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Uncovering human mobility patterns is of fundamental importance to the understanding of epidemic
spreading, urban transportation and other socioeconomic dynamics embodying spatiality and human
travel. According to the direct travel diaries of volunteers, we show the absence of scaling properties in the
displacement distribution at the individual level,while the aggregated displacement distribution follows a
power law with an exponential cutoff. Given the constraint on total travelling cost, this aggregated scaling
law can be analytically predicted by the mixture nature of human travel under the principle of maximum
entropy. A direct corollary of such theory is that the displacement distribution of a single mode of
transportation should follow an exponential law, which also gets supportive evidences in known data. We
thus conclude that the travelling cost shapes the displacement distribution at the aggregated level.

P
ositioning systems in mobile phones and vehicles and Wi-Fi devices in laptop computers and personal
digital assistants have made quantitative analyses of human mobility patterns possible1–4. These analyses
have a significant potential to reveal novel statistical regularities of human behavior, refine our understand-

ing of the socioeconomic dynamics embodying spatiality and human mobility5,6, and eventually contribute
to controlling disease7–10, designing transportation systems11, locating facilities12, providing location-based
services13–15, and so on.

Aggregated data from bank notes16, mobile phones1 and onboard GPS measurements3 showed that the dis-
placement distribution of human mobility, for both long-range travel and daily movements, approximately
follows a power law. The scaling laws in long-range travel may result from the hierarchical organization of
transportation systems17, while the scaling laws in daily movements have recently been explained by the explora-
tion and preferential return mechanism18.

Thus far, we still lack solid results about human mobility patterns at the individual level. Inferring individual
features from the aggregated data is very risky because the scaling law for the population could be a mixture of
many individuals with different statistics19. In addition, the aforementioned data are not sufficient to draw
conclusions at the individual level. First, data such as GPS records from taxis and the trajectories of bank notes
consist of many individual movements, but these individuals are not easy to be distinguished from each other.
Second, data such as GPS records from mobile phones and the trajectories of bank notes could not accurately
capture purposeful travels with explicit origins and destinations. In fact, the displacement between two activations
of a mobile phone may be just a tiny portion of a purposeful trip or a combination of several sequential trips, while
the displacement between two registrations of a bank note could be the result of a number of sequential trips made
by different people.

Instead of using proxy data, we analyze the travel diaries of hundreds of volunteers. Though the data set is
small, it contains personal profiles and explicit positions of origins and destinations, allowing quantitative and
authentic analyses at the individual level. In contrast to the scaling laws in aggregated data, individuals show
diverse mobility patterns, and few of them display the scaling property. In fact, the trajectories of students and
employees are dominated by trips connecting homes with schools and workplaces, respectively, while trips are
distributed more homogeneously among different locations for others such as retirees, homemakers and unem-
ployed people. The aggregated displacement distribution follows a power law with an exponential cutoff, which
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can be analytically explained by the mixed nature of human travel
under the principle of maximum entropy. In addition, this theory
predicts that the displacements using a single mode of transportation
will follow an exponential distribution, which is also supported by
the empirical data on taxi trips, car trips, bus trips and air flights.

Results
Individual mobility patterns. Our analysis of human mobility is
based on a data set of 230 volunteers’ six-week travel diaries in
Frauenfeld, Switzerland20. This data set contains the volunteers’
personal information, including age, job and sex, and 36761 trip
records. By calculating the spherical distance between the origin
and destination from their longitudes and latitudes, we can obtain
the length of each trip (see details about data in Methods).

We first measure the individual displacement distributions from
the data set. Figs. 1(a)–1(c) show three typical individuals’ displace-
ment distributions (Table S1 presents all volunteers’ displacement
distributions), from which we cannot find any universal scaling
properties. Indeed, when we use the Kolmogorov-Smirnov test21 to
test whether the distributions fit power laws, we find that 87.8% of the
individuals cannot pass the test (statistical validation results are listed
in Table S2, and the details about Kolmogorov-Smirnov test are
shown in Methods). This result strongly suggests the absence of
scaling laws in human travel at the individual level.

To reveal the underlying structure of individual trips, we assign to
each individual a mobility network, in which nodes denote locations
visited by individuals, edges represent the trips between nodes and
edge weight is defined as the number of corresponding trips22.
Figs. 1(d)–1(f) show three typical individuals’ mobility networks
(all networks are presented in Table S1). As shown in Fig. 1 and

Table S1, for most students and employees, their edge weights are
highly heterogeneous. For each individual, we call the trip corres-
ponding to the edge with the largest weight the dominant trip and
define the domination ratio d as the ratio of the weight of the dom-
inant trip to the total weight. Fig. 2 reports the distribution of dom-
ination ratios for different groups of individuals, from which we can
see that the student group has the largest d on average and the
employees’ average domination ratio is smaller than that of the stu-
dents but larger than that of the other group.

The difference of d results from the fact that students and employ-
ees frequently travel between homes and schools/workplaces in
working days but retirees or homemakers do not have to do so.
The peak values in the displacement distributions of students and
employees are thus usually determined by the lengths of their dom-
inant trips. Because the lengths of dominant trips are not necessarily
small, the displacement distribution for an individual is usually not
right-skewed and is far different from a power law. In addition, the
significant role of the dominant trip indicates that an individual’s
traveling process in general cannot be characterized by the Lévy
flight16 or truncated Lévy flight1.

Scaling property in aggregated data. The aggregated displacement
distribution of individuals (see Fig. 3) is well approximated by a
power law with an exponential cutoff P(r) / r21.05 exp(2r/50)
(the fitness significance p-value by the Kolmogorov-Smirnov test21

is 1.000 and the standard Kolmogorov-Smirnov distance D is 0.039,
see Methods and Fig. S1 for details), which is similar to those
observed for bank notes16 and mobile phone users1. As shown
above, this scaling property is not a simple combination of many
analogous individuals. We assume that the total travel cost is C,
the number of trips with cost ci is ni. According to the maximum
entropy principle23, the two constraints, Sni 5 N and Snici 5 C, lead
to the solution ni! exp {ci=�cð Þ, where �c~C=N is the average
travel cost. Denote the density of trips with cost c by P(c), then
P cð Þ! exp {c=�cð Þ.

The travel cost is commonly approximated as the weighted sum c
< gt 1 mm, where g and m are two coefficients, and t and m are the
costs involving time and money, respectively. Previous empirical
studies have suggested that the monetary cost is approximately pro-
portional to the travel distance as m < nr24, while the travel time
approximately obeys a hybrid form t < w ln r 1 vr 1 y25,26, where n,
w, v and y are coefficients. The logarithmic term results from the

Figure 1 | Individual mobility patterns. (a–c) Displacement distributions

for three typical individuals ((a) a student, (b) an employee, (c) a retiree),

where the peak values for the student and the employee result from the

trips between two most frequently visited locations. (d–f) Mobility

networks for the three individuals, where the area of a node is proportional

to its number of visits and the width of an edge is proportional to its weight.

Figure 2 | Distribution of the domination ratios. (a) Population.

(b) Student group. (c) Employee group. (d) Others. S is the number of

group members, and �d is the average domination ratio.
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mixture of modes of transportation27. Apparently, people move fas-
ter when traveling longer distances: we walk from classroom to office
but take an airplane from US to China. Figure S2 reports the statistics
related to travel times of the data set used in this paper. Although the
data set is not large enough and contains some noisy points, overall
speaking, the travel time t grows in a hybrid form as mentioned
above, with w < 9 and v < 0.4.

Integrating the aforementioned terms, we obtain the displacement
distribution P(r) / (b/r 1 1/k)r2b exp(2r/k), where b~gw=�c and
k~�c= mnzgvð Þ. When k is large, the distribution is approximated as
a power-law with an exponential cutoff. Indeed, for the real data, k 5

40 and b 5 0.38, so
b

r
?

1
k

for r , 100, that is, the term
1
k

can be

neglected. As shown in Fig. S3, the corresponding fitting line is very
close to a power law with an exponential cutoff (but with a slightly
higher power-law exponent 1.38).

A direct corollary of maximum entropy principle is that the dis-
placement distribution should follow an exponential form if it only
accounts for trips from a single mode of transportation because in that
case, c / r. This corollary gets supportive evidences from a number of
empirical studies on disparate systems28–33 (Bazzani et al.28 observed a
slight deviation from the exponential law). Fig. 4 reports empirical
cumulative distributions for taxi trajectories in Beijing31, car trips in
Detroit (downloaded from www.semcog.org), bus trips in
Shijiazhuang (collected by the authors) and air flights in the US30.
The probability density distributions are shown in Fig. S4. All distri-
butions can be well characterized by exponential-like functions.

Discussion
The general lessons that we learned from the present analysis could
be used to refine our knowledge of human mobility patterns. The
displacement distributions for aggregated data usually display
power-law decay with an exponential cutoff. Meanwhile, there are
examples ranging from taxi trips to air flights in which the displace-
ment distributions are exponential. In these examples, every dis-
placement distribution is generated by trips involving a single
mode of transportation, which corresponds to a linear relation
between the travel cost and distance and eventually results in an
exponential displacement distribution according to the principle of
maximum entropy. In a word, we believe the travel cost is one main
reason resulting in the regularities in aggregated statistics. The pre-
sent results suggest that the form (power law or exponential or other)

of deterrence function in the gravity law for human travel34 may be
sensitive to the modes of transportation under consideration.

This study warns researchers of the risk of inferring individual
behavioral patterns directly from aggregated statistics. Analogously,
the temporal burstiness of human activities is widely observed, and
the researchers are aware of the fact that the aggregated scaling laws
could either be a combination of a number of individuals, each of
whom displays scaling laws similar to the population35, or the result
of a mixture of diverse individuals, most of whom exhibit far differ-
ent statistical patterns than the population36–38. In comparison, such
issues are less investigated for spatial burstiness. In particular, experi-
mental analyses on individuals has rarely been reported. Determin-
ing whether the displacement distribution of an individual follows a
power-law distribution will require further data and analysis.

It is already known to the scientific community that a number of
Poissonian agents with different acting rates can make up a power-
law inter-event time distribution at the aggregated level36–38, and very
recently, Proekt et al.39 showed that the aggregated scaling laws on
inter-event time distribution may be resulted from different time
scales. Petrovskill et al.19 have applied similar (yet different) idea in
explaining the aggregated scaling laws in walking behavior. Although
being mathematically and technically different, this work embodies
some similar perspectives, because the different transportation
modes indeed assign different scales onto space: the world becomes
smaller by air flights while a city is really big by walking. Elegant
analogy between temporal and spatial human behaviors will benefit
the studies of each other.

Many known mechanisms underlie the scaling laws of complex
systems40–42, including rich get richer43–45, good get richer46,47, mer-
ging and regeneration48, optimization49,50, Hamiltonian dynamics51,
stability constraints52, and so on. The individual mobility model by
Song et al.18 is a typical example embodying the rich get richer mech-
anism. We have implemented such model. As shown in Fig. S5, the
exploration and preferential return model can well reproduce the
diversity of individual mobility patterns. In addition, for this model,
the Gibbs entropy of the displacement distribution at the individual
level increases continuously due to the increasing number of loca-
tions as well as links connecting location pairs. However, the explora-
tion and preferential return model does not explain why the lengths
of exploration trips should follow a power law, which is a core
assumption leading to the power-law-like aggregated displacement

Figure 3 | Displacement distribution P(r) of the aggregated data. The

solid line indicates a power law with an exponential cutoff. The data were

binned using the logarithmic binning method (see Methods for details).

Figure 4 | Cumulative displacement distributions for a single mode of
transportation. (a) 12,028,929 taxi passenger trajectories in Beijing.

(b) 46,541 car trips in Detroit. (c) 783,210 bus trips in Shijiazhuang.

(d) 205,534 air-flight travels in US.
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distribution. Therefore, our work has complemented Ref. 18 and
other related works in two aspects: (i) providing supportive empirical
observation at the individual level; (ii) providing alternative explana-
tion on the emergence of scaling in aggregated displacement distri-
bution. Very recently, from the analysis on mobility patterns in an
online game, Szell et al.53 observed a characteristic jump length and
guessed that the existence of the characteristic length may be due to
the single mode of transportation. The present theory could explain
their observation since a jump in such online game costs time that is
proportional to the jump length.

Methods
Data description. This work was performed using a travel survey data set that
contains 230 volunteers’ six-week travel diaries in Frauenfeld, Switzerland20. The
survey was conducted among 230 volunteers from 99 households in Frauenfeld and
the surrounding areas in Canton Thurgau from August to December 2003. The
volunteers reported their daily travel by filling out (paper and pencil based) self-
administrated questionnaire day by day in a six-week period. Each reported trip
includes the information of origin, destination and purpose. The origin and
destination of a trip were geocoded by longitude and latitude. The quality of the
geocoding is very high - with 60% of trips captured within 100 m of their true origins
and destinations and 90% within 500 m. The purpose of trip was classified into work,
shopping, education, home, leisure, business and other. The data has been cross-
checked to ensure the consistency and filtered to remove outliers as well as unclear
and omitted destination addresses. The final cleaned data set includes 36761 trip
records. Besides, the data set also contains socio-demographic characteristics of the
volunteers’ personal information such as age, job and sex.

Kolmogorov-smirnov (KS) test. Given an observed distribution P(x), we firstly
assume that it obeys a certain form F x; a1,a2, � � � ,alð Þ, with a set of parameters a1,
a1,a2, � � � ,al , whose values are estimated by using the maximum likelihood method21.
The standard KS distance is defined as the maximal distance between the cumulative
density functions of the observed data Pc(x) and the fitting curve Fc(x), namely
DKS

real~maxx Pc xð Þ{Fc xð Þj j. We independently sample a set of data points according
to Fc(x), such that the number of sampled data points is the same as the number of
observed data points, and then calculate the maximal distance (denoted by DKS

sample)
between Fc(x) and the cumulative density function of the sampled data points. The p-
value is defined as the probability that DKS

realvDKS
sample. In this paper, we always

implement 1000 independent runs to estimate the p-value.

Logarithmic binning. The statistical nature of sampling will lead to the increasing
noise in the tails of empirical power-law-type distributions. Applying the procedure
of logarithmic binning54 can smooth the noisy tail. Logarithmic binning is a
procedure of averaging the data that fall in the specific bins whose size increases
exponentially. For each bin the observed value are normalized by dividing by the bin
width and the total number of observations (see Fig. 3).
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