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Abstract
Natural killer (NK) cells constitute a minor subset of normal lymphocytes that initiate innate
immune responses toward tumor and virus-infected cells. They can mediate spontaneous
cytotoxicity toward these abnormal cells and rapidly secrete numerous cytokines and chemokines
to promote subsequent adaptive immune responses. Significant progress has been made in the past
two decades to improve our understanding of NK cell biology. Here we review recent discoveries,
including a better comprehension of the “education” of NK cells to achieve functional competence
during their maturation and the discovery of “memory” responses by NK cells suggesting that they
may also contribute to adaptive immunity. The improved understanding of NK cell biology has
forged greater awareness that these cells play integral early roles in immune responses. In
addition, several promising clinical therapies have been used to exploit NK cell functions in
treating cancer patients. As our molecular understanding improves, these and future
immunotherapies should continue to provide promising strategies to exploit the unique functions
of NK cells to treat cancer, infections, and other pathological conditions.

Keywords
Natural killer (NK) cell; Killer cell Ig-like receptors (KIR); Innate immunity; Immune memory;
Antibody-dependent cellular cytotoxicity (ADCC); Cancer; Viral infection; Hematopoietic stem
cell transplantation; Immunomodulatory drugs; Interferon-γ

What are Natural Killer Cells? More than the name implies
Natural killer (NK) cells constitute about 10% of the lymphocytes in human peripheral
blood and provide an important effector arm of the innate immune system. Although named
for their capacity to mediate spontaneous “natural” cytotoxicity toward certain tumor and
virus-infected cells, NK cells are also a major source of the type 1 cytokine, interferon
(IFN)-γ, as well as tumor necrosis factor (TNF)-α, GM-CSF, and other cytokines and
chemokines.(1, 2) Production of these soluble factors by NK cells in early innate immune
responses significantly influences the recruitment and function of other hematopoietic cells.
For example, by contributing both cytokines and cytolysis during viral infections, NK cells
enhance antigen-specific T cell responses under conditions of modest viral doses, while
limiting excessive T cell responses upon exposure to high viral titers.(3) Collectively, these
NK cell activities prevent pathology and mortality. Also, through physical contacts and
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production of cytokines, NK cells are central players in a regulatory crosstalk network with
dendritic cells (DC) and neutrophils to promote or restrain immune responses.(4, 5)

Recently, NK cells were officially classified as the prototypical members of the group 1
innate lymphoid cells (ILC), which are defined by capacity to secrete IFN-γ, but not type 2
cytokines (IL-4, IL-13), IL-17, or IL-22.(6, 7) Group 1 ILC are thus distinct from group 2
ILC that produce IL-13 and group 3 ILC that can produce IL-17 and/or IL-22.(6, 7) Human
NK cells are classically defined as CD56+CD3- cells, distinguishing them from CD56+CD3+

cells, which consist of a mixed population of NK-like T (NKT) cells and antigen-
experienced T cells that have up-regulated several NK cell markers.(8) The activating
receptor NKp46 (NCR1) is also expressed on virtually all human NK cells, but it is
important to note that NKp46 and CD56 are also expressed by some group 3 ILCs, although
these cells are very rare, especially in peripheral blood.(6, 7) NK cells are primarily found in
the blood, spleen, liver, lung, and bone marrow, while limited numbers are localized in
lymph nodes.(9) Nonetheless, the few NK cells that reach lymph nodes play key roles there
by interacting with DC to promote IFN-γ responses by T cells(10) and preventing the spread
of viruses.(11)

Two major subsets of NK cells are found in humans that can be distinguished by their levels
of CD56 expression, namely CD56dim and CD56bright.(8) CD56dim NK cells are fully
mature, make up about 90% of the NK cells in peripheral blood, and predominantly mediate
cytotoxicity responses. In contrast, CD56bright cells are more immature, make up about
5-15% of total NK cells, and have been considered primarily as cytokine producers, while
playing a limited role in cytolytic responses. Although CD56bright NK cells are more
efficient at producing cytokines overall, the CD56dim NK cells can also contribute
significantly to early cytokine production, since they comprise a significantly greater
fraction of the total NK cell pool and can more rapidly secrete cytokines.(1, 12, 13) On the
other hand, CD56bright cells are better able to leave the vasculature and constitute the
majority of NK cells found in either lymph nodes or the decidual tissues of pregnant women.
In the first trimester of human pregnancy, CD56bright NK cells can surprisingly make up
about 70% of the lymphocytes in the decidual tissue, and recent evidence suggests that they
play important roles in promoting angiogenesis during pregnancy.(14)

NK cells can be rapidly activated to spontaneously attack certain abnormal cells in the body,
especially tumor or virus-infected cells. Hence, rare individuals who selectively lack NK
cells exhibit increased susceptibility to viral infections, especially herpesviruses, and
increased tumor incidence.(15) The predominant cytolytic targets of NK cells are uncommon
cells that have down-regulated class I MHC (MHC-I), which is expressed on nearly every
healthy cell of the body.(16) MHC-I loss is a fairly common mechanism by which tumors
and virus-infected cells can evade recognition by the TCR of cytolytic T cells,(17, 18) and
NK cells can thereby overcome this potential immunological Achille's heel. NK cytotoxicity
is mediated by the directed exocytosis of cytolytic granules to release perforins and
granzymes, which perforate the target cell plasma cell membrane and trigger apoptosis,
respectively.(19)

How do NK cells work? Inhibition counterbalances activation
The discovery that NK cells selectively attack target cells with diminished MHC-I
expression at first puzzled researchers in the early 1990's. The paradigm at that time had
established that T and B lymphocytes rearrange genomic elements via RAG-mediated
splicing to create clonotypic antigen receptors that can identify foreign pathogens and
altered proteins through “non-self” recognition. Therefore, it was unclear how NK cells
could detect and respond to the loss of a normal ubiquitous protein.
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This puzzle was solved when it was discovered that mature NK cells are tolerized toward
normal cells by their expression of germline-encoded inhibitory receptors that recognize
MHC-I. When these inhibitory receptors encounter MHC-I on normal cells, they recruit
SHP-1 and SHP-2 protein tyrosine phosphatases at immunoreceptor tyrosine-based
inhibitory motifs (ITIMs) to dominantly arrest tyrosine kinase-based activation signals.(20)

When a mature NK cell encounters a rare abnormal cell lacking MHC-I, however, inhibitory
receptors are not engaged, and unsuppressed activating signals trigger targeted attack. The
principal inhibitory receptors are killer cell Ig-like receptors (KIR) on human NK cells and
Ly49 on murine NK cells. In addition, both mouse and man share the CD94/NKG2A
inhibitory receptor, which recognizes a non-classical MHC-I (Qa-1b in mouse and HLA-E
in humans). The differences between human and mouse NK cell inhibitory receptors are
summarized in Table I.

Although the KIR and Ly49 receptor families are strikingly divergent in structure, they each
have evolved to perform nearly identical functions and share similar mechanisms of
regulated expression.(21-23) KIR are polymorphic type I proteins with Ig-like domains, and
each KIR family member recognizes a distinct subset of classical MHC-I (HLA-A, -B, and -
C) molecules, while Ly49 are a family of polymorphic type II proteins with C-type lectin
domains that similarly bind subsets of H-2 molecules.(24, 25) Distinct NK cells within an
individual express different KIR or Ly49 family members, resulting in a mixed repertoire of
cells with different MHC-I recognition capacities, and some inhibitory receptors do not
recognize the endogenous (self) MHC-I alleles. This diversity is compounded by inheritance
of different haplotypes of KIR or Ly49 genes by individuals and minor allelic
polymorphisms, which further increase variability of expression and ligand recognition by
these inhibitory receptors within human and mouse populations.(26)

Activating receptors expressed on NK cells include FcγRIIIA, activating forms of KIR
(KIR2DS, KIR3DS), 2B4, NKG2D, and the Natural Cytotoxicity Receptors (NCR) called
NKp30, NKp44, and NKp46 (see Table I).(20, 27) FcγRIIIA (CD16) can trigger antibody-
dependent cellular cytotoxicity (ADCC) upon encountering target cells opsinized with IgG,
while NKG2D and NCR appear to be the most relevant receptors that stimulate responses to
tumor target cells.(28) Ligands for several of these receptors are still undefined, but several
known ligands are upregulated on stressed cells, such as MICA and MICB ligands for
NKG2D and the B7-H6 ligand for NKp30.(29, 30) Integrins also play important roles in
mediating adhesion to target cells, and integrin-mediated signaling is important for
stimulating NK cell activation that triggers targeted degranulation.(31-33)

How do NK cells learn to function properly? Inhibitory receptors can also
be instructive

The function of inhibitory receptors is, however, not only to counteract activating receptors
as a means to tolerize mature NK cells toward normal cells. Studies in mice support a
“regulated sequential” model, in which individual KIR or Ly49 genes are stochastically
expressed during NK cell maturation until a receptor recognizes “self” MHC-I, transduces
negative signals, and restricts expression of additional inhibitory receptor genes.(34, 35) This
creates a repertoire of NK cells, each of which permanently expresses a distinct combination
of available inhibitory receptor gene products. Expression of a self-recognizing inhibitory
receptor (SRIR) during NK cell development also promotes the maturation of functionally-
responsive NK cells in both mice and humans, through a process of “education” (Figure
1).(36-42) It was originally assumed that all mature NK cells express at least one SRIR to
assure tolerance,(43, 44) but more recent studies identified a subset of mature cells lacking
SRIR. Most of these SRIR- NK cells express inhibitory receptors that cannot recognize
endogenous MHC-I and are therefore “unliganded”, and activating receptors in SRIR- NK
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cells are hyporesponsive to generate cytokine production or cytotoxicity. This
hyporesponsive state is characteristic of all NK cells in MHC-I-deficient mice and
humans.(45, 46) These results reinforce the need for SRIR interactions to facilitate the
development of functional competence of NK cells and the existence of tolerizing
mechanisms to prevent autoimmune attack of normal tissues in the absence of SRIR.

Four models have been proposed to explain the process of NK cell education during
development (see Figure 1): 1) Yokoyama introduced the “licensing” model in which
signaling through a SRIR directly promotes functional competence mediated by an ITIM-
dependent signaling process.(42) 2) Raulet proposed the “disarming” model in which NK
cells lacking SRIR are anergic or “disarmed” due to chronic activation signaling, whereas
“arming” results when SRIR engage with MHC-I to prevent chronic activation signaling.(41)

3) Höglund first established the “rheostat model” in which stronger inhibitory signaling
through more SRIR interactions leads to greater functional responsiveness of NK
cells.(37, 47, 48) 4) Held proposed the “cis interaction” model in which cis interactions
between Ly49 and MHC-I on the surface of the same NK cell sequesters these SRIR from
reaching the immune synapse, thereby making the NK cell more functionally responsive.(49)

Although the cis interaction model provides an interesting hypothesis that may be operative
for some SRIR, it is unclear whether all Ly49 can interact with MHC-I in cis and whether
KIR can interact in cis at all.

Interesting evidence suggests that uneducated NK cells may also play important roles in
immune responses toward viral infections in vivo, since SRIR-deficient NK cells responded
more strongly than SRIR+ cells toward MCMV.(50) Furthermore, SRIR-deficient NK cells
can be “primed” to a functional state upon culture in IL-2.(42) This suggests that these
uneducated NK cells may be functionally activated by cytokines at sites of infection and
tumors to respond even toward MHC-I-expressing target cells. These results demonstrate the
value of a diverse NK cell repertoire and reinforce a need to better understand how the
signaling competence of individual NK cells is influenced by SRIR/MHC-I interactions and
maturation at the molecular level.

Can NK cells mediate adaptive immunity? Cherishing the memories
Although NK cells have been classified as innate immune cells, exciting recent evidence in
mice indicates that NK cells may also mediate long-lived “memory”-like responses, and
immune memory is a central attribute of the adaptive immune system. Previous work
indicated that mature NK cells transferred into an immune-competent mouse survive with a
short half-life of only about one week and undergo minimal proliferation,(51) but they can
undergo homeostatic proliferation when transferred to a lymphopenic environment.(52, 53) A
more recent study found that murine NK cells undergoing homeostatic expansion in a
lymphopenic environment can generate a population that can survive and self-renew for
more than 6 months,(54) suggesting that long-lived NK cells can arise under certain
circumstances. Related to this finding, three types of long-lived memory responses by NK
cells have recently been reported.

First, certain viral infections have been shown to multiply NK cell subpopulations
expressing receptors that specifically target the virus. As a classic example, upon infection
with mouse cytomegalovirus (MCMV), C57BL/6 mice expand a subpopulation of NK cells
expressing the Ly49H activating receptor, which specifically detects the MCMV-derived
protein m157. These Ly49H+ cells were found to express markers of terminally mature NK
cells,(55) and such cells were previously shown to be long-lived.(56) A subset of these
MCMV-experienced NK cells can survive for at least 70 days, and upon secondary MCMV
challenge, these cells can proliferate robustly in an IL-12-dependent manner, demonstrate
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enhanced cytotoxicity and cytokine responses, and provide enhanced protection against
secondary viral challenge.(55, 57) A potentially similar phenomenon was observed in human
transplant recipients, in which a terminally-mature NKG2C+ memory-like NK cell
population expands, is long-lived, and has enhanced responsiveness to secondary CMV
infection.(58, 59) Another report found that CMV infected individuals expand a pool of
highly differentiated NK cells that express educating SRIR and several activating KIR
(KIR2DS4, KIR2DS2, or KIR3DS1) and NKG2C receptors.(60) Also analogous is the
expansion and long-term persistence of NKG2C+ NK cells in individuals infected with
human hantavirus.(61)

Second, NK cells pre-stimulated in vitro with a cocktail of cytokines (IL-12 + IL-18 +
IL-15) were found to survive for at least several weeks when transferred into naïve mice and
demonstrated enhanced responses to a variety of stimuli.(62) A subsequent study found that
NK cells stimulated with the same cytokine combination significantly reduced tumors in
mice, although the effect also required whole body irradiation.(63) The NK cells in this study
expanded substantially in vivo in a CD4 T cell-dependent manner and accumulated in tumor
sites. Furthermore, human NK cells stimulated in vitro with IL-12 + IL-18 + IL-15 exhibit
enhanced IFN-γ responses to restimulation with the same cytokines up to 3 weeks later,
indicating the same cytokine memory responses can also occur in humans.(63, 64)

Third, and perhaps most intriguing, is the identification of a liver-derived NK cell
population that can generate antigen-specific memory responses. These cells were first
identified in Rag2-deficient mice exposed to haptens, which elicited contact hypersensitivity
responses upon re-exposure to specific antigen at least four weeks later.(65) Surprisingly, this
delayed-type hypersensitivity response was elicited by NK cells derived from the liver, but
not from the spleen. Subsequent work from the same group found that vaccination of mice
with viral antigens can induce hepatic NK cells that provide antigen-specific protection from
challenge with several viruses at least four months later.(66) These hepatic memory NK cells
were also found to express and be influenced through the chemokine receptor CXCR6.(66)

While T and B memory cells provide antigen-specific memory responses for many years,
these recent findings indicate that NK cells also have the potential to recall previous insults
to their environment, leading to improved responsiveness upon secondary challenge for at
least a few months. Questions arise regarding the mechanistic foundations for these memory
responses, how long they can be maintained, and whether they can be harnessed to combat
disease through therapeutic interventions, such as vaccine-based strategies.

Can NK cells be persuaded to improve human health? Killer
immunotherapies to the rescue

Due to improved understanding of the important roles played by NK cells in normal immune
function, the development of NK cell-targeted therapies has gained traction during the past
decade. Not surprisingly, the best examples of treatment strategies to manipulate human NK
cell functions have involved immunotherapies to treat cancer.

Some of the clinically approved therapeutic antibodies to treat cancer, such as rituximab
(anti-CD20 mAb), trastuzumab (anti-Her2 mAb), cetuximab (anti-EGFR mAb), and
mogamulizumab (anti-CCR4 mAb) are considered to function at least partially through
triggering NK cell-mediated ADCC activity.(67) Several approaches have been designed to
enhance this NK cell-mediated ADCC activity through antibody engineering and use of
antibody combinations. For example, mogamulizumab, which was recently approved in
Japan, is defucosylated to increase binding by FcγRIIIA and thereby enhance ADCC
activity.(67) In addition, since NK cells encountering rituximab-coated target cells upregulate
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the co-stimulatory molecule CD137, the addition of an agonistic anti-CD137 mAb was
shown to potentiate rituximab-mediated ADCC responses.(68) Furthermore, the inhibitory
receptor PD-1 was found to be upregulated on NK cells in multiple myelomas that express
the cognate ligand, PD-L1, and a PD-1 blocking antibody was shown to potentiate NK cell-
mediated cytotoxicity of these tumors.(69) Also, in vitro ADCC responses were potentiated
in the presence of antibodies that block NK cell inhibitory receptors from interacting with
MHC-I ligands.(70) More recently, an anti-KIR antibody that blocks MHC-I recognition
(IPH2101) was shown to boost human NK cell function in vitro, in humanized mice,(71, 72)

and most recently in clinical trials in cancer patients.(73-75) In summary, many promising
antibody combination strategies designed to boost NK cell ADCC responses to tumors are
now in pre-clinical and clinical development.

Since KIR are the predominant receptors regulating NK cell activation in humans, it is not
surprising that variations in KIR/HLA interactions can significantly affect human health.
Most notably, many population genetic studies have noted differences in disease
susceptibility resulting from inheritance of particular combinations of KIR and HLA
ligands. For example, individuals homozygous for a low affinity inhibitory KIR/HLA-C
combination naturally respond better to hepatitis C virus (weak inhibition is good),(76)

whereas pregnancies involving high affinity maternal KIR/fetal HLA-C exhibit greater
incidence of pre-eclampsia (strong inhibition is bad).(77) Also, individuals with more gene
copies of both activating and inhibitory forms of HLA-B-specific KIR in combination with
their high affinity HLA-B ligand(78, 79) are better protected from HIV infection (both strong
KIR-mediated activation and inhibition are good).(80-82) Although insightful, the exact
mechanisms contributing to many of these genetic correlations are not entirely clear and
could involve different thresholds of NK cell activation, differences in NK cell education, or
even a role of KIR expressed on T cells.

Inhibitory KIR-HLA ligand mismatch has also been successfully exploited to improve the
efficacy of hematopoietic stem cell (HSC) transplantation for treating acute myeloid
leukemia (AML), while simultaneously reducing incidence of graft-vs.-host disease.(83-88)

Increased survival was also reported for AML patients that received HLA-matched or -
mismatched HSC transplants containing KIR “B haplotypes”, which characteristically have
more activating KIR.(89) Another study found that patients experienced significantly lower
relapse rates if they received T cell-depleted HLA-matched HSC transplants containing
three specific KIR genes associated with the B haplotype (KIR2DL5A, KIR2DS1, and
KIR3DS1).(90) Furthermore, AML patients receiving HSC allografts from KIR2DS1+

donors were found to experience lower relapse rates compared to those from KIR2DS1-

donors.(91) Interestingly, the same study also found that allografts from KIR2DS1+ donors
who were homozygous for the KIR2DS1 ligand, HLA-C2, did not provide protection,
whereas donors with HLA-C1/C1 or HLA-C1/C2 genotypes provided significantly lower
rates of relapse. The results suggest that NK cells expressing the activating KIR2DS1
receptor are tolerized by constitutive stimulatory signals in HLA-C2/C2 donors and this
education pattern persists after transplantation. Another study also found that NK-cell
education depends on ligands of donor, not recipient, and the education pattern lasted stably
for at least three years.(92) These findings demonstrate that KIR/HLA match/mismatch
offers a new dimension of variability to consider in HSC transplantation. Although the rules
governing the impacts of specific KIR/HLA combinations in donors and recipients continue
to be established, evidence is accumulating that allogeneic NK cell reactivity can be
beneficial, especially for AML. Also, certain KIR, like the activating KIR2DS1, can play
protective roles.

Adoptive transfer of ex vivo-activated mature NK cells is also emerging as a promising
immunotherapy for cancer. In several studies, the infusion of enriched populations of
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haploidentical NK cells, especially those exploiting KIR/HLA allogenicity, has been shown
to be safe and effective for treating cancer in adults, children, and elderly patients.(93-95)

Although a promising approach, the requirements of specialized processing equipment, good
manufacturing practices, and logistical complexities have limited availability of these
adoptive NK cell therapies to a few specialized institutions.(96) Nonetheless, centralized
processing and safe delivery of viable and active NK cells for infusion at remote clinics has
been demonstrated,(97) indicating that the practice may become more widespread as
procedures are optimized.

Genetic engineering of NK cells to express chimeric antigen receptors (CAR) also shows
promise as an effective anti-tumor therapy. CAR consist of antibody variable domains
linked to transmembrane and intracellular activation signaling domains that target
engineered effector cells to a target cell-specific marker. The adoptive transfer of patient T
cells transduced with lentivirus to express CAR has recently been shown to cause impressive
regression of B cell malignancies.(98-100) A disadvantage of this approach is the chronic
depletion of normal B cells in these patients, due to the long-term survival of memory-like
CAR-expressing T cells. Given the shorter lifespan and potent cytolytic function of NK
cells, they are attractive candidate effector cells to express CAR for adoptive
immunotherapies. Although not yet tested in clinical trials, several CAR constructs
expressed in primary NK cells have been shown to trigger efficient in vitro killing of B cell
tumors.(101-103) Limitations of this approach, however, are the difficulty in expressing
exogenous genes in primary NK cells and difficulty in expanding the cells in culture to
adequate numbers for immunotherapy. Alternatively, some groups have expressed CAR in
the human NK-like cell line, NK-92, to engineer a uniformly targeted cytolytic effector cell
population.(104, 105) NK-92 cells can be easily expanded in culture and have been well
tolerated in phase I clinical trials in humans.(106) Thus, CAR-expressing NK-92 cells may
represent a practical NK cell-based immunotherapeutic alternative.

Certain immunomodulatory drugs, such as lenalidomide and bortezomib, can also potentiate
NK cell mediated-cytotoxicity or cytokine production responses, which may contribute to
their clinical benefits. The thalidomide derivative lenalidomide is approved for the treatment
of myelodysplastic syndrome and multiple myeloma (MM) and another derivative
pomalidomide was more recently approved for MM. These drugs have has been reported to
enhance NK cell-mediated cytotoxicity, possibly through stimulating IL-2 production by T
cells(107, 108) and enhancing in vitro ADCC responses to tumor cells.(109) On the other hand,
co-treatment with dexamethasone can impair the potentiation of NK cell-mediated
cytotoxicity by lenalidomide.(110) The exact mechanism by which lenalidomide stimulates
NK cells is still uncertain, however, and it has not been firmly established whether the
stimulatory effect of lenalidomide on NK cells directly contributes to treatment outcomes.
Bortezomib is a 26S proteasome inhibitor approved for use in treating MM and mantle cell
lymphoma.(111) While bortezomib directly induces cell growth inhibition and apoptosis in
cancer cells, it also reportedly up-regulates ligands for TRAIL receptors and NKG2D and
down-regulates MHC-I on several cancer types, including MM, renal cell carcinoma,
leukemia, breast cancer, melanoma, and hepatocellular carcinoma.(112, 113) These effects by
bortezomib were found to enhance in vitro NK cell-mediated cytotoxicity responses.(113)

Interestingly, in tumor-bearing mouse models, infusion of syngeneic NK cells in
combination with bortezomib reduced tumor growth and prolonged survival compared to
treatment with bortezomib or NK cells alone.(114) Clinical trials are currently ongoing to
evaluate the safety and antitumor effect of adoptively infused ex vivo expanded autologous
NK cells following bortezomib treatment in patients with advanced malignancies.(115)
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Where do we go from here? Reforming killers for a better future
During the past two decades, significant advances have been made in characterizing the
many germline-encoded activating and inhibitory receptors expressed on NK cells,
identifying their ligands, and establishing their intricate roles in regulating NK cell
activation. Studies in mice and humans have firmly established that this relatively minor
subpopulation of lymphocytes provides critical early effector function in a wide variety of
immune responses. Further work is needed, however, to fill remaining gaps in knowledge.
Surprisingly, the identities of ligands for several NK cell activating receptors still remain
elusive, and characterizing these ligands is required to fully define the physiological
functions of these receptors. Major efforts are also needed to precisely map the myriad
affinities between the many highly polymorphic variants of KIR and HLA ligands found in
the human population, as well as the impacts of polymorphism on KIR expression and
function. Only once these many diverse variations are taken into account can we fully
interpret genetic studies ascribing certain combinations of KIR and HLA alleles to disease
risk and accurately predict the impacts of certain donor/recipient combinations on HSC
transplantation outcomes. Further work is also required to establish the physiological
relevance of and operative mechanisms driving the processes of NK cell “education” and
“memory”. Many of the basic mechanisms discovered in NK cells can also be applied to
understanding similar mechanisms regulating other immune cells, especially the
functionally-related cytolytic T cells.

The NK cell field has reached an exciting stage, in which our improved basic knowledge is
rapidly being applied to the development of clinical therapies to modulate NK cell functions
in patients. To date, the most promising immunotherapies involving NK cells have been
applied to the treatment of cancer. Of particular interest are the evolving improvements in
understanding the influences of KIR/HLA matching/mismatching on HSC transplantation
and adoptive NK cell transplantation protocols. While these have been most beneficial for
treating AML, they need to be tested in other cancers. Further development of
immunomodulatory drugs that enhance NK cell functions is also needed, and additional
work is required to better characterize their mechanism of action. Effective
immunomodulatory drugs can then be incorporated into combination therapies, such as
promoting ADCC responses in combination with tumor-targeting antibodies. Future
applications are also needed to exploit NK cells in vaccine strategies, overcome mechanisms
by which tumors and viruses evade detection by NK cells, and establish therapies that
improve the access of NK cells to sites of infection and cancer. While cancer therapy is
currently the proving ground, strategies to manipulate NK cell functions can ultimately be
applied to treatment of other diseases, such as viral infections, problem pregnancy,
autoimmunity, and allergy. Overall, there is a bright future in reforming natural killer cells
to improve human health.
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Abbreviations

NK Natural killer

KIR Killer cell Ig-like receptors

ADCC Antibody-dependent cellular cytotoxicity

IFN Interferon

HSC Hematopoietic stem cell

TNF Tumor necrosis factor

DC Dendritic cells

NKT NK-like T

MHC-I Class I MHC

ITIMs Immunoreceptor tyrosine-based inhibitory motifs

NCR Natural Cytotoxicity Receptors

MCMV Mouse cytomegalovirus

SRIR self-recognizing inhibitory receptor

AML Acute myelocytic leukemia

MM Multiple myeloma

ILC innate lymphoid cells

CAR chimeric antigen receptors
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Figure 1. Models of NK cell education
During NK cell development, only some of the stochastically-expressed inhibitory receptors
(KIR in humans and Ly49 in mice) recognize self MHC-I ligand (self-recognizing inhibitory
receptor; SRIR). SRIR interactions promote NK cell education to mediate cytotoxicity
toward an abnormal cell that has lost expression of MHC-I, whereas a mature NK cell
expressing only unliganded inhibitory receptors becomes hyporesponsive. Models of NK
cell education are indicated: 1) Rheostat: expression of >1 SRIR promotes more robust
education, 2) Cis Interaction: interactions between SRIR and MHC-I on the NK cell surface
are important, 3) Arming: inhibitory signaling blocks chronic activation signals that would
otherwise anergize (“Disarming”); 4) Licensing: an ITIM-mediated signal drives education.
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Table I
Major NK cell receptors with reported ligands in mouse and man

Receptor Species Reported Ligand(s)*

Human Mouse

Inhibitory Receptors

KIR2DL1 (CD158a) × Group 2 HLA-C

KIR2DL2, KIR2DL3 (CD158b1, -b2) × Group 1 HLA-C, some Group 2 HLA-C and some HLA-B

KIR3DL1 (CD158e1) × HLA-Bw4

Ly49A (Klra1) × H2-Dd, -Dk, -Ld, -Db, -Kb, -Dp, -M3

Ly49C (Klra3) × H2-Db, -Kb, -Dd, -Kd, -Dk

Ly49E (Klra5) × Urokinase plasminogen

Ly49G (Klra7) × H2-Dd, -Kd, -Ld, -Db, -Dk, -Dr

Ly49I (Klra9) × H2-Kb, -Kd, -Dk, -Kk, m157 (mouse cytomegalovirus)

NKG2A (CD159A)/CD94 × × HLA-E (human), Qa-1b (mouse)

LILRB1 (ILT2, LIR1, CD85j) × HLA-A, -B, -C, -E, -G, -F, UL18 protein (human cytomegalovirus)

KLRG1 × × E-, N-, and R-cadherin

NKR-P1A (CD161) × LLT1

NKR-P1B, NKR-P1D × Ocil/Clr-b

Activating Receptors

NKp46 (NCR1; CD335) × ×
Human: HSPG, heparin, VM, HA (IV, VV, ECTV), HN (SeV, NDV),
PfEMP-1(P. falciparum), F. nucleatum; Mouse: influenza-infected cells, F.
nucleatum

NKp30 (NCR3; CD337) × B7-H6, BAT3, HSPG, HA (VV, ECTV), pp65 (HCMV), PfEMP-1 (P.
falciparum)

FcγRIIIA (CD16) × × Fc of human IgG immune complexes

NKG2D (CD314) × × Human: MICA/B, ULBP1, -2, -3, -4, -5, -6 Mouse: RAE-1a, -1b, -1d, -1e,
-1g, H60a, H60b, H60c, MUTL1

KIR2DS1 (CD158h) × HLA-C2

KIR2DS4 (CD158i) × Some HLA-C1 and –C2, HLA-A11

KIR2DL4 (CD158d) × HLA-G

NKp65 (KLRF2) × KACL (keratinocyte-associated C-type lectin)

NKp80 (KLRF1) × AICL (activation-induced C-type lectin)

DNAM-1 (CD226) × × Nectin-2, PVR

NKG2C (CD159C)/CD94, NKG2E/CD94 × × HLA-E (human), Qa-1b (mouse)

Ly49D (Klra4) × H2-Dd, -Dr, Dsp2

Ly49H (Klra8) × m157 (mouse cytomegalovirus)

Ly49P (Klra16) × H2-Dd, -Dk, m04 (mouse cytomegalovirus)

NKR-P1F × Clr-c, -d/x, -g

NKR-P1G × Clr-dx, -g, -f

Activating/Inhibitory Receptors

2B4 (CD244) × × CD48
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Receptor Species Reported Ligand(s)*

Human Mouse

NKp44 (NCR2; CD336) × PCNA, HS, heparin, E-protein (DV, WNV), HA (IV, SeV), HN (NDV),
Mycobacterium, N. farcinica, P. aeruginosa

*
Abbreviations used: HSPG: heparan sulfate proteoglycan, VM: vimentin, HA: haemagglutinin, HN: haemagglutinin–neuraminidase, IV: influenza

virus, VV: vaccinia virus, ECTV: ectromelia virus, SeV: Sendai virus, NDV: Newcastle disease virus, P. falciparum: Plasmodium falciparum, F.
nucleatum: Fusobacterium nucleatum, N. farcinica: Nocardia farcinica, P. aeruginosa: Pseudomonas aeruginosa.
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