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Abstract
On the basis of the converging evidence showing regulation of drinking behavior by 5-HT3AB
receptors and the serotonin transporter, we hypothesized that the interactive effects of genetic
variations in the genes HTR3A, HTR3B, and SLC6A4 confer greater susceptibility to alcohol
dependence (AD) than do their effects individually. We examined the associations of AD with 22
SNPs across HTR3A, HTR3B, and two functional variants in SLC6A4 in 500 AD and 280 healthy
control individuals of European descent. We found that the alleles of the low-frequency SNPs
rs33940208:T in HTR3A and rs2276305:A in HTR3B were inversely and nominally significantly
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associated with AD with odds ratio (OR) and 95 % confidence interval of 0.212 and 0.073, 0.616
(P = 0.004) and 0.261 and 0.088, 0.777 (P = 0.016), respectively. Further, our gene-by-gene
interaction analysis revealed that two four-variant models that differed by only one SNP carried a
risk for AD (empirical P < 1 × 10−6 for prediction accuracy of the two models based on 106

permutations). Subsequent analysis of these two interaction models revealed an OR of 2.71 and
2.80, respectively, for AD (P < 0.001) in carriers of genotype combinations 5′-HTT LPR:LL/
LS(SLC6A4)–rs1042173:TT/TG(SLC6A4)–rs117 6744:AC(HTR3B)–rs3782025:AG(HTR3B)
and 5′-HTTL PR:LL/LS(SLC6A4)–rs10160548:GT/TT(HTR3A)–rs1176 744:AC(HTR3B)–
rs3782025:AG(HTR3B). Combining all five genotypes resulted in an OR of 3.095 (P = 2.0 ×
10−4) for AD. Inspired by these findings, we conducted the analysis in an independent sample,
OZ-ALC-GWAS (N = 6699), obtained from the NIH dbGAP database, which confirmed the
findings, not only for all three risk genotype combinations (Z = 4.384, P = 1.0 × 10−5; Z = 3.155,
P = 1.6 × 10−3; and Z = 3.389, P = 7.0 × 10−4, respectively), but also protective effects for
rs33940208:T (χ2 = 3.316, P = 0.0686) and rs2276305:A (χ2 = 7.224, P = 0.007). These findings
reveal significant interactive effects among variants in SLC6A4–HTR3A– HTR3B affecting AD.
Further studies are needed to confirm these findings and characterize the molecular mechanisms
underlying these effects.

Introduction
Candidate gene-based association studies performed over many years have focused on
various genes within the serotonergic system to identify susceptibility variants for alcohol
dependence (AD). Serotonin mediates the reward effects of alcohol along with a network of
other neurotransmitters. Previous serotonergic gene-based association studies in AD have
been analyzed mostly for single-gene effects, especially in the serotonin transporter (5-HTT)
gene (SLC6A4), that yielded modest effect sizes. Yet the serotonergic system is complex,
consisting of numerous pre- and post-synaptic receptor subtypes in addition to the
transporter system that regulates synaptic amounts of serotonin (Hayes and Greenshaw
2011). Among the serotonergic receptor subtypes in the human nervous system, 5-HT3
receptors are the only known ion-channel receptors evoking fast excitation of serotonergic
neurons (Sugita et al. 1992). Acute exposure to alcohol potentiates 5-HT3 receptors at
concentrations that produce intoxication (Narahashi et al. 2001; Sung et al. 2000), possibly
through altered receptor affinity for serotonin (Narahashi et al. 2001), stabilization of open-
channel state (Zhou et al. 1998), or increased release of serotonin (Lovinger 1997). Chronic
heavy drinking depletes pre-synaptic serotonin reserves, causing a hypo-serotonergic state
that may up-regulate post-synaptic 5-HT3 receptors (Johnson 2000).

The 5-HT3 receptors are assembled in homo- or heteropentamers formed by 5-HT3A and 5-
HT3B subunits. The 5-HT3A subunit harbors the serotonin binding site (Hodge et al. 2004),
and the 5-HT3B subunit is important for trafficking and stabilizing of the 5-HT3AB receptor
complex at the cell membrane (Massoura et al. 2011). Two lines of evidence suggest a
concerted effect of both subunits on serotonergic dysfunction underlying AD. The first is
based on the location of the subunits within the human brain. Whilst the 5-HT3A homomers
are uniformly located in various parts of the central and peripheral nervous systems, the 5-
HT3AB heteromers are located predominantly in mesocorticolimbic structures implicated in
alcohol and other drug addictions. The second is evidence from biochemical studies of
greater conductivity with 5-HT3AB hetero-pentamers compared with 5-HT3A homo-
pentamers (Lochner and Lummis 2010), whereas 5-HT3B by itself appears to be non-
functional (Davies et al. 1999).

The genes encoding 5-HT3AB, namely, HTR3A and HTR3B (Davies et al. 1999), are located
next to each other on chromosome 11q23.1 spanning a 90-kbp region (Miyake et al. 1995).
So far, only two studies have examined the associations of HTR3A and HTR3B with AD
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(Ducci et al. 2009; Enoch et al. 2011). In a population of Finnish alcoholics who also had
antisocial personality disorder (ASPD), Ducci et al. (2009) showed that the A allele of
intronic HTR3B SNP rs3782025 was associated with a higher risk of AD + ASPD. A more
recent study conducted in African-American AD men reported an association of the C allele
of non-synonymous exonic HTR3B SNP rs1176744 with a higher risk for AD with a
relatively large effect size for a complex trait (OR = 1.6; 95 % CI 2.1, 16.6) (Enoch et al.
2011). Additionally, in a pharmacogenetic trial based on an a priori hypothesis, Johnson et
al. (2011) demonstrated the influence of functional variants of the serotonin transporter gene
(SLC6A4) on conductivity via post-synaptic 5-HT3AB receptors. In that study, drinking
severity was improved more by the 5-HT3 antagonist ondansetron in Caucasian alcoholics
carrying two genotypes (5′-HTTLPR:LL and rs1042173:TT) in SLC6A4 that previously
were characterized as associated with lower expression in alcoholics (Johnson et al. 2008;
Seneviratne et al. 2009b).

In view of these molecular and genetic findings, we hypothesized that, in alcoholics, the
combined effects of genetic variations regulating synaptic serotonin levels, coupled with
greater expression and function of 5-HT3AB, may confer greater susceptibility to AD than
they do individually. To test this hypothesis, in a population of AD and healthy individuals
of European descent, we evaluated associations of HTR3A and HTR3B SNPs evenly
covering the two genes and their interactions with the SLC6A4 5′-HTTLPR:LL and
rs1042173:TT genotypes. Subsequently, we assessed the reproducibility of our findings in a
much larger dataset from a genome-wide association study called OZ-ALC-GWAS.

Materials and methods
Primary analysis

Samples—The DNA samples used in the primary analysis were initially from 822
unrelated self-identified Caucasian subjects aged 18–65 years, which included 519 AD
subjects and 303 controls. Three hundred and twenty-three of the AD individuals were
enrolled at The University of Texas Health Science Center at San Antonio and the remainder
at the University of Virginia. All AD individuals were currently drinking with no other
DSM-IV axis I diagnosis (American Psychiatric Association 1994) other than nicotine
dependence scored >8 on the Alcohol Use Disorders Identification Test (Bohn et al. 1995),
and were part of two outpatient clinical trials that tested medications for alcoholism. The
ethnicity- and age-matched control individuals were selected from a large genetic study on
nicotine addiction and were recruited primarily from the Mid-South States in the US (Texas,
Tennessee, Mississippi, and Arkansas) during 1999–2005 (Li et al. 2005; Seneviratne et al.
2009a; Sun et al. 2008). The control individuals had no history of substance abuse or other
DSM-IV axis I diagnoses. At all sites that recruited case or control subjects, DSM-IV axis I
disorders were diagnosed using the Structured Clinical Interview (First et al. 1994) for
Diagnostic and Statistical Manual of Mental Disorders, 4th edition (American Psychiatric
Association 1994) Axis I Disorders.

Percentage of females in the AD population was 30.4 and 64.0 % in the control population.
The mean age (years ± SD) at study entry for males and females in the AD group was 43.87
± 10.83 and 43.79 ± 12.81 in the control group. All participants provided written informed
consent according to a protocol approved by all involved Institutional Review Boards.

Genotyping—Detailed information on all SNP locations, chromosomal positions, allelic
variants, minor allele frequency, and primer/probe sequences is summarized in
Supplementary Table 1. All SNPs were selected from the National Center for Biotechnology
Information (NCBI) dbSNP database (http://www.ncbi.nlm.nih.gov/SNP/) on the basis of
their location within the gene, high heterozygosity (minor allele frequency ≥0.05) for
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common variants, and biological significance for uniform coverage of the gene (Fig. 1 and
Supplementary Table 1). The three low-frequency variants (i.e., rs33940208 in HTR3A and
rs2276305 and rs17116138 in HTR3B) were examined, as they were located close to known
common functional variants or in exonic regions.

The DNA extractions and genotyping of all SNPs and the long (L) and short (S) alleles of
5′-HTTLPR were carried out as described in our previous publication (Seneviratne et al.
2009b). Briefly, SNP genotyping was performed with 50 ng of DNA amplified in a total
volume of 10 μl containing 0.25 μl of MGB probe and TaqMan universal PCR master mix.
Allelic discrimination analyses were performed on the ABI Prism 7900HT sequence
detection system. To ensure the quality of genotyping, four no-template negative controls
and four positive controls were added to each 384-well plate. The 5-HTTLPR L and S
alleles were also genotyped with 50 ng of genomic DNA PCR amplified with the primers
listed in Supplementary Table 1 and the PCR conditions as described in our earlier
publication (Seneviratne et al. 2009b). The PCR products were electrophoresed on a 3.5 %
agarose gel, and the amplicons were identified using ethidium bromide staining. About 5 %
of the sample was genotyped in duplicate for additional quality control.

Assessment of sample admixture using ancestry-informative markers—The
DNA samples from all 822 subjects were genotyped with 24 ancestry-informative markers
(AIMs) to test for potential population stratification. These markers have high-frequency
differences for South American/European ancestry and European/West African ancestry
(Mao et al. 2007). For detailed information, please see our previous publications (Johnson et
al. 2011; Seneviratne et al. 2009a). The program Structure (http://pritch.bsd.uchicago.edu/
software/structure2_2.html) was run using the 24 AIM datasets to assess population
substructure and to estimate genetic ancestry proportion scores for each participant. We
analyzed the data set with K = 2 through K = 10, and the simulation parameters were set to
10,000 burn-ins and 10,000 Markov chain Monte Carlo iterations. The K value with the
highest probability of capturing stratification was 3; hence, we obtained the ancestry
proportion estimates by analyzing the dataset assuming three parental populations (K = 3)
and the presence of population admixture. The average rate of missing genotype information
for the 24 AIMs was less than 5 % for the entire dataset of 822 subjects. A small group of 42
individuals was identified with 0 % probability to belong to the main population cluster, and
thus was excluded from all statistical association analyses described below. A summary of
clustering results for the 780 subjects is given in Supplementary Figure 1. Individual genetic
ancestry proportion scores for each participant were used as covariates in all association
analysis models.

Statistical analysis
All variants except for rs1176746 within HTR3B conformed to the Hardy–Weinberg
Equilibrium (HWE). Hence, rs1176746 was excluded from association analyses, and the
remaining variants (10 HTR3A SNPs, 11 HTR3B SNPs, and 2 SLC6A4 variants) were
tested for single- and multiple-locus associations with AD.

Single-locus association analysis with AD—Logistic regression and Chi-square tests
were performed in SAS (v. 9.1) to analyze genotype and allelic associations of all 23
individual SNPs in HTR3A, HTR3B, and SLC6A4 with AD. For genotype association
analysis, we tested additive, dominant, and recessive models, and all statistical models were
covariate-adjusted with genetic ancestry scores, age at study entry, and sex.
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Multiple-locus association and interaction analyses with AD—We examined the
effects of multiple loci in each of the three genes on AD by assessing haplotype and gene–
gene interaction analyses.

Linkage disequilibrium (LD) and haplotype analysis: The LD matrices and blocks were
determined for all samples using Haploview (v. 4.1) under the analysis criteria of Solid
Spine of LD > 0.8 (Barrett et al. 2005). The haplotypes located within each LD block were
inferred, and their statistical associations with AD were analyzed using HaploStats (v. 1.2.1)
(http://mayoresearch.mayo. edu/mayo/research/biostat/schaid.cfm) following two
approaches. As the LD between common tag SNPs and rare or low-frequency variants is low
(Liu and Leal 2012), our first approach was to analyze associations of AD with haplotypes
located within each LD block formed only by common alleles, excluding the low-frequency
alleles located in the midst of haplotypes formed by the common variants (see Fig. 1). The
second approach was to include the low-frequency alleles within the LD block to assess
their contribution to the haplotypes formed by the common variants. We defined a ‘major
haplotype’ as one with a frequency of >5 % in either the AD or the control sample.
Bonferroni correction was used to calculate the corrected P value for haplotype analyses for
individual haplotypes within each block.

Interactive effects of genotypes at multiple loci in HTR3A, HTR3B, and SLC6A4 on
AD: We assessed the interactive effects of genotypes located at multiple loci within and
among HTR3A, HTR3B, and SLC6A4 on AD susceptibility using a two-step statistical
analysis. In the first step, interactive variant combinations were identified employing a
Generalized Multifactor Dimensionality Reduction (GMDR beta version 0.7) (Lou et al.
2007). The GMDR identifies interactive variant combinations with the highest impact on
phenotypic variation (high vs. low risk) using a score statistic calculated by accounting for
covariates (age, sex, and genetic ancestry). First, an exhaustive computational search was
performed for all possible two-to five-locus variant combination models using all 20
common variants. Then, the GMDR selected the best variant combination model(s) for a
given order (i.e., two- to five-order combinations) on the basis of their P value derived from
the nonparametric sign test, cross-validation consistency (CVC), and testing balanced
accuracy (TBA) (Lou et al. 2007). All two- to five-locus variant combinations with sign test
P values of <0.05 and CVC of 0.6 were then tested to gain empirical P values for their
prediction accuracy using 106 permutations. Following identification of the best variant
combinations, specific genotype combinations within the above-detected statistically
significant SNP combinations were analyzed for their effects on AD.

Replication analyses using OZ-ALC-GWAS dataset
A total of 6,699 samples representing 2,313 families from the OZ-ALC-GWAS study were
included in the replication analysis. A detailed description of the study can be found
elsewhere (dbGaP Study Accession: phs000181.v1.p1) (Knopik et al. 2004; Lynskey et al.
2005). Among the individuals who had genotype calls, 892 had missing phenotype
information, but all 2,313 families had at least one individual with the required data.

Imputation of non-genotyped SNP data—A total of 370,404 SNPs were genotyped in
the OZ-ALC-GWAS study using the Illumina genotyping platform “HumanCNV370v1.”
Because genotype information was available for only 7 of the 23 SNPs genotyped in the
primary sample, we performed imputations using IMPUTE v. 2.2 (Howie et al. 2009) to
generate genotype calls for the following ungenotyped SNPs: rs1062613, rs33940208,
rs1176722, rs1176720, rs1176719, rs10160548, rs1150220, rs1176713, rs3758987,
rs4938056, rs12270070, rs2276305, rs17116138, rs17614942, and rs1042173. We used pilot
CEU haplotypes from the 1000 Genomes project in a 0.59MB region covering both HTR3A
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and HTR3B on chromosome 11 and a 0.55-MB region covering SLC6A4 on chromosome
17 (Genomic built 36) as reference panels for imputing HTR3A/B and SLC6A4 SNPs,
respectively.

5′-HTTLPR L/S allele predictions—Because the replication sample came from a
GWAS study where only SNPs were assayed, we predicted the 5′-HTTLPR 44 bp insertion/
deletion (L/S) variant in SLC6A4 using a two-SNP haplotype proxy consisting of rs2129785
and rs11867581, as described by Vinkhuyzen et al. (2011). Briefly, we constructed
haplotypes for each individual using a tabulated haplotype phase for each individual in
PLINK (http://pngu.mgh.harvard.edu/purcell/plink/) (Purcell et al. 2007), using genotype
data for SNPs rs2129785 and rs11867581 available in the OZ-Alc-GWAS data set. The
haplotypes rs2129785:A–rs11867581:G and rs2129 785:G–rs11867581:A were used as
proxies for the 5′-HTTLPR L allele and haplotype rs2129785:A–rs1186 7581:A as proxy for
the 5′ -HTTLPR-S allele.

Interaction analysis—Following imputation tests, similar to the analyses in our primary
sample, all 23 variants were analyzed for their single- and multiple-locus associations using
software packages FBAT (Laird et al. 2000) and PLINK and for gene-by-gene interaction
using the GMDR program as described above.

Results
Primary analysis

As mentioned in “Materials and methods”, the control sample had more female subjects than
the AD sample, and for this reason, sex was included as a covariate in all analyses. Allele
and genotype distributions for all HTR3A, HTR3B, and SLC6A4 variants in the control
sample were similar to the frequencies reported in the HapMap data set (Supplementary
Table 1). All HTR3A and SLC6A4 variants conformed to the HWE with the exception of
SNP rs1176746 in HTR3B that significantly deviated from HWE (P = 9.0 × 10−4) in the
control population, which thus was eliminated from subsequent association and interaction
analysis. The overall genotype error rate was <1 %.

Single-locus analysis—The results from the allele and genotype association analyses for
individual variants are presented in Table 1. Four common SNPs in HTR3B (i.e., rs3758987,
rs4938056, rs3782025, and rs1672717) and the 5′-HTTLPR in SLC6A4 were marginally
associated with AD. Of these, only the association of AD with rs3782025 in HTR3B
remained significant after correcting for multiple comparisons with the SNPSpD program
(Nyholt 2004). Among the three low-frequency SNPs examined, minor alleles of both
rs33940208 in HTR3A and rs2276305 in HTR3B were significantly protective against AD
with ORs of 0.212 (95 % CI 0.073, 0.616; P = 0.004) and of 0.261 (95 % CI 0.088, 0.777; P
= 0.016), respectively.

Haplotype-based association analysis—We detected two LD blocks within HTR3A
and two LD blocks within HTR3B (Fig. 1). In HTR3A, neither the haplotypes formed by the
6 common SNPs within Haploview-defined “LD Block 3,” nor the haplotypes formed by the
four common SNPs within LD Block 4, were significantly associated with AD. Within LD
Block 3, the low-frequency SNP rs33940208 and the common SNP rs1062613 located 71 bp
upstream of rs33940208 formed a two-SNP minor haplotype (rs1062613:C–rs33940208:T)
with a nominally significant protective effect against AD (haplotype score = −2.2259; P
value for individual hap-lotype association analysis = 0.0260 and global P = 0.0347; OR =
0.3706; 95 % CI 0.1283, 1.0705).
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In HTR3B, we detected a 5-SNP haplotype in Haploview-defined “LD Block 2” with a
significant inverse association with AD (defined as haplotype 1 in Table 2). The LD Block 2
is located in and around four exons that are common to all mRNA isoforms of HTR3B. As
shown in Fig. 1, two low-frequency SNPs (rs2276305 and rs17116138) also reside within
the region covered by LD block 2.

To further examine the effect of two low-frequency SNPs, we re-analyzed haplotype 1 with
the addition of major alleles of rs2276305 and rs17116138 (defined as haplotype 2 in Table
2). The haplotype consisting of minor allele of rs17116138 together with the other six alleles
of haplotype 2 (rs12270070:G–rs1176744:A–rs2276305: G–rs17116138:G–rs2276307:A–
rs3782025:A–rs1672717:A) was not significantly associated with AD; and the haplotype
consisting of the minor allele of rs2276305 had a very low frequency (0.96 %) in our
primary sample (haplotype 3 in Table 2). Thus, we were not able to assess whether
haplotype 3 would confer a greater protective effect than haplotype 2 or the individual
rs2276305:A allele.

Gene–gene interaction analysis—As shown in Table 3, we detected two four-variant
interaction models with significant genetic interaction effects on AD, with an empirical P <
10−6, cross-validation consistency (CVC) of 10, and test accuracies (TA) >50 % based on
106 permutation tests. Because three of the four variants included in the two interaction
models were identical, we combined the two four-variant models, and the resulting five-
variant model was assessed for interactions with AD (third model in Table 3). The five-
variant interaction model had a significant genetic interaction effect on AD, albeit with a
smaller P value than the two four-variant models, possibly because of the smaller sample
size for the five-variant interaction model. Subsequent to detecting the interaction models,
we analyzed the “genotype combinations” within the two four-variant and the five-variant
interaction models (see right-side panel of Table 3). As shown clearly in Table 3, persons
with all three genotype combinations had greater risk of AD than did those with individual
constituent genotypes: rs3782025:AG (OR 1.657; 95 % CI 1.187, 2.314), 5′-HTTLPR:LL/
LS (OR 1.564; 95 % CI 1.058, 2.311), rs1176744:AG (OR 1.325; 95 % CI 0.955, 1.838),
and rs1042173:TT/TG (OR 1.052; 95 % CI 0.681, 1.624). Thus, our results provide
evidence for strong genetic interactions within the serotonergic system underlying AD.

Replication analysis in OZ-ALC-GWAS sample
The replication sample consisted of 1,739 DSM-IV-defined alcohol dependents, 4,068
control individuals, and 892 individuals without phenotypic data (affection status). Females
were 37.72 % of the AD sample and 56.51 % of the control sample. The mean age (±SD)
was 40.94 ± 10.75 in the ADs and 45.85 ± 8.29 in the control subjects. All statistically
significant associations (P < 0.05) detected in the primary analyses were examined in the
replication sample.

Imputation of missing SNPs and 5′-HTTLPR L/S allele predictions in OZ-ALC-
GWAS study—Concordance rates for the 16 imputed SNPs using IMPUTE (v 2.2) ranged
from 94 to 100 %, and proportions of missing genotypes were below 6 % for all
imputations. The two proxy haplotypes for the 5′-HTTLPR:L allele, rs2129785: A-rs
11867581:G, and rs2129785:G-rs11867581:A were present in the OZ-ALC-GWAS sample
at frequencies of 0.436 and 0.110, respectively. The frequency of haplotype rs2129785:A-
rs11867581:A, proxy for the 5′-HTTLPR:S allele, was 0.454. These estimated frequencies
are similar to the L and S allele frequencies detected in the primary sample (0.546 vs. 0.550
for L and 0.454 vs. 0.451 for S).
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Single-locus analysis—As shown in Table 4, two low-frequency alleles within HTR3A
and HTR3B showed protective effects against AD in the OZ-ALC-GWAS sample:
rs2276305:A (χ2 = 7.224; P = 0.007) and rs33940208:T (χ2 = 3.316; P = 0.0686). Genotype
association analyses for rs2276305:AA/AG and rs33940208:TC/TT also revealed inverse
associations with AD (Z = -2.555, P = 0.0106 for rs2276305:AA/AG and Z = -2.014, P =
0.0440 for rs33940208:TC/TT). None of the common variants that were significant (P =
0.05) at the single-locus level in the primary analyses was significant in the OZ-ALC-
GWAS sample. However, the rs10160548:T allele, which was included in two interaction
models presented in Table 3, was over-represented in ADs in the OZ-ALC-GWAS sample at
the single-locus level (Z = 2.542; P = 0.0110).

Haplotype analysis—The two major haplotypes within HTR3B LD block 2 associated
with AD in the primary sample (haplotypes 1 and 2 in Table 2) were not associated with AD
in the OZ-ALC-GWAS sample. However, the rare haplotype detected in the primary sample
(haplotype 3 in Table 2) consisting of the low-frequency allele rs2276305:A was present in
the OZ-ALC-GWAS with a large enough sample (16 families; frequency = 0.007) to
perform statistical analysis. The haplotype rs12270070:G–rs1176744:A–rs2276305:A–
rs17116138:G–rs2276307:A–rs3782025:A–rs1672717:A showed a protective effect against
AD with a Z score of −2.596 (P = 0.009).

Gene–gene interaction analysis—All three genotype combinations found to have an
interactive effect on AD in the primary sample also had significant interactive effects on AD
in the OZ-ALC-GWAS sample, with a Z value of 3.155–4.384 and P value of 0.0016–
0.00001 (see Table 4 for details).

Discussion
In the present study, we detected and replicated the finding on the influence of three
genotype combinations on the risk for AD and that of two low-frequency alleles protective
against AD. The five interacting risk genotypes within SLC6A4 (5′-HTTLPR:LL/LS;
rs1042173:TT/TG), HTR3A (rs10160548:GT/TT), and HTR3B (rs1176744:AC; rs37
82025:AG) are variants previously shown to be associated with alcoholism or related
intermediate phenotypes. As hypothesized, these interacting genotypes were linked to about
a threefold greater risk of AD than their constituent individual genotypes. Importantly,
allele-based functional differences for three of these five variants (i.e., SLC6A4: 5′-
HTTLPR:LL/LS and rs1042173:TT/TG; HTR3B: rs1176744:AC) were demonstrated to be
functional in earlier molecular studies. More specifically, alcoholics carrying the 5′-
HTTLPR:L allele have lower serotonin transporter binding and reuptake activity than
homozygous 5′-HTTLPR:S carriers according to an earlier study conducted by our group
(Johnson et al. 2008). Similarly, the rs1042173:T allele was associated with lower
expression of serotonin transporters (Lim et al. 2006; Seneviratne et al. 2009b). Thus, the 5′-
HTTLPR:L and rs1042173:T alleles, in combination, may lead to a synaptic
hyperserotonergic state. The third known functional variant included in the risk genotype
combinations was the HTR3B non-synonymous SNP rs1176744 (A/C), which results in a
tyrosine to serine change at the 129th amino acid residue in the extracellular N-terminal
domain of 5-HT3B (Walstab et al. 2008) close to the 5-HT3AB interface (Krzywkowski et al.
2008). This amino acid substitution significantly increases 5-HT3AB ion channel open time,
augmenting serotonergic signaling (Krzywkowski et al. 2008). In a recent study, Enoch et al.
(2011) reported a higher risk of AD associated with high activity of the serine allele in
African-American male alcoholics. Further, several other studies reported associations of the
rs1176744 serine allele with other psychiatric disorders that often are co-morbid with AD in
Caucasians (Frank et al. 2004; Hammer et al. 2009, 2012; Yamada et al. 2006). It should be
noted that, unlike the study by Enoch et al., in our study, it was the heterozygous genotype
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of rs1176744 that contributed to all three risk genotype combinations and also showed a
trend to risk at the single-locus level (OR = 1.325; 95 % CI 0.955, 1.838; P = 0.092). This
suggests a molecular heterosis effect that could be race specific. From a structural point of
view, our findings can be interpreted as co-expression of two 5-HT3B subunits in the same
individual: one with the amino acid serine at position 129 and the other with tyrosine
(“heterozygous” 5-HT3B subunits) leading to a higher risk of AD. In such a situation, it is
hard to decipher which variant is more prevalent or the change of direction of serotonergic
singling associated with the genotype. However, using cultured tsA-201 cells without any
treatment, Krzywkowski et al. (2008) demonstrated that expression of “heterozygous” 5-
HT3B subunits in the pentameric 5-HT3AB receptor complex would mimic the heterozygous
carrier state. Expression of “heterozygous” 5-HT3B subunits resulted in an increase in the
time the channel was open compared with 5-HT3AB complexes expressing two homozygous
wild-type 5-HT3B subunits with the tyrosine residue (Hammer et al. 2009; Krzywkowski et
al. 2008). Longer open time of the 5-HT3AB channels can lead to enhanced responsiveness
of neurons to serotonin. This enhanced responsiveness associated with rs1176744:AG may
be heightened by the greater availability of synaptic serotonin that is associated with the
SLC6A4: 5′-HTTLPR:LL/LS and rs1042173:TT/TG genotypes.

The molecular mechanisms underlying allelic differences of the other two SNPs included in
our risk genotype combinations, rs10160548 in HTR3A and rs3782025 in HTR3B, are not
yet elucidated. Nevertheless, as intronic SNPs, it is possible that both rs3782025 and
rs10160548 alter mRNA expression through alternate splicing. Furthermore, Ducci et al.
(2009) reported an association of the rs3782025:A allele with a higher risk of AD + ASPD
in Caucasians. Perhaps because of the inclusion of alcoholics with and without ASPD, our
findings indicate an association of AD only with the heterozygous genotype of the
rs3782025:A allele.

The second main finding of our study was the protective effects against AD shown by the
two low-frequency synonymous variants rs33940208 in HTR3A exon 1 and rs2276305 in
HTR3B exon 5. One important caveat to these findings, however, is that their significance
values did not reach the threshold for multiple statistical tests. Nevertheless, these
associations had medium to large effect sizes in the primary analysis (Cohen's d for allelic
associations of rs2276305:A and rs33940208:T with AD 0.74 and 0.86, respectively), which
were validated by replication in the OZ-ALC-GWAS sample. To our knowledge, low-
frequency variants with a protective effect on AD have not been reported previously in
European populations. As both rs33940208 and rs2276305 are located within 100 bp of two
well-characterized functional common variants (see Fig. 1), they may modulate the
functionality of the common variants. The rs33940208:T allele was seen only in carriers of
rs1062613:C: The C allele of rs1062613 has been associated with lower HTR3A expression
(Kapeller et al. 2008) and the CC genotype with high anxiety and greater amygdala
responsiveness to emotional stimuli in humans (Iidaka et al. 2005; Kilpatrick et al. 2011). As
high anxiety is a risk factor for AD, one would expect the protective allele to be linked to the
non-risk T allele. On the other hand, it is tempting to speculate that the protective effects of
the rs33940208:T allele might offset reductions in transcription associated with the
rs1062613:C allele, constituting a sub-population with greater expression than in the carriers
of the rs1062613:C–rs33940208:G haplotype. Similarly, the other protective allele detected
in our study, rs2276305:A, was seen only in carriers of the major allele of the common
functional SNP rs1176744:A, which previously has been reported as the non-risk allele
(Enoch et al. 2011). Taken together, these findings support the view that functionality
attributed to common variants is in fact a consequence of “synthetic associations” arising
from combined effects of multiple rare variants in their vicinity (Goldstein 2009). In fact,
several examples of similar rare-common SNP modulating effects on other common
disorders with high heritability rates such as AD have been reported (Raychaudhuri 2011).
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Thus, deep sequencing of HTR3A exon 1 and HTR3B exon 5 regions might help detect
multi-variant modulating effects on the common functional SNPs rs1062613 and rs1176744.

The present study has two unique strengths. First, we analyzed an ethnically homogenous
sample selected using self-reports of ethnicity and then subjected the sample to an additional
“filtering” step based on their genetic ancestry using an ancestral marker panel. Second, we
strengthened the reliability of our findings by replicating them in a larger independent
family-based sample. Both the primary and the replication data set consisted of heavy
drinkers who met the criteria for DSM-IV alcohol dependence, and the sex, age, and ethnic
compositions were similar. Thus, we believe the two data sets were phenotypically similar.
Also, the family-based structure of the replication data set provided us with enhanced
statistical power, as risk or protective variants for common diseases segregate over several
generations (Zhu and Xiong 2012). In addition to the strengths in the study design, a parallel
study conducted recently by our group revealed that rs10160548 in HTR3A, rs1176744 in
HTR3B, and 5-HTTLPR and rs1042173 in SLC6A4, which conferred risk for AD, also
interacted significantly with each other to influence the risk of nicotine dependence in both
Caucasians and African Americans (Yang et al. 2013). A minor concern about the present
study is that most of the variants analyzed in the replication dataset were imputed or
assessed by employing statistical algorithms rather than direct genotyping of the DNA
samples. However, as the reliability rates were above 95 % for all imputations, we do not
believe our findings would be affected by this fact.

In conclusion, our findings provide strong evidence for genetic variability underlying AD
risk conferred by the interactive effects of SLC6A4, HTR3A, and HTR3B and low-
frequency variants, especially some located close to common functional variants. Next-
generation sequencing technologies may enable further refining of the identification of
genetic variability within SLC6A4, HTR3A, and HTR3B that contributes to the risk of AD
and related phenotypes.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Distribution of HTR3A and HTR3B SNPs and haplotype blocks. Less-frequent variant
SNPs are indicated in lighter color font
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