
Resident commensals shaping immunity

Deniz Erturk-Hasdemir1 and Dennis L. Kasper1

1Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis
Pasteur, Room 1056C, Boston, MA 02115

Abstract
All animals coexist with myriad commensal microorganisms in a symbiotic relationship that plays
a key role in health and disease. Continuous commensal–host interactions profoundly affect the
development and regulation of the host’s immune system. The complex interaction of the
commensal microbiota with the immune system is a topic of substantial interest. An understanding
of these interactions and the mechanisms through which commensal microbes actively shape host
immunity may yield new insights into the pathogenesis of many immune-mediated diseases and
lead to new prophylactic and therapeutic interventions. This review examines recent advances in
this field and their potential implications not just for the colonized tissues but also for the entire
immune system.

Introduction
Vertebrates [1] and invertebrates [2] harbor a complex population of microorganisms (the
microbiota) colonizing mucosal and non-mucosal surfaces. Two important projects—the
Human Microbiome Project (HMP) [3] and the European Metagenomics of the Human
Intestinal Tract (MetaHIT) Project [4]—have analyzed human-associated microbial
communities and their genes (the microbiome). The human microbiota, which has coevolved
with the host, comprises mainly bacteria but also harbors other microbes, including fungi
[5,6], viruses [7,8], archaea [9], and protozoa. Although the majority of commensals reside
in the gastrointestinal tract, distinct microbial communities occupy other parts of the body,
including the oral cavity [10,11], respiratory tract [12], and urogenital tract [13,14]. This
beneficial host-specific microbiota is required for healthy development of the host’s immune
system [15].

Metagenomic studies have revealed the dynamic nature of the commensal microbiota. The
microbiome varies among individuals and can fluctuate within the same individual because
of environmental factors such as age, health, diet, and geographic location [16,17].
However, gene sequence orthologs and assigned functionality indicate that 50% of the
microbial genes in one human’s microbiome are shared by the microbiomes of other
humans. Differences in microbiota composition may translate into differences in host
physiology and may affect susceptibility to various diseases—inflammatory (inflammatory
bowel disease, Crohn’s disease, colon cancer) [18], metabolic (diabetes, obesity, metabolic
syndrome, kwashiorkor) [19–21], allergic (asthma, atopy) [22,23], autoimmune (celiac
disease, arthritis, multiple sclerosis) [24], and psychological/neurologic (autism) [25].
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The evolution of host–microbiota symbiosis is based on interactions that benefit both
parties. The host provides a nutrient-rich environment for the microbiota; commensal
microbes secrete metabolites by nutrient processing, prevent infections by pathogenic
microbes, provide signals to induce healthy immune development, and stimulate innate and
adaptive immune responses to maintain homeostasis [26–28]. Within the gastrointestinal
track, host-commensal interactions in distinct compartments like small intestine or colon are
regulated variably due to differences in the microbial load and unique morphologies of these
tissues. Disturbance of this fine balance (dysbiosis) may cause perturbed inflammatory
responses resulting in a range of diseases. (Figure 1)

Commensals induce development of the immune system
Studies with germ-free mice show that absence of the microbiota causes developmental
defects in many bodily systems, including the immune system. Germ-free animals, which
have a small intestine of decreased surface area, a thinner lamina propria (LP), a larger
cecum, fewer plasma cells and intraepithelial lymphocytes, lower IgA levels, and smaller
Peyer’s patches and mesenteric lymph nodes (MLNs) than conventional animals, exhibit
increased susceptibility to pathogenic bacteria [29,30]. Many of these deficiencies are
corrected by recolonization—even in adulthood—with a normal microbiota.

Microbial colonization of the host begins during birth. In humans, changes in the
microbiota’s diversity are most significant during the first three years [17] but continue
throughout life. The hygiene hypothesis originally proposed that reduced exposure to
microbes early in life (i.e., in urban environments and hygienic living conditions) increases
susceptibility to immune-mediated diseases, with improper immune-system development
due to insufficiently diverse antigenic challenge [31]. However, basic assumptions about the
causes of abnormal immune-system development leading to increased disease susceptibility
have since been modified. Convincing data now implicate alterations in the microbiome as
the most likely culprit in immune-system immaturity and imbalance. The change in the
human microbiome over the past half-century is perhaps related to epidemiologic factors
that were recognized as significant by the hygiene hypothesis but also may be associated
with factors such as the overuse of antibiotics, the presence of antibiotics in food, and
hormonal exposure through food and drugs. In an important study, Olszak et al.
demonstrated an increase in the number of invariant natural killer T (iNKT) cells in the
colonic LP and lungs of adult germ-free mice, with consequent susceptibility of these
animals to colitis and allergic lung inflammation. Protection was restored only by microbial
colonization of neonatal—not adult—mice. This study clearly indicated a role for early
microbial exposure in reducing disease susceptibility [32]. Russell et al. showed that
antibiotic treatment of neonatal mice reduces gut-microbiota diversity and that this reduction
is associated with increased susceptibility to experimental allergic lung inflammation [33].

Commensal interactions with epithelial barriers
Epithelial barriers form the first line of defense against pathogens [34–36]. Amar et al.
found that when the integrity of the epithelial barrier is compromised by a high-fat diet,
commensal bacteria translocate to the blood and adipose tissue in a Nod1-dependent
manner. Probiotic bacteria that increase epithelial integrity reduce translocation [37]. The
gut epithelial barrier is composed of tightly attached epithelial cells (enterocytes, goblet
cells, Paneth cells, microfold cells, and enterochromaf n cells), antimicrobial products, and a
mucus layer. Commensals maintain the integrity of epithelial cells, stimulate them to secrete
mucus and antimicrobial peptides (AMPs), and thereby contribute to maintaining a basal
level of steady-state host defense. Goblet cells secrete mucin-2, which forms a net-like
mucus layer physically separating most of the microbiota from the epithelium. In the colon,
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the mucus has two layers. The lower layer is dense, is relatively free of bacteria, and has
concentrated levels of AMPs (such as α-defensins produced by Paneth cells); the upper layer
is looser and contains some commensal bacteria [38]. In the small intestine, the mucus is
only one layer thick and the epithelium is protected from the microbiota by antibacterial
proteins such as RegIIIγ, which is secreted by enterocytes in response to MyD88-dependent
microbial signals [39]. Furthermore, systemic administration of flagellin, a Toll-like receptor
(TLR) 5 ligand, results in interleukin (IL) 22–dependent RegIIIγ expression. (The
mechanism involves expression of large amounts of IL-23 by CD103+ CD11b+ LP dendritic
cells (DCs), which drives IL-22 expression [40].)

Commensals stimulate immune cell activation
Through continuous dialogue with host immune cells, commensals maintain the homeostatic
balance of the immune system, enabling it to fend off pathogens while tolerating
commensals. During eons of coevolution, commensals and immune cells have developed
fine-tuned mechanisms to maintain this balance. In addition to inducing development or
recruitment of host immune-cell subsets, the microbiota may affect the function of these
subsets.

IgA-secreting plasma cells
Among the most important commensal–host symbiosis mechanisms is microbe-dependent
production of secretory IgA by plasma cells, with consequent control of the luminal
microbiota. Plasma cells are generated in the germinal centers of Peyer’s patches, and
formation of germinal centers depends on microbial stimulation. Plasma cells produce high-
affinity IgA, which is shuttled from the LP to the lumen through epithelial cells and binds to
the intestinal microbiota and microbial antigens [41]. Fritz et al. showed that, in addition to
IgA, plasma cells produce inducible nitric oxide synthase and tumor necrosis factor α;
production of these antimicrobial mediators requires microbial exposure, and their
deficiency in B-lineage cells results in reduced IgA production, gut microbiota dysbiosis,
and susceptibility to Citrobacter rodentium infection [42]. IgA diversity in B cells depends
on somatic hypermutation (SHM) and class-switch recombination (CSR) of their V(D)J
gene repertoire. This diversification process induced by continuous exposure to the
commensal microbiota requires activation-induced cytidine deaminase (AID). Wei et al.
generated mice carrying a knock-in AID point mutation (G23S); they had less SHM but
normal CSR function. Although they produced normal amounts of immunoglobulin, their
microbiota was abnormally expanded and they were more susceptible than wild-type mice to
microbial toxins [43]. Similarly, in PD1-deficient mice, increased numbers of follicular
helper T cells lacking the inhibitory receptor PD-1 cause dysregulated B-cell selection,
production of low-affinity IgA, dysbiosis, and autoimmunity due to immune overstimulation
by the microbiota [44].

DCs and macrophages
To maintain homeostasis and prevent infections, resident phagocytes closely monitor tissues
with close microbial contact. CX3CR1+ macrophages and CD103+ DCs in the intestinal LP
have developed mechanisms for avoiding exacerbated responses to commensal bacteria, yet
can respond to infection by pathogens. In one mechanism by which commensals are
distinguished from pathogens, mononuclear phagocytes residing in the LP do not respond to
TLR ligands but do constitutively produce pro-IL-1β, and pathogenic bacteria—but not
commensals—can induce IL-1β through the NLRC4 inflammasome [45]. In addition, the
microbiota instructs the immune system to inhibit trafficking of bacteria to MLNs via
CX3CR1hi cells; this mechanism, which depends on MyD88, allows bacterial
compartmentalization in the steady state and results in tolerance of commensal bacteria [46].
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However, in infection or dysbiosis, CX3CR1hi cells, which were previously thought to be
non-migratory, traffic microbial antigens to MLNs in a CCR7-dependent manner. CD103+
DCs are more efficient than CXCR1+ cells in sampling luminal antigens via their
intraepithelial dendrites. After antigen uptake, CD103+ DCs recruit more DCs, transport
antigens or bacteria to MLNs, and induce T cells by antigen presentation. CX3CR1+ cells,
in contrast, are important for sampling soluble luminal antigens [47].

T cells
Different T-cell subsets are induced by specific commensal microorganisms. If homeostasis
is to be maintained, proinflammatory and immunomodulatory effects of these subsets must
be in balance. Some commensal microbes have an especially strong impact on T-cell
responses. For instance, in the intestine, Clostridium species [48,49] and Bacteroides fragilis
can induce IL-10-producing regulatory T cells (Tregs) [50,51], whereas segmented
filamentous bacteria (SFB) are associated with induction of IL-17-producing Th17 cells
[52,53]. T-cell stimulation also occurs in other tissues independent of the gut microbiota.
Resident commensals in the skin induce local Th17 and Th1 responses that mediate
protection from bacterial infections [54].

Although a number of commensal bacterial species induce gut immune responses, B. fragilis
polysaccharide A (PSA) is the only known symbiosis factor that mediates gut homeostasis
by directing cellular and physical immune development [55], stimulating Tregs [51], and
providing protection from diseases like colitis [51] and experimental autoimmune
encephalomyelitis [56]. The mechanism of PSA recognition and signaling culminating in
activation of T cells is not yet fully understood. Pure PSA is specifically recognized in a
TLR2-dependent manner [57], internalized by DCs, and presented by major
histocompatibility class II molecules to activate T cells [55]. Round et al. reported that pure
PSA stimulates IL-10 production through TLR2 on CD4+ T cells, with no requirement for
DCs [58]. Recently, however, the same group demonstrated that, when PSA is associated
with outer-membrane vesicles, DCs are required to induce IL-10-producing T cells [59].
Further work will determine exactly how PSA recognition and signaling induce T cell–
mediated responses.

Other lymphocytes whose roles are modified by commensal bacteria include iNKT cells,
natural killer (NK) cells, and innate lymphoid cells (ILCs). As mentioned above, the
commensal microbiota inhibits expression of the CXCL16 gene in host epithelial cells,
thereby suppressing iNKT cell activation [32]. Abnormal NK-cell function resulting in
sensitivity to viral challenge has been observed in germ-free mice. Microbiota-derived
signals stimulate cytokine secretion—required for NK cell priming—from mononuclear
phagocytes [60,61]. In the intestine, RORγt+ ILCs constitutively express IL-22, which is
important for AMP expression and anti-apoptotic molecule induction. IL-22 production is
regulated by the commensal microbiota through induction of IL-25 from epithelial cells,
which in turn act through DCs to suppress RORγt+ ILCs [62].

Conclusions
Studies on the role of commensal bacteria in maintaining immune homeostasis and
promoting the host’s health have expanded vastly. Commensal bacteria and commensal
antigens offer significant potential in therapy for a range of immune-mediated diseases.
Transplantation of the fecal microbiota from the gut of healthy donors restores components
of the normal intestinal flora, curing patients with recurrent Clostridium difficile infection
[63]. Male NOD mice have a lower incidence of T1D than female NOD mice. Interestingly,
male microbiota transfer to very young NOD female mice substantially protects against the
development of T1D by increasing testosterone as well as metabolomic changes, reducing
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islet cell inflammation and autoantibody levels [64]. Probiotics can boost immune responses,
although their effects are transient and not particularly robust [65]. The commensal
Faecalibacterium prausnitzii is associated with possible anti-inflammatory effects in Crohn’s
disease [66], and a mixture of clostridial species provides protection against experimental
colitis and suppresses IgE responses [48]. However, the responsible factors derived from
these commensal organisms are not known. Given the numerous species inhabiting the
human gut [3], there is tremendous potential for the discovery of other commensal microbes
and antigens that, like B. fragilis PSA, prime the immune system and may serve as
therapeutic agents in immune diseases.
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Highlights

• Composition of microbiota may affect host physiology

• Studies show the role of early microbial exposure in reducing disease
susceptibility

• Commensal bacteria offer significant potential in therapy for a range of diseases

• Discovery of new commensal antigens to be used as therapeutic agents is
imminent
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Figure 1. Commensal microorganisms shape the host immunity by multiple mechanisms
Mammals coevolved with their commensals, comprised of mostly bacteria but also include
viruses, fungi, archaea and protozoa. Several factors such as hygienic conditions, antibiotic
use, diet, sex and age of the host determines the composition of the microbiota, which in
turn interacts with host tissues to orchestrate a finely tuned immune system. A healthy
microbiota provides immunomodulatory signals for the development of immune tissues,
secretion of antimicrobial molecules by the epithelial barrier and activation of immune cells.
Any disturbance in these interactions results in an imbalanced immune system with
consequent susceptibility to various diseases.
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