Skip to main content
. 2013 Sep 16;202(6):837–848. doi: 10.1083/jcb.201305098

Figure 3.

Figure 3.

Cytoskeletal changes during axon elongation and branching. Representation of axon elongation and collateral branch formation in a cultured neuron. Axon growth is a discontinuous process, and collateral branches often originate from sites where the growth cone paused (gray dotted line), after it has resumed its progression. Other modalities of branch formation can occur through the formation of filopodia and lamellipodia. Red box shows a magnification of the main growth cone. Microtubules from the axon shaft spread into the central (C) zone. Some microtubules pass through the transition (T) zone, containing F-actin arcs, to explore filopodia from the peripheral (P) zone. Upon the proper stimulation by extracellular guidance cues or growth-promoting cues, microtubules are stabilized and invade the P-zone where they provide a pushing force, which, combined with the traction force from the actin treadmilling, provides the force required for growth cone extension. Green box shows the cytoskeletal changes occurring during collateral branch formation in the axon. Filopodia and lamellipodia are primarily F-actin–based protrusions that get invaded by microtubules, then elongate upon microtubule bundling. At later developmental stages, axon branches are stabilized or retracted (blue box) by mechanisms relying on the access to extracellular neurotrophins and/or neuronal activity and synapse formation.