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Abstract: Medical entity recognition is currently generally performed by data-driven methods based on supervised machine learning. 
Expert-based systems, where linguistic and domain expertise are directly provided to the system are often combined with data-driven 
systems. We present here a case study where an existing expert-based medical entity recognition system, Ogmios, is combined with a 
data-driven system, Caramba, based on a linear-chain Conditional Random Field (CRF) classifier. Our case study specifically highlights 
the risk of overfitting incurred by an expert-based system. We observe that it prevents the combination of the 2 systems from obtaining 
improvements in precision, recall, or F-measure, and analyze the underlying mechanisms through a post-hoc feature-level analysis. 
Wrapping the expert-based system alone as attributes input to a CRF classifier does boost its F-measure from 0.603 to 0.710, bringing 
it on par with the data-driven system. The generalization of this method remains to be further investigated.
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Introduction
In the medical domain, a wealth of documents is 
produced for each patient, such as a letter from the 
attending physician, hospital entrance document, 
laboratory analysis results report, hospitalization 
records, nurse records, and so on. All those docu-
ments convey clinical information that can be useful 
for a health care professional to treat the patient or 
to perform clinical research. However, their textual 
nature locks clinical information into these docu-
ments, preventing it from being included in further 
processing workflows. Systems that extract informa-
tion from clinical texts are thus needed.1 Automati-
cally detecting clinical concepts and, more generally, 
medical events related to a patient is the first level of 
clinical information extraction from medical texts.

Most work on information extraction falls into 
2 broad kinds of methods. Expert-based methods rely 
on human knowledge, typically including lexicons, 
patterns and rules, to detect entities.2,3 Data-driven 
methods rely on data, generally in the form of anno-
tated corpora, to induce knowledge or decision pro-
cedures to perform entity detection. As each of these 
methods has its advantages and limitations, combin-
ing them together may overcome their individual 
limitations and lead to improved results. Many meth-
ods can be used for this purpose, and various authors 
have focused on some of them. We present here a 
case study where an existing expert-based medical 
entity recognition system, Ogmios,4 is combined 
with a data-driven system, Caramba,5 based upon a 
linear-chain Conditional Random Field (CRF) clas-
sifier. We examine different methods to combine 2 
such systems and test the most relevant methods 
through experiments performed on the i2b2/VA 2012 
challenge data.

In this paper we first outline the overall process 
of entity recognition in texts, with an eye on clinical 
information extraction. We examine issues encoun-
tered when combining expert-based and data-driven 
methods and determine the most relevant combina-
tions for our setting. We then describe in more detail 
the datasets on which we performed experiments and 
the 2 systems we start from. We finally present the 
results obtained in these experiments and propose an 
analysis of how the expert-based system influences 
the final decisions. We summarize our findings in the 
Conclusion section.

ntity Recognition: From Information 
to Decision
Named Entity Recognition, as defined in the MUC 
conferences,6 aims to detect names of persons, loca-
tions and organizations in texts. More generally, we 
use the term Entity Recognition to cover the detec-
tion of entities in a domain, not only expressed with 
proper names, but also with other parts of speech. In 
the clinical domain, this includes among others signs, 
symptoms and diagnoses (medical PROBLEM), 
medications and surgical interventions (TREAT-
MENT) and hospitals and clinical departments 
(CLINICAL_DEPT).

Detecting entities, be it through expert-based or 
data-driven methods, relies on the collection of infor-
mation from the input text. This information spans 
basic typographical properties such as upper or lower 
case, as well as numeric or alphabetic characters, 
to document structure such as its division into sec-
tions (eg, history of present illness, hospital course). 
External knowledge and components are often 
applied to the text to normalize it (eg, lemmatization), 
to determine in context word properties such as parts-
of-speech or semantic classes, or to add structure to it 
(eg, syntactic dependencies), based on resources such 
as lexicons and thesauri, and/or Natural Language 
Processing components such as part-of-speech tag-
gers and syntactic parsers.

Based on this information, decisions must be made 
as to whether or not a given type of entity occurs at a 
given position in the text. A common decision para-
digm consists of eliciting rules which, given the infor-
mation attached to selected parts of a sentence, infer 
the presence of an entity. For instance, a pattern such 
as ‘the ,Maj. hospital’ (where ,Maj. stands for a 
capitalized or uppercase word) can be used to build a 
rule which infers the presence of a CLINICAL_DEPT 
entity. Such rules are usually categorical (Boolean), 
ie, they make binary decisions. Another decision 
paradigm learns a decision procedure by observing 
texts (generally associated with annotations): this is 
the (supervised) learning paradigm. It accounts for 
the majority of works currently, where it is usually 
based on statistical machine learning. We focus here 
on a model that belongs to the discriminant family 
of machine-learning models: linear-chain Condi-
tional Random Fields (CRF),7,8 a log linear model 
which is particularly relevant for sequences, hence 
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for sentences. Schematically, the log-linear model 
learns a set of ‘soft’ (weighted) rules, in the form of 
weighted feature functions, which vote according to 
their weight for or against each of the target classes. 
These classes are the target entity types (eg, PROB-
LEM) or more usually a variant where Begin, Inside, 
and Outside positions (B-I-O) are distinguished in 
a target entity of that type: eg, B-PROBLEM (first 
token in a PROBLEM entity), I-PROBLEM (any 
other token in a PROBLEM entity), and O (outside 
any entity). Given the non-null feature functions for 
a token, the sum of positive and negative weights of 
these features plays a central role in the computation 
of the prediction score of a given entity type for this 
token.

ombining xpert-Based  
and Data-Driven Methods
As mentioned in the Introduction, many works com-
bine expert-based and machine-learning methods 
with the aim of overcoming their individual limita-
tions and improving their results. For instance, in the 
2010 i2b2/VA challenge on ‘concept extraction’,9 3 of 
the 10 top-performing systems were categorized as 
‘hybrid’, 5 were labelled ‘supervised’ and 2 ‘semi-
supervised.’ When looking more closely, most of the 
‘supervised’ or ‘semi-supervised’ systems used infor-
mation obtained by applying expert-based systems 
such as MetaMap10 or cTAKES,11 hence should also 
receive the ‘hybrid’ label.

There exist many ways to combine 2 systems 
implementing different methods. In this paper, we 
are specifically interested in combining an expert-
based and a machine-learning system. We consider in 
turn the following combination schemes: union and 
intersection, primary system plus fallback, voting, 
and using the expert-based output as a feature in a 
classifier.

Union and intersection
Union and intersection are the simplest combina-
tion schemes. They assume there is a ‘null’ class, 
the O class in the B-I-O encoding, which means ‘no 
entity’, and is handled differently from the other (B-I) 
classes.

Intersection of the outputs of the 2 systems 
means that a decision is made only when both sys-
tems produce the same non-null output. In the other 

cases, the null class (O) is produced. Intersection 
can result in illegal O-I sequences which must be 
repaired (any entity must begin with a B class). 
Union of the outputs means that the non-null out-
puts of both systems are kept. This is applicable 
only if both systems produce compatible outputs, 
ie, they never produce 2 different non-null classes 
for the same token. Otherwise some other combina-
tion scheme must be used.

These combinations are rather crude and in our 
case they resulted in poorer results than the initial 
systems.

Primary system plus fallback
This combination also makes a distinction between 
the null O class and the other classes. It considers 1 
of the 2 systems as primary and systematically trusts 
its B-I classes. The other system is used as a fallback 
and is consulted only when the primary system out-
puts an O class. This is particularly relevant when 
the primary system has higher precision and but low 
recall: the fallback system can increase recall while 
leaving the (mostly) correct decisions of the first sys-
tem intact. The expert-based system is often the one 
with the higher precision and thus plays the role of 
the primary system.

Here again, this combination may result in incon-
sistencies: eg, if the primary system outputs a B-TEST 
I-TEST O sequence and the fallback system outputs 
an I-PROBLEM for the O token, this results in an 
illegal B-TEST I-TEST I-PROBLEM sequence.

‘Forced decoding’ is a better way of implementing 
this combination scheme when the fallback system is 
a Conditional Random Field (CRF) (this is however 
applicable to some other classifiers). It provides the 
output of the primary system to the CRF and imposes 
its choice of non-null classes both during the train-
ing and inference stages. Since these imposed choices 
are known beforehand in a given sentence, choices 
for the other tokens of the same sentence can take 
them into account. This avoids the above-mentioned 
inconsistencies and results in more relevant choices 
overall.

Previous work has reported good results with 
forced decoding. For instance, for Arabic named 
entity recognition, Gahbiche-Braham et al12 com-
bined a very precise expert-based system to a CRF 
based on other features. When imposing through 
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forced decoding to the CRF the entities found by the 
first system, the F-measure of the CRF increased to 
0.84, significantly outperforming both the expert-
based system (F= 0.74) and the CRF with its own 
features (F=0.73).

In our case study, forced decoding was not suitable 
because the precision of the expert-based system, 
while reasonably good (0.82), was not high enough.

Voting
Voting is useful when several systems are to be com-
bined. Majority voting takes the decision proposed 
by the highest number of systems. With 2 systems as 
in our case study though, majority voting amounts to 
intersection as presented above. It is more relevant 
with many systems.

Majority voting gives each system a weight of 1. 
In weighted voting, weights can be different from 1; 
these weights may be based on a measure of confi-
dence attached to each system’s decisions. Many data-
driven methods can provide confidence estimates; 
this is generally not the case however of expert-based 
systems.

A workaround consists in wrapping the expert-
based system within a classifier and learning con-
fidence estimates from a training corpus. However, 
in our case, the training corpus was already used to 
develop and tune the expert-based system. For obvi-
ous reasons we could not do that on the test corpus 
either. Therefore we had no means to compute confi-
dence estimates reliably for the expert-based system.

Using the expert-based output  
as a feature in a supervised classifier
A generalization of the last approach consists of using 
the outputs of the systems as features in a supervised 
classifier. This is more relevant than voting if there 
are only few systems. The second-stage classifier (eg, 
a log-linear model) is then trained and typically learns 
weights for each input classifier. In our case study, 
the data-driven system relies on a log-linear model 
(a CRF). Therefore there is no real need to separate 
2 stages: we can just add a feature for the expert-based 
system to the data-driven system.

This general method is particularly relevant when 
using a discriminant model, because such models can use 
features that are not independent—and it is to be hoped 
that the systems will agree in many cases. In contrast, 

a generative model would need to take into account 
dependences when modelling observations.

This is the most convenient method, and we shall 
illustrate it below. Note however that the same issue 
as above is raised about the training corpus. We shall 
therefore study how it shows in our results.

The i2b2/VA 2012 hallenge  
and orpus
Our case study uses the datasets of the i2b2/VA 2012 
challenge13 (https://www.i2b2.org/NLP/, i2b2— 
Integrating Informatics for Biology and the Bedside, 
Albany, NY). It is restricted to the detection of ‘events’ 
in clinical texts (the challenge also involved other 
tasks, including the detection of temporal expressions, 
polarity and modality, and temporal links). The i2b2 
evaluation campaign is an international text mining 
challenge that focused on the clinical domain. From 
2010 to 2012, the participants were asked to extract 
several clinical concepts of different kinds. Problem, 
test and treatment were common to these 3 editions. 
Additional annotations were progressively added 
over the years, including identification of ‘asser-
tions’ (polarity and modality) and relations between 
concepts in 2010,9 co-reference between concepts in 
2011,14 and finally events, polarity and modality, time 
expressions, and temporal relations between concepts 
and time expressions in 2012.

The clinical documents of the 2012 corpus come 
from the following organizations: Beth Israel Deacon-
ess Medical Center (Boston, MA); Partners Healthcare 
(Boston, MA); and University of Pittsburgh Medical 
Center (Pittsburgh, PA) (they were also present in the 
2011 corpus).

Definition of the task: event detection
The present work focuses on the extraction of clinical 
events as defined in the i2b2 NLP challenge held in 
August 2012, to which we participated. These events 
are different both from existing research and from the 
previous editions of the i2b2 challenges. 6 types of 
events were defined as follows:
1. Medical problems, which include the patient’s 

complaints, symptoms, diseases and diagnoses:
•	 The patient reportedly had chest pain. She 

reported some shortness of breath. His arterial 
blood gas showed a respiratory acidosis with a 
PCO2 of 71.
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2. Tests, which include any clinical lab tests, exams, 
and their results:
•	 His arterial blood gas showed a respiratory aci-

dosis with a PCO2 of 71. A CT scan showed 
that the patient has ...

3. Treatments, which include medications, surgeries 
and other procedures:
•	 The patient was taken to the operating room 

and underwent an orthotopic liver transplant. 
On 8/30/2001, the patient was extubated in the 
operating room. Ativan p.r.n. was given for 
this.

4. Clinical departments, which include the clinical 
units involved in the patient’s treatment.
•	 The patient was taken to the operating room and 

underwent an orthotopic liver transplant. The 
patient underwent an uncomplicated recovery 
in the intensive care unit.

5. Evidential markers specify the source of 
information:
•	 The patient reportedly had chest pain. His arte-

rial blood gas showed a respiratory acidosis 
with a PCO2 of 71. He complains of headache.

6. Occurrence is the default value for event types. It 
is used for all the other kinds of clinically relevant 
events that occur/happen to the patient:
•	 He was readmitted for sternal wound infection.

Annotated corpora
The corpus provided by the i2b2 challenge contains 
210 clinical records. These records are divided into 
training (190) and test (120) subsets. The distribution 
of the events is similar across the training and test 
corpora (Table 1). There is, however, a largely unbal-
anced distribution of event types: treatments (TTT) 
and medical problems (PRB) represent more than half 
of the annotations, while clinical departments (Dept) 
and evidential markers (Evid) have very few occur-
rences in the corpora.

The reference annotations were provided by the i2b2 
organizers: each clinical record was annotated manu-
ally by 2 experts. 8 experts participated in this task. The 

annotated training set was available before the chal-
lenge dates, and the bare test set was provided at the 
date of the challenge. The reference annotations for the 
test set were disclosed after the challenge was closed.

Two vent Detection ystems
We started from 2 existing systems which be present 
below:

1. An expert-based medical entity recognition sys-
tem, Ogmios;4

2. A data-driven system, Caramba,5 based upon a 
Conditional Random Field (CRF) classifier.

xpert-based method: Ogmios
Overall architecture
The Ogmios platform proposes several standard NLP 
functionalities and can be easily modified to new tasks, 
domains and applications. In the current experiments, 
its configuration is similar to those defined for the 
former i2b2 2009 and i2b2/VA 2010 Challenges:4,15

1. POS tagging is performed with GeniaTagger;16

2. Event identification relies on the TermTagger Perl 
module (http://search.cpan.org/∼thhamon/Alvis-
TermTagger/) and the linguistic and semantic 
resources described below; 

3. A term extraction system, YaTeA,17 is applied to 
detect the noun phrases;

4. A specific post-processing adapted to the i2b2/VA 
2012 event definition selects and extends previ-
ously identified events.

The post-processing step first extends event strings 
to the right with acceptable POS tags, stopping with 
the first non-acceptable stopword. Then, it selects the 
final event according to several criteria: (i) in case 
of competing annotations, the larger event string 
is preferred; (ii) an event identified as a non-i2b2 
concept (as well, M.D., etc.) is rejected; (iii) events 
occurring in section titles are removed except for the 
tests (Serologies) and occurrences (Discharge Date); 
(iv) contextual tags (see below, Linguistic resources) 

Table 1. Annotation statistics in percentage on training and test corpora for the six clinical event types.

linical_dept vidential Occurrence roblem Test Treatment
Train 6.05 4.49 19.95 30.50 15.76 23.25
Test 5.39 4.38 18.38 31.70 15.99 24.17
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are used to semantically label the extracted events; 
(v) section titles are also used to categorize events 
(for instance, the Admission Diagnosis section usu-
ally contains medical problems); (vi) the extracted 
noun phrases are used to detect or adjust syntactically 
the boundaries of the clinical events.

Linguistic and semantic resources
We exploited the following main terminological 
resources:

•	 316,368 terms from the UMLS18 which belong to 
several semantic axes related to the involved types 
of events:
1. medical problems (B2.2.1.2.1 Disease or Syn-

drome, A2.2.2 Sign or Symptom, B2.3 Injury 
and Poisoning, A1.2.2 Abnormality and A1.1.5 
Bacteries),

2. tests (B1.3.1.1 Diagnostic procedures and 
B1.3.1.2 Laboratory procedures),

3. treatments (B1.3.1.3 Therapeutic or prevention 
procedures,

4. clinical departments (A2.7.1 Health Care 
Related Organization).

•	 243,869 entries from RxNorm19 used for the detec-
tion of medication names (treatments);

•	 The available annotations of the 2012 i2b2 train-
ing sets;

•	 Additional contextual tags for marking specific 
contextual clues for different types of events (pre-
problem, pre-test, pre-treatment, post-treatment ...).

These resources were manually checked and adapted 
to increase their coverage and precision. The contex-
tual tags were built specifically for this purpose.

Data-driven method: Caramba
The Caramba system5 relies on several tools that 
were used to compute various input features, shown 
in Table 2. These features were input to a Conditional 
Random Field (CRF) classifier, Wapiti,20 (http://
wapiti.limsi.fr/) through ‘patterns,’ as in most CRF 
classifiers. Patterns specify which attributes or com-
binations or attributes of the current token and of 
other tokens in the current sentence are used, together 
with the class of the current token (or with a bigram 
of this class and the class of the previous token), to 
build feature functions.

In our experiments on the training corpus, we 
tested models generating up to 155 million features. 
Since CRFs may be prone to overfitting (eg, com-
pared to SVMs), we took care to include features that 
would lead to better generalization: syntactic tags and 
chunks, and semantic classes of various kinds.

valuation of the individual systems
We measured the precision, recall and F-measure of 
these event detection systems in 2 conditions:

1. Directly, through a strict comparison to the gold 
standard annotations, as computed by the conlleval.
pl program (http://www.clips.ua.ac.be/conll2000/
chunking/).

Table 2. Features for CRF-based event identification.

•  Section id among four sections we defined as follow: admission date (section #1), discharge date (#2), history of present 
illness (#3) and hospital course (#4);

•  Morpho-syntactic tagging with the Tree Tagger (http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/)21  
and home-made noun phrase chunking based upon the previous tags;

•  Morpho-syntactic tags projected from a specific lexicon of 62,263 adjectives and 320,013 nouns based on the  
UMLS Specialist Lexicon; 

•  Semantic types and semantic groups from the UMLS (http://www.nlm.nih.gov/research/umls/);
•  Semantic annotation (the six event types and other markers such as “anatomical part”, “localization”,  

“pre/post-examination”, “value unit”, etc.) with WMatch,22 an analysis engine based upon regular expressions  
of words, rules and lexicons;

•  Syntactic analysis with the Charniak McClosky biomedical parser (http://stanford.edu/∼mcclosky/biomedical.html):23  
we used part-of-speech and chunk information derived from the parse trees;

•  Two series of unsupervised clusters obtained through Brown’s algorithm,24 performed over the UMLS Metathesaurus18 
terms (multi-words expressions) and over the 2011 i2b2/VA Beth Israel and Partners ealthcare corpora. This corpus 
was selected because it was closest to the 2012 training corpus. It is probable that some test documents belong to 
this corpus, however since this processing is unsupervised and performed on the unannotated documents, it is good 
practice to do it (we should even have performed it again once we had the full set of unannotated test documents). 
Clustering was performed with code from Liang’s Master’s Thesis25 (http://www.cs.berkeley.edu/∼pliang/software/).
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2. With the evaluation program of the i2b2/VA chal-
lenge (i2b2Evaluation.py), in its default ‘overlap’ 
mode, which counts as correct overlapping entities 
with possibly different types.

Experiments were performed on the training cor-
pus. When it concerned the data-driven system, this 
was done with 10-fold cross-validation. A model was 
then learnt on the whole training corpus, and then 
applied to the test corpus.

Ogmios was evaluated as is (see Table 3).
When training Caramba on the training corpus, 

we examined which groups of features were most 
discriminant. For this purpose, elementary subsets of 
features were defined by groups of patterns accord-
ing to Table 2. We trained and tested the CRF with 
increasing subsets of the whole set of features, fol-
lowing a greedy approach, with 10-fold cross-valida-
tion. For each test fold, 8 of the remaining folds were 
used for training and the remaining 1 was used as a 
development set that the classifier used to compute 
its error rate. The number of training iterations was 
limited to 30 to speed up the comparison of feature 
subsets. Starting from scratch, each group of patterns 
was tried independently. 

At the first iteration, 8 groups of patterns obtained 
an F-measure (averaged over the 10 folds) greater 
than 0.0001 (see Table 4). It is noticeable that unsu-
pervised features (Brown clusters) based upon the 
i2b2 clinical corpus or upon the UMLS terms obtain 
quite a high F-measure (resp. 0.6859 and 0.6082) 
without any other help. We added all these groups of 
patterns to our pool of patterns. This increased the 
F-measure to 0.7124 by only 2.7 points compared to 
the i2b2 Brown clusters.

In a second iteration, we independently tested the 
addition of each remaining group of patterns to this 
pool (Table 5). Adding all these pattern groups to the 
pool resulted in 101,492,274 features and an improved 
F-measure of 0.7317. We also tested the addition of 
only a subset of these pattern groups, selecting the 
less redundant ones (see last line of Table 5). This 

slightly improved the F-measure again (0.7323) and 
reduced the number of features to 15 million. Note 
that these settings involve further work beyond the 
system that we presented at the challenge, hence the 
results reported here are better than those we obtained 
in the challenge.13

ombination of the 2 Methods
Tested combinations
We tested the combination of the expert-based sys-
tem Ogmios with the data-driven method Caramba by 
including the output of Ogmios as attributes provided 
to the CRF classifier used in Caramba. Development 
was performed on the training set and monitored with 
the conlleval.pl evaluation program (left set of P-R-F 
columns in Table 6: Training, conlleval).

Ogmios was first used as the only attribute in the 
CRF, providing 2 information items: the target event 
type (6 possible values + no event), and specific 
semantic markers from the previous challenges such 
as “dosage”, “duration”, “mode of administration” 
(i2b2 2009), contextual tags (“pre/post-possible”, 
“pre/post-conditional”, “pre/post-problem”, “pre/
post-treatment”, “pre/post-negation”, “pre/post-
proposed”, etc.), polarity/modality and concept 
markers from former and this year’s challenges. Each 
of these 2 information items was encoded with the 
B-I-O scheme. This corresponds to wrapping Ogmios 
within a classifier, which was trained on the training 
corpus. Table 6 (row OgF) shows the obtained results 
(for ease of comparison, Table 6 recalls the evalu-
ation of Ogmios (row Og) and Caramba (row Ca) 
alone). We can see that wrapping Ogmios in the clas-
sifier as unigrams and bigrams of attributes, trained 
on the training corpus, substantially increases preci-
sion (+5 pt)) but decreases recall (−1 pt), resulting in 
an increase in F-measure (+2 pt).

Ogmios attributes were then complemented with 
those selected for Caramba and presented in Table 5. 
Table 6 (row OgCa) shows that both precision (+15 
pt) and recall (+2 pt) are much improved over when 
Ogmios is used as only attribute (row OgF). This is 
our best result on the training set, and improves pre-
cision, recall and F-measure both over Ogmios and 
over Caramba alone. Besides, precision and recall are 
better balanced.

We also examined the combination of the 
Ogmios attributes with various subsets of Caramba’s 

Table 3. Ogmios: direct evaluation (training set). 

 R F Description
Ogmios 0.8229 0.7079 0.7611 Ogmios as is

Abbreviations: P, Precision; R, Recall; F, F-measure.
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Table 4. Caramba: best groups of patterns at first iteration (training set). 

 R F Description
0.7322 0.6452 0.6859 B: Brown Beth_Partners unigrams
0.6949 0.5407 0.6082 Brown UMLS unigrams
0.5239 0.3475 0.4179 B: UMLS first or two Semantic Types
0.4307 0.2908 0.3472 Charniak-McClosky POS unigrams, bigrams, trigrams
0.5209 0.2551 0.3425 Wmatch only
0.5137 0.2564 0.3421 Wmatch only, BIO
0.3378 0.1476 0.2055 B: Charniak-McClosky chunk unigrams, bigrams, trigrams
0.3378 0.0478 0.0837 B: alphabetic or case unigrams
0.7469 0.6809 0.7124 Subset 1: All of the above

ote: B: bigram of classes.

Table 5. Caramba: best additional groups of patterns at second iteration (training set). 

 R F Description
0.7622 0.6904 0.7245 *Lemma, from TreeTagger
0.7684 0.6851 0.7244 *B: Brown Beth_Partners unigrams
0.7589 0.6898 0.7227 *Normalized token
0.7637 0.6857 0.7226 *Specialist Lexicon syntactic category, with normalized token
0.7624 0.6852 0.7217 B: Specialist Lexicon syntactic category, with normalized token
0.7575 0.6876 0.7209 *TreeTagger POS, with normalized token
0.7595 0.6856 0.7206 B: lemma, from TreeTagger
0.7648 0.6811 0.7205 B: Brown UMLS unigrams
0.7640 0.6796 0.7194 *Section identifier
0.7632 0.6799 0.7192 *Digit
0.7578 0.6837 0.7189 B: Charniak-McClosky POS unigrams, bigrams, trigrams
0.7590 0.6805 0.7176 B: TreeTagger POS, with normalized token
0.7570 0.6819 0.7175 UMLS first or two Semantic Types
0.7487 0.6887 0.7175 *Date
0.7561 0.6821 0.7172 *Alphabetic or case
0.7579 0.6802 0.7169 B: Wmatch
0.7627 0.6757 0.7166 B: section identifier
0.7561 0.6810 0.7166 *B: TreeTagger chunk, BIO
0.7607 0.6772 0.7165 B: Wmatch, BIO
0.7522 0.6775 0.7129 B: date
0.7527 0.7119 0.7317 Subset 2: Subset 1 + all of the above
0.7761 0.6957 0.7337 Subset 3: Subset 1 + starred feature groups only

otes: B: bigram of classes. ach pattern group is added independently to the pool of Iteration 1 (ie, Subset 1).

attributes and discovered that the addition of very 
basic attributes, namely the normalized (lowercased) 
token was enough to boost the results of Ogmios (row 
OgT): it obtains precision, recall, and F-measures that 
fall short of the combination of Ogmios and Caramba 
by about 1 point (pt) only.

However, most of the observations made on the 
training set do not carry over to the test set (third set 
of P-R-F columns: Test, conlleval). 10-fold cross-
validation on the training corpus is quite predictive 
of the results of Caramba alone on the test corpus, 

with a moderate loss of 2 pt of precision, recall and 
F-measure. In contrast, the performance of Ogmios 
on the training corpus was substantially reduced on 
the test corpus, with a drop of 16 pt in F-measure. 
Using Ogmios as features in the CRF and train-
ing on the training corpus substantially improved 
its results on the test corpus, bringing them on par 
with those of Caramba. But adding more features 
along with Ogmios, including all those of Caramba, 
did not improve the results on the test corpus: the 
large improvements obtained when adding a few fea-
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Table 6. Combinations of Ogmios (Og) with Caramba (Ca). 10-fold cross validation on the training corpus (except for 
Ogmios, first row), then application to the test corpus. Pairs of numbers (n, +m) in the rest of this caption indicate the range 
of relative positions of n-grams of attributes. All feature sets in the CF include bigrams of classes (B feature).

Training Test
onlleval i2b2valuation onlleval i2b2valuation
 R F  R F  R F  R F

Og 0.7079 0.8229 0.7611 0.8281 0.9602 0.8893 0.5681 0.6419 0.6027 0.7839 0.8852 0.8315
Ca 0.7761 0.6957 0.7337 0.9322 0.8336 0.8801 0.7541 0.6787 0.7144 0.9210 0.8282 0.8721
OgF 0.7581 0.8091 0.7828 0.8648 0.9206 0.8918 0.7469 0.6758 0.7096 0.9183 0.8303 0.8721
OgT 0.8483 0.8370 0.8426 0.9292 0.9144 0.9217 0.7443 0.6746 0.7077 0.9163 0.8299 0.8709
OgCa 0.8613 0.8477 0.8545 0.9362 0.9192 0.9276 0.7472 0.6795 0.7117 0.9159 0.8324 0.8721

otes: Og: Ogmios alone, as is; Ca: Caramba alone; OgF: Ogmios output as only attributes: unigrams and bigrams of Ogmios attributes (1, +1); OgT: 
Ogmios + normalized token: unigrams and bigrams of Ogmios attributes (1, +1), with unigrams (5, +3) and bigrams (2, +1) of tokens, and one of the 
previous three tokens; OgCa: Ogmios as feature added to Caramba: unigrams and bigrams of Ogmios attributes (1, +1), and above subset of Caramba 
features. Bold shows the (set of) best results per column; italics shows the lowest results when they are notable.

Table 7. Strongest groups of features to make a decision.

Group of  
features

Range of  
weights

um of  
weights

Ogmios ∼[0:8; 4] ∼ [2:7; 21:4]
Bigrams of  
classes feature

∼[1:5; 4] ∼ [1:5; 4]

  Total score ∼ [10; 30]
  Total mass Up to ∼50

tures to Ogmios on the training set were lost in the 
test set. In the end, all methods except Ogmios alone 
(Og) obtained comparable results, within 1 pt of the 
F-measure. It is notable that wrapping Ogmios as fea-
tures in the CRF classifier boosted its F-measure by 
11 pt on the test set, but adding more features did not 
gain more than an extra half point.

By design, the i2b2Evaluation measures are much 
more lenient. As can be expected, the reported scores 
are well above the strict measures of conlleval, with an 
increase of 7–15 pt on the training set and 16–23 pt on the 
test set. They generally kept the order found by the strict 
measure of conlleval, but tended to reduce the observed 
differences. This can be interpreted to mean that a large 
part of the errors made by the systems involve entities 
which overlap the gold standard entities, but with bound-
ary or type errors (which have little or no impact on the 
i2b2Evaluation results). The obtained F=0.8721 would 
bring either system to the sixth position among 14 par-
ticipants at the event detection task of the 2012 i2b2/VA 
challenge, at 4 pt from the top-performing system.

Analysis
Observation of feature usage
The experiments performed so far took the trained 
classifiers as black boxes. Here we study the contents 
of the models built and their use in the decisions made 
by the classifiers. More specifically, we examine 
which feature contributed most to make a given deci-
sion; ie, given that the CRF scores and ranks the pos-
sible classes of each token in a sentence, we want to 
know which feature had the highest weight in putting 

a class in the top rank instead of the second rank. We 
make these observations on the test set.

Table 7 lists the top 2 features or feature groups 
in these decisions. The sum of all Ogmios-based fea-
tures have the highest score in 80% of the cases. The 
bigrams of classes feature is often the highest coeffi-
cient; it imposes constraints on sequences of classes, 
eg, I-PROBLEM often follows B-PROBLEM but 
never follows B-TEST. To put these scores in per-
spective, we also show the ranges of the total scores 
for a decision (ie, the sum of the relative values of the 
scores of the features) and of the total mass of scores 
(ie, the sum of the absolute values of the scores of 
the features). This shows that Ogmios features have a 
very strong weight in the decisions, representing 63% 
of the final score, and that class bigrams are important 
to enforce the coherence of the predicted sequence.

The feature with the highest score does not always 
change the decision that would have been made 
by the other features. Therefore, we also examined 
which features most often imposed a decision against 
the decision that would have been made by the rest of 
the features.

Biomedical Informatics Insights 2013:6 (Suppl. 1) 59

http://www.la-press.com


Zweigenbaum etal

Ogmios imposed the decision in 68% of the cases, 
with or without the contribution of other features. 
WMatch (see Table 2), another expert-based set of 
features, is the 2 most contributing group: it changed 
the decisions in 8% of the cases, though its effect was 
far behind that of Ormios. In these cases, Ogmios 
alone would have made a different decision. WMatch, 
possibly together with some other features, made the 
current decision. Among the other feature subsets, the 
Brown clusters are noticeable in that when Ogmios 
proposed a wrong decision, the Brown clusters often 
disagreed. However, their weights were not sufficient 
to balance those of Ogmios. The B feature (bigrams 
of classes) also played this role.

Issues with overfitting
The observations made in the previous sections, both 
when evaluating the combined system as a black box 
and when studying which features contribute most to 
decisions, confirm the issue that we had mentioned in 
our general discussion of system combination meth-
ods: the expert-based system overfits the training 
data.

Wrapping it as features input to the CRF does 
correct this overfitting significantly, which was not 
expected. This can be attributed to either or both of 
2 factors. 1 is the actual attributes used, which not 
only include the direct output of Ogmios for the cur-
rent token as a unigram, but also that for the previ-
ous and next tokens, bigrams for the previous and 
current tokens (these features are computed both for 
the Ogmios target event types and for the Ogmios 
contextual tags); and the bigrams of classes (B fea-
ture). The second factor is the fact that the CRF com-
putes weights for the feature functions it builds over 
these Ogmios attributes and the bigrams of classes, 
thereby possibly giving less confidence to some pre-
dicted event types and more to other features such as 
the bigrams of classes. Knowing which is true will 
require more detailed investigation.

However, since Ogmios has very good results on 
the training data, when training the CRF with Ogmios 
input features and additional features, the CRF trusts 
the Ogmios features too much and assigns them high 
scores. But we further observed that Ogmios is not 
consistent across the training and test data: the errors 
it makes on the training set are not the same as those 
it makes on the test set. Because of that, the CRF is 

unable to learn how to use the other features reli-
ably in a way that will correct the errors that Ogmios 
makes on the test set.

A method to overcome this issue would be to train 
the expert-based system and the combining data-
driven system on 2 distinct data sets. Ogmios would 
be developed on a first data set, then its output would 
be used as input features to train the CRF classifier on 
a second training set.

In principle, even with an expert-based system, a 
held-out set (development set) should be kept aside 
when tuning the system. This held-out set could be 
used in 2 different ways. One would consist of devel-
oping the expert-based system on the training set, and 
using the union of training and development sets to 
train the CRF with features obtained from the expert-
based system. Another way would also develop the 
expert-based system on the training set, then analyze 
its errors on the development set. This could be used 
to learn a confidence function on the expert-based 
system output, or to learn how to reproduce its errors. 
This error model would then be applied to transform 
expert-based system output on the training set, hence 
virtually undoing its overfitting on the training set, 
simulating the errors it is expected to make when 
applied to other corpora. Unfortunately, in our case, 
no part of the annotated corpora was left to imple-
ment this method.

onclusion
We presented in this paper experiments on the combi-
nation of 2 entity recognition systems: an expert-based 
system, Ogmios, and a data-driven system, Caramba. 
By studying the combination of these 2 systems, both 
as black boxes and in terms of contributing features, 
we could evidence overfitting of the expert-based sys-
tem on the training corpus. This made the CRF trust 
that system too much and prevented it from learning 
to use other features to correct that system’s errors, 
giving too much weight to the features based on the 
expert-based system. We highlighted that the use of 
a development corpus, distinct from the training and 
test corpora, not only for the data-driven system, but 
also for the expert-based system, is necessary to pre-
vent this kind of situation.

We also observed that, in contrast, the expert-
based system could be substantially improved by 
simply wrapping it within a linear-chain CRF clas-
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sifier, with no other features than the expert-based 
system’s output and the bigram of classes feature. 
This increased its F-measure by 10 pt from 0.603 
to 0.710 as measured by conlleval, due to a boost 
in precision (+18 pt) and an increase in recall 
(+3pt), bringing it on par with the data-driven sys-
tem (F=0.714). The increase of F-measure found 
by the ‘overlap’ i2b2 evaluation measure is smaller 
(+4pt from 0.832 to 0.872) but the conclusions are 
the same (both CRF-wrapped Ogmios and Caramba 
reaching for their 0.872 F-measures). We plan to 
further investigate at the feature level the reasons 
for this improvement.
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