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Mammalian target of rapamycin (mTOR) lies downstream of the type I insulin-like growth
factor receptor (IGFR), a transmembrane tyrosine kinase [1-4]. In response to ligand
binding, IGFR is activated via autophosphorylation of multiple tyrosine residues. Activated
IGFR in turn phosphorylates the insulin receptor substrates 1-4 (IRS1-4) and src- and
collagen-homology (SHC) adaptor proteins, which can trigger multiple downstream signal
transduction pathways including PI3K pathway [1-4]. Phosphorylated IRS recruits the p85
subunit of PI3K and signals to the p110 catalytic subunit of PI3K, resulting in activation of
PI3K. Activated PI3K catalyzes the conversion of phosphatidylinositol (4,5)-bisphosphate
(PIP2) to phosphatidylinositol-3,4,5-trisphosphate (PIP3) [1-4]. This pathway is negatively
regulated by PTEN (phosphatase and tensin homolog on chromosome ten), a dual-
specificity protein and lipid phosphatase. Increased PIP3 binds to the pleckstrin homology
(PH) domain of Akt and, in combination with additional Ser/Thr phosphorylation of Akt by
phosphoinositide-dependent kinase 1 (PDK1) and mTOR complex 2 (mTORC2), results in
full activation of Akt [1-4]. Subsequently, activated PI3K or Akt may positively regulate
mTOR, leading to increased phosphorylation of ribosomal p70 S6 kinase (S6K1) and
eukaryotic initiation factor 4E (eIF4E) binding protein 1 (4E-BP1), the two best-
characterized downstream effector molecules of mTOR [1-4]. Studies have placed tuberous
sclerosis complex (TSC) 1/2 as a modulator between PI3K/Akt and mTOR [5-7]. The
TSC1/2 complex acts as a repressor of mTOR function [8-10]. TSC2 has GTPase-activating
protein (GAP) activity towards the Ras family small GTPase Rheb (Ras homolog enriched
in brain), and TSC1/2 antagonizes the mTOR signaling pathway via stimulation of GTP
hydrolysis of Rheb [11-13]. Rheb activates mTOR by antagonizing its endogenous inhibitor,
FK506 binding protein 38 (FKBP38) [14], though this remains controversial [15]. The TSC
can also be activated by energy depletion through the activation of AMPK [1-4]. This, in
turn, activates the TSC, which catalyzes the conversion of Rheb-GTP to Rheb-GDP and thus
inhibits mTOR [1-4]. Recently, Rag proteins have been described to link amino acid sensing
and the regulation of mTORC1 activity [16-18]. mTOR functions at least as two complexes
(mTORC1 and mTORC2) in mammalian cells [1-4]. mTORC1 is composed of mTOR,
mLST8 (also termed G-protein β-subunit-like protein, GβL, a yeast homolog of LST8),
PRAS40 (proline-rich Akt substrate 40 kDa) and raptor (regulatory-associated protein of
mTOR) [19-24], whereas mTORC2 consists of mTOR, mLST8, mSin1 (mammalian stress-
activated protein kinase-interacting protein 1), rictor (rapamycin insensitive companion of
mTOR), and protor (protein observed with rictor, also named PRR5, proline-rich protein 5)
[25-32]. mTORC1 is sensitive to energy, amino acids, growth factors, and oxygen levels, as
well as rapamycin, regulates phosphorylation of p70 S6 kinase 1 (S6K1) and eukaryotic
initiation factor 4E (eIF4E) binding protein 1 (4E-BP1), and controls protein and lipid
synthesis, cell growth, proliferation, survival and motility [1-4, 19-24]. In contrast,
mTORC2 is only sensitive to growth factors and prolonged (>24 h) rapamycin exposure in
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certain cases, mediadtes phosphorylation/activity of Akt [25,27,28,30,31], serum and
glucocorticoid-inducible kinase 1 (SGK1) [33], PKCα [29], focal adhesion proteins
[26,29,34] and small GTPases [26,35], and regulates cell survival and the actin cytoskeleton
[1-4, 25-35]. However, rapamycin inhibition of mTORC1-mediated S6K1 may decrease
IRS-1 phosphorylation, which results in IRS-1 accumulation, thereby activating PI3K/Akt
[36,37]. Most recent studies further indicate that mTORC1 interacts with ULK1/2-ATG13-
FIP200 complex and phosphorylates ULK1/2 and ATG13, regulating autophagy [38-40].
Both mTORC1 and mTORC2 interact with a negative regulator DEPTOR [41]. Although
the cellular functions of the mTOR complexes remain to be determined, current data
indicate that mTOR is a central controller for cell growth, proliferation, survival/autophagy,
and motility [1-4].

Dysregulation of PI3K/Akt/mTOR pathway generates a favorable oncogenic environment
and has been seen in a variety of transformed cells and human tumors [1-4]. High frequency
of mutations of the components (such as PTEN, TSC, and PI3K) in this pathway is
correlated to human malignant progression and poor prognosis [1-4]. A mutation of mTOR
(L2431P) within an autoinhibitory domain of mTOR, resulting in constitutively activation of
mTOR, has also recently been documented [42]. Of interest, the tumor cells that are
addictive to PI3K/Akt/mTOR signaling are more sensitive to their inhibitors than normal
cells [2-4]. Therefore, targeting PI3K/Akt/mTOR pathway has become a new and promising
strategy to combat cancer.

While two rapalogs, CCI-779 (Temsirolimus) and RAD001 (Everolimus) that selectively
inhibit mTORC1, have been approved for treatment of advanced renal cancer, other
mTORC1 inhibitors and newly synthesized ATP-competitive mTORC1/2 inhibitors that
inhibit both Akt and mTOR, are still in clinical trials for treatment of a variety of cancers
[4]. Recent studies have demonstrated that a number of natural products (or nutraceuticals)
isolated from plants (e.g. fruits, vegetables, spices, nuts, legumes, herbs, etc.) also inhibit
PI3K/Akt/mTOR pathway, and exhibit potent anticancer activities. As most of the natural
products occur in our diet every day, and are very safe, the results suggest that those natural
products may be explored for cancer prevention and treatment. This special issue selects
apigenin [43], curcumin [44], cryptotanshinone [45], fisetin [46], indoles (indole-3-carbinol
and 3,3′-diindolylmethane) [47], isoflavones (genistein and deguelin) [48], quercetin [49],
resveratrol [50], and tocotrienol [51]. First, we briefly summarize specific aspects of these
compounds, including their origins, isolation, physical and chemical properties, structures,
and medicinal uses, and finally, we focus on reviewing recent advances on their anticancer
mechanisms, particularly related to inhibition of PI3K/Akt/mTOR as well as other
oncogenic signaling pathways.

Apigenin, a family member of flavonoids, is abundant in fruits (oranges, apples, cherries,
grapes), vegetables (onions, parsley, broccoli, sweet green pepper, celery, barley, tomatoes)
and beverages (tea, wine). Here Tong et al. review recent studies of apigenin as an
anticancer agent, and particularly discuss apigenin inhibition of PI3K/Akt/mTOR signaling
[43]. Evidence suggests that apigenin inhibits PI3K/Akt/mTOR signaling either by direct
inhibition of PI3K/Akt activity, or by indirect activation of AMPK-TSC axis.

Cryptotanshinone is one of the major tanshinones isolated from the roots of the plant Salvia
miltiorrhiza Bunge (Danshen). Studies have shown that cryptotanshinone inhibits cell
proliferation and induces cell death in a variety of cancer cells. Also, cryptotanshinone
inhibits angiogenesis and lymphangiogenesis, suggesting that cryptotanshinone is a potential
anticancer agent. However, because of its poor bioavailability, cryptotanshinone has not
been in clinical trials for any cancer therapy. Here Chen et al. review recent findings,
showing evidence that cryptotanshinone inhibits mTORC1-mediated phosphorylation of
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S6K1 and 4E-BP1, but may inhibit or activate mTORC2-mediated Akt, depending on cell
lines [44]. Further research is needed to address the underlying mechanisms.

Curcumin (diferuloylmethane), a polyphenol natural product of the plant Curcuma longa, is
undergoing early clinical trials as a novel anticancer agent. However, the anticancer
mechanism of curcumin remains to be elucidated. Numerous cellular targets have been
proposed. However, none of them appears to be the primary target. Here Beevers et al.
summarize recent findings and highlight that curcumin may execute its anticancer activity
by primarily targeting Akt/mTOR signaling [45]. Curcumin, at low concentrations (< 40
μM) inhibits phosphorylation of S6K1 and 4E-BP1, two downstream effector molecules of
mTORC1, while at high concentrations (>40 μM) inhibits phosphorylation of Akt, a
substrate of mTORC2, in numerous cancer cell lines. Curcumin inhibition of Akt/mTOR
signaling results from disrupting mTOR-raptor complex, and activating protein phosphatase
2A (PP2A).

Fisetin, a family member of flavonoids, occurs in fruits and vegetables, such as strawberries,
apples, persimmons and onions. In vitro and in vivo studies have shown that fisetin is a
potential anticancer agent, by inhibiting cell proliferation and inducing cell death in various
cancer cells. Here Syed et al. summarize recent studies, showing evidence that the
anticancer activity of fisetin is in part linked to inhibition of PI3K/Akt and mTOR and
signaling pathways [46]. Mechanistically, fisetin downregulates expression of Raptor,
Rictor, PRAS40, and mLST8, and subsequently decreases the formation of mTORC1 and
mTORC2. Also, fisetin inhibits expression of the downstream targets of mTOR, such as
S6K1, eIF4E, and 4E-BP1. Furthermore, fisetin decreases expression of regulatory (p85)
and catalytic (p110) subunits of PI3K, activates AMPK, and decreases phosphorylation of
Akt and mTOR.

Indoles are natural compounds in cruciferous vegetables such as broccoli, cauliflower,
cabbage and brussels sprouts. Of indoles, indole-3-carbinol (I3C) and its in vivo dimeric
product 3,3′-diindolylmethane (DIM) are potent compounds with anticancer properties. Here
Ahmad et al. review the recent studies of anticancer mechanisms of the indoles [47]. It
appears that I3C, DIM and their derivatives are able to inhibit PI3K/Akt/mTOR signaling
pathway, as well as the downstream NF-κB, which helps explain their ability to inhibit
invasion and angiogenesis, and the reversal of epithelial-to-mesenchymal transition (EMT)
phenotype and drug resistance. The effects are derived from direct inhibition PI3K, Akt and
mTOR activity. Further studies are required to unveil the detailed mechanism.

Isoflavones, a class of flavonoid phenolic compounds, are rich in soybean. In addition to
other biological activities, isoflavones possess anticancer activities. This is evidenced by the
roles of isoflavones in potentiating radio- or chemotherapy. Among isoflavones, genistein
and deguelin have been well studied. Of note, genistein have been in phase II randomized
bladder cancer chemoprevention trial. Here Ahmad et al. review the recent studies of
anticancer activities of the isoflavones [48]. Multiple signaling pathways, including PI3K/
Akt/mTOR pathway, are targeted by the isofalvones. However, the inhibitory effect of
isoflavones on mTOR is only at the beginning of investigations. Also, the effect of genistein
on Akt inhibition or activation remains to be defined.

Quercetin, a polyphenolic compounds, is mainly from consumption of tea, onions, red
grapes, and apples in the daily life. In this specific issue, Brüning summarizes the findings,
showing that quercetin acts an anticancer agent in part by inhibition of mTOR signaling
[49]. Apparently, Quercetin inhibits mTOR signaling by inhibiting PI3K and Ras activity,
activating AMPK, and upregulating TSC1. However, due to unfavorable bioavailability and

Huang Page 3

Anticancer Agents Med Chem. Author manuscript; available in PMC 2014 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



pharmacokinetics, new formulations or chemical modifications of quercetin are needed for
clinical cancer therapy.

Resveratrol, a natural polyphenol rich in red grapes and red wine, possesses multifaceted
health beneficial properties. Here Wu et al. summarize the anticancer activities of
resveratrol, and the potential molecular mechanism related to inhibition of mTOR signaling
[50]. Current knowledge implicates that resveratrol suppresses mTOR signaling in part by
inhibiting PI3K/Akt, stimulating PTEN expression, activating AMPK-TSC1/2, and
promoting DEPTOR-mTOR interaction.

Tocotrienols, members of vitamin E superfamily, exhibit not only strong antioxidant
property, but also potent anticancer activity. Here Sylvester et al. summarize the studies of
tocotrienols, and provide evidence that γ-tocotrienol is the most potent anticancer agent
among the tocotrienols [51]. It is believed that the anticancer effect of γ-tocotrienol is
mediated, at least in part, through the suppression of PI3K/PDK-1/Akt and NF B mitogenic
signaling in neoplastic +SA mammary epithelial cells. γ-tocotrienol does not alter the
expression or activity of PTEN or PP2A. How γ-tocotrienol inhibits PI3K/PDK-1/Akt
remains to be elucidated.

Finally, it should be mentioned that many other natural products, such as caffeine (in
caffee), epigallocatechin gallate (EGCG, in green tea), celastrol (in traditional Chinese
medicine named “Thunder of God Vine”), butein (in the stems of Rhus verniciflua, used as a
food additive and as an herbal medicine in Asia), capsaicin (in chili peppers), and β-elemene
(from the traditional Chinese medicinal herb Rhizoma zedoariae), etc., have been reported to
inhibit PI3K, Akt or mTOR signaling as well. However, due to limitation of time in editing
this special issue, we cannot discuss them in details. Here Wang et al. briefly summarize the
findings of numerous natural products that induce autophagy by inhibiting PI3K/Akt/mTOR
signaling [52].

In conclusion, here we provide an overview of inhibition of PI3K/Akt/mTOR signaling by
certain natural products. Understanding how the natural products inhibit PI3K/Akt/mTOR
signaling may shed new insights on design and development of novel treatment and
prevention of cancer.
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