control group the dominant limb
had greater entropy than the non-dominant limb at the lower arm. There was no difference,
however, at the upper arm when comparing limbs. As the main function of the shoulder and
elbow (upper arm) are to position the hand in space (Peat, 1986), it may be expected that
effects of dominancy would be more readily detected at the lower arm, near the hand. For
the patient group, the restrictions in movement as a result of joint pain on the involved side
resulted in statistically greater entropy values in the uninvolved lower and upper arm. These
results emphasize the utility of the entropy measure to detect pathological movement when
performing side-to-side comparisons.

Calculating and interpreting inactivity has previously been described (Hagstromer et al.,
2007). Inactivity time is useful in providing insight into movement avoidance. Previous
investigators have attempted to distinguish between activities of varying intensity based on
classification algorithms from data obtained in controlled environments (de Vries et al.,
2011; Oshima et al., 2010; Xia et al., 2011). One of the challenges of extended collections in
an individual’s natural living environment is the inability to correlate specific activities with
the recorded data. Rather than attempting to identify specific activities that were performed,
we suggest differentiating time spent in activities of different intensities may provide
meaningful insight of limb function. Sustained avoidance of high intensity activities may
represent a shrinking envelope of function associated with more severe clinical impairments.
Conversely, an increase in activity intensity after intervention may equate to an expanding
range of function associated with clinical improvements in range of motion, strength, or
pain. Additionally, if a patient spends less time performing high intensity activities there is
the potential to create a vicious circle of disuse, which contributes to limitations in motion
and strength. Consequently the patient is unable to perform high intensity activities, and
their envelope of function gradually shrinks. Future studies that longitudinally correlate tri-
axial accelerometer data with clinical measures will be necessary to confirm these
hypotheses and facilitate clinical interventions designed to improve patient function.

There are limitations to this study. It is possible the results of the analyses may be different
when evaluating the lower extremities. For example, asymmetries may not be present in
asymptomatic individuals. In this case a side-to-side comparison within patients may be
appropriate. There may be no differences in activity levels in the upper and lower segments
in the legs. This would justify the use of only one monitor per lower extremity. Inclusion of
patients with varying diagnoses may have yielded alternative results. The intention of the
study, however, was to highlight the findings of different analyses methods. Thus, we do not
believe the diagnosis had a meaningful impact on the findings. Finally, precise activities the
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study participants performed were not documented to validate the classification of low and
high intensity activities. Although tri-axial acceleration based activity monitors are a good
marker of function, it is important to note these data are limited in nature and do not reflect
the range of motion or the plane of motion through which the limb segment is moving.

5. Conclusions
This study highlights the unique information provided by multiple analysis methods when
interpreting data collected from tri-axial accelerometers, including a novel approach of
evaluating the distribution of time spent across variable intensity activities. Clinicians and
researchers evaluating upper extremity function should be mindful of the effect of limb
dominance, and include a control group to aide in the interpretation of limb performance in
patients. Additionally, activity may not be equivocal in the lower and upper arm. It is
therefore recommended activity monitors be worn on both segments to gain greater insight
into upper extremity function.
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Fig. 1.
Time distribution (%) of activity for the lower and upper arm in control subjects and patients
including time spent inactive, and performing low and high intensity activities. Mean values
are displayed within the larger bar, while the thin vertical bars represent the standard
deviation.
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Table 1

Subject demographics by group.

Controls Patients P value

Age (Years) 72 (6) 66 (10) 0.117

Height (cm) 163 (9) 163 (7) 0.9852

Weight (kg) 73 (14) 80 (19) 0.319
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Table 3

Between group analysis results for Asymmetry Index (Mean (SD)). Positive values denote greater activity in
the uninvolved limb while negative values reflect greater activity in the involved limb, and zero is perfect
symmetry. Statistical significance * ≤ 0.05.

Lower arm Upper arm

Controls −0.01 (0.20) 0.02 (0.12)

Patients 0.13 (0.20) 0.17 (0.17)

P value 0.033* 0.005*
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