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Abstract
The “Replicon Theory” of Jacob, Brenner and Cuzin has reliably served as the paradigm for
regulating the sites where individual replicons initiate replication. Concurrent with the replicon
model was Taylor’s demonstration that plant and animal chromosomes replicate segmentally in a
defined temporal sequence, via cytologically defined units too large to be accounted for by a
single replicon. Instead, there seemed to be a program to choreograph when chromosome units
replicate during S phase, executed by inititation at clusters of individual replicons within each
segment. Here, we summarize recent molecular evidence for the existence of such units, now
known as “replication domains”, and discuss how the organization of large chromosomes into
structural units has added additional layers of regulation to the original replicon model.

Introduction
In their celebrated theory, Jacob, Brenner and Cuzin hypothesized that the DNA of
Escherichia coli was organized as “replicons”, with each replicon consisting of a replicator
sequence element and a structural gene encoding an initiator protein that activated DNA
replication through interaction with the replicator 1. Within approximately twenty years of
the theory’s introduction, prokaryotic replicons were characterized more or less precisely as
Jacob et al. imagined 2. Isolation of budding yeast replicons 3 suggested the theory might
apply universally to all organisms, with the caveat that larger genomes require additional
replicators. However, ensuing research indicated that replicators in other eukaryotes are not
determined solely by DNA sequence and that only a fraction of initiator-bound replicators
actually initiate replication in a given cell cycle. Helping to make sense of the structure and
regulation of eukaryotic replicons, studies of DNA replication timing, a unique feature of
eukaryotes, have provided insight into hierarchical levels of large-scale chromosome
organization. In this perspective we will discuss how various levels of mammalian
chromosome organization are superimposed on the simple structure of replicons Jacob et al.
proposed for prokaryotes.

Individual replicons versus replication domains
Replication domains were initially observed by cytological means and described as adjacent
chromosome segments that incorporated thymidine-H3 asynchronously during the S phase
of cells from smooth hawksbeard root 4 and Chinese hamster 5. Similarly, metaphase
chromosomes from cells pulse labeled with 5-bromo-2′-deoxyuridine exhibited an
oscillating incorporation pattern corresponding to Giemsa-stained chromomeric bands 6,7.
More recently, profiling of replication timing in mammals has allowed clear segmentation of
chromosomes into replication domains with defined genomic sizes and locations 8–17. Two
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general models have been proposed to explain the appearance of domains. On the one hand,
domain-like patterns of replication could emerge fortuitously from the relative firing time
and distribution of individual replicons 18–20. In this case, local contexts would influence
each replicon independently 21,22 and domain “boundaries” would simply appear at the
edges of the earliest firing replicon clusters in a given region. On the other hand, each
domain could be a unit of regulation, with physical characteristics and size independent of
replicon distribution, influencing when the replicons within its boundaries could
fire 15,23–26. We refer to this latter model as “The Replication Domain Model”.

Sub-nuclear replication compartments and replication foci
Early autoradiography experiments indicated chromatin dispersed throughout the nuclear
interior was replicated simultaneously at the onset of S phase 27,28, while replication at later
time points was confined to sites along the nuclear periphery 29–33. Subsequent experiments
demonstrated that the sub-nuclear positions of synchronously firing replicons were
maintained throughout interphase and were consistently re-established in daughter cells 34,35

even after 15 generations 36. Consistent with a direct link between the spatial organization
and regulation of replicons, a discrete point during G1 phase was discovered at which the
replication-timing program is established each cell cycle (the Timing Decision Point; TDP),
which coincides with the anchorage of chromatin to its respective sub-nuclear positions
following mitosis 37. Finally, maps of chromatin-interaction 38, which align with replication-
timing profiles more closely than any other chromatin property mapped to date 15,23–26,39,
have confirmed the spatial compartmentalization of replicons with distinct temporal
regulation and provided independent evidence for the existence of structural chromosome
units on the scale of replication domains.

Detailed cytological analysis revealed that individual sites of active replication, called
“replication foci” 36,40,41, correspond to clusters of synchronously firing replicons visualized
along the length of isolated DNA fibers 42. Foci are abundant (~10,000 during the S phase of
mouse 3T3 fibroblasts) and, although they vary in size 43, are estimated to encompass
approximately 1 Mbp of DNA 40, similar to the unit size of developmental replication-
timing regulation (400–800kb, see below) later defined by genomics studies 11,14,15,17. The
number of simultaneously replicating foci, and hence the rate of DNA synthesis during S
phase, was shown to be controlled by cyclin-dependent kinase activity and intra-S-phase
checkpoints independently from the regulation of individual initiation events within the
foci 44,45. Collectively, these data argue that replication foci are the equivalents of
replication units defined by genome-wide replication timing and chromatin interaction maps.

Units of replication-timing regulation
If the replication-timing program were truly related to chromatin structure and function, one
would expect changes in replication timing to accompany cell differentiation during the
development of multicellular organisms. Detailed analysis of the replication timing of
individual regions in different cell types suggested replication timing could be cell-type
specific 46–50. Subsequent genome-wide experiments revealed that programmed
developmental changes in replication timing involve at least half the genome in mammals
and these changes primarily occur in 400–800 kb units 11,14,15,17. The discrete size of
developmental changes in replication timing suggests replication domains comprise
multiple, independent units of regulation.

The replication domain model was recently put to the test by analyzing the replication
timing of a trans-chromosomic mouse carrying a heavily rearranged and freely segregating
Human Chromosome 21 51. In two distinct mouse tissues, the trans-chromosome generally
exhibited normal, human-specific replication timing 52. However, in cases where
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rearrangements juxtaposed chromosome fragments that normally replicated at different
times, the replication timing of one fragment appeared to spread across the breakpoint into
the other fragment. By comparing the replication-timing shifts at these rearrangements to
control replication profiles from both matching and non-matching human cell types, it was
discovered that timing shifts extended up to the nearest replication boundary, even if that
boundary was not normally detected in the matching cell type. This apparent insulating
effect observed at the positions of replication boundaries detected in non-matching cell types
suggested that static structural boundaries delineate independent units of replication-timing
regulation. Consistent with this result, in a study where genome-wide replication-timing
profiles were generated from 17 patient leukemia samples, many replication-timing
aberrations were observed, which shared the sizes and boundaries of developmental changes
in replication timing, again suggesting that developmentally regulated replication-timing
units have static structural boundaries 53. Intriguingly, average “signatures” of DNaseI
hypersensitivity 54, the CCCTC-binding factor 26, and a combination of histone
modifications (H3K4me1/2/3, H3K36me3, H3K27ac enrichment and H3K27me3,
H3K9me2/3 depletion) 15 near the boundaries of replication domains were reported
previously. The extent to which these “signatures” or other insulating features define unit
boundaries throughout development remains an interesting question for future research.
Altogether, these results strongly suggest that replication boundaries coincide with static
insulating elements that facilitate independent regulation of neighboring units, even when
those units replicate at the same time and thus cannot be distinguished by replication-timing
analysis.

Dynamic regulation of stable replication units
To directly assess the stability of replication units and their boundaries during
developmental replication-timing changes, another recent study examined the dynamics of
two replication units that change replication timing during differentiation 25. Using
fluorescence in situ hybridization (FISH) probes evenly spaced across each unit and the
surrounding regions, it was observed that early replication was associated with a dramatic
increase in the volume of chromatin confined within the replication boundaries of the
switching units. Chromatin conformation mapping of these same regions revealed that each
replication unit was flanked by interaction boundaries (sharp trough in the frequency of
chromatin interactions) at the same positions in both the distended early-replicating and
more compact late-replicating states. However, interactions between each unit and the
surrounding regions did change during differentiation, with both units preferentially
interacting with other early regions when the units were early-replicating and other late
regions when the units were late-replicating, even more so than with cis-linked neighboring
regions that replicated at a different time. Hence, replication units also switch their sub-
nuclear spatial compartment when they change replication timing.

Surprisingly, despite the increased volume of chromatin observed within these two units
when they switched from late to early replication, the sensitivity of the units to nuclease
attack did not change 25. In fact, genome-wide analysis revealed that units that switch
replication timing harbor some of the least sensitive chromatin in the genome and
maintained low nuclease sensitivity when both late- and early-replicating 55. Although
nuclease sensitivity is not coordinately regulated with developmental replication-timing
changes, some histone modifications do change with replication timing 11,15. Hence, some
physical properties are associated with the stable structural features of replication domains,
while others are dynamically associated with the replication time of the domain.
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Conclusion
The evidence is now compelling that mammalian DNA replication is regulated at levels
beyond individual replicons. In mammals, replication is coordinated across large units of
chromosomes, or replication domains, whose structural boundaries are stable during the cell
cycle and development. The temporal order in which these units replicate, however, is cell-
type specific and is closely associated with the sub-nuclear compartmentalization of units,
manifest by the preferential interaction of units that replicate at the same time. Initiator-
replicator binding, determination of replication timing, and selection of which replicators
will fire during S phase each occur independently at distinct times during G1 phase 37,56.
The mechanisms coordinating these different layers of regulation are only now being
worked out, with the first proteins to regulate the replication-timing program globally in
both mammals 57,58 and yeast 59,60 only identified in the last year. Moreover, there are likely
to be additional levels of regulation. For example, disruption of lncRNAs such as Xist or
ASAR6 in mammalian fibroblasts appears to influence replication timing throughout their
respective chromosomes 61–64. Although these various levels of regulation may act to a
greater or lesser extent in different organisms, they ultimately converge on a common
replicon structure to initiate the DNA replication program.
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• DNA replication in mammals must accommodate large-scale chromosome
architecture

• Dynamics of DNA replication timing reveal various levels of chromosome
organization

• Replication boundaries mark static insulators between independent regulatory
units

• Regulation varies in different organisms but converges on common replicon
structure
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