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Abstract
We have previously demonstrated that biomarkers of inflammation and immune activity detected
within intraoperative renal transplant allograft biopsies are linked to adverse short-term post-
transplantation clinical outcomes. Now we provide a post hoc analysis of our earlier data in the
light of longer clinical follow-up. A total of 75 consecutively performed renal allografts were
analyzed for gene expression of proinflammatory molecules, inflammation-induced adhesion
molecules, and antiapoptotic genes expressed 15 minutes after vascular reperfusion to determine
whether this analysis can aid in predicting long-term quality of renal function, proteinuria, graft
loss, and death-censored graft. We have built predictive models for proteinuria (area under the
curve = 0.859, p = 0.0001) and graft loss (area under the curve = 0.724, p = 0.027) 2 years post-
transplantation using clinical variables in combination with intragraft gene expression data of
tumor necrosis factor–α, interleukin-6, CD40, CD3, and tumor necrosis factor–α, Bcl-2, and
interferon-γ, respectively. This post hoc analysis demonstrates that hypothesis-driven, targeted
polymerase chain reaction profiling of gene expression in the donor kidney at the time of
engraftment can predict 2-year post-transplantation clinical outcomes.
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1. Introduction
Immunosuppression in clinical solid organ transplantation often follows the “one size fits
all” approach with very limited initial use of individualized care. While some institutions
use a single regimen for all transplant recipients, others depend upon traditional risk factors
to choose a therapeutic regimen. Unfortunately, traditional risk factor assessments allow
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only imprecise categorization of individual patient's risk for adverse outcomes. These
traditional risk factors include several recipient and donor characteristics, such as donor
brain death, prolonged cold ischemia, human leukocyte antigen (HLA) mismatching, age,
living versus deceased donation, and race [1–5]. We have proposed that hypothesis-driven,
targeted polymerase chain reaction (PCR) profile of the donor kidney at the time of
transplantation will complement assessment of traditional risk factors in predicting clinical
outcomes.

In our initial study, 75 allograft renal biopsy samples were obtained 15 minutes after the
creation of vascular anastomosis [6]. In this study, gene expression profiling of
proinflammatory, T-cell activation and cytoprotective genes predicted short-term clinical
outcomes such as delayed graft function (DGF), acute rejection (AR), and quality of renal
function as assessed by the measurement of serum creatinine 6 months after renal
transplantation. Elevated expression of certain immune system genes, including tumor
necrosis factor (TNF)–α, transforming growth factor (TGF)–β, CD25, intercellular adhesion
molecule-1 (ICAM-1), A20, and interleukin (IL)–10 were associated with DGF. The
expression of an overlapping but slightly different set of genes was associated with AR
(TNF-α, CD25, TGF-β, IL-6, ICAM-1, hemoxygenase-1 (HO-1), and CD3). Decreased
intragraft gene expression of the cytoprotective Bcl-xl and amplified intragraft expression of
T-cell activation marker CD25 predicted better renal function 6 months after transplantation.
Although the cytoprotective gene Bcl-xl was informative in predicting short-term post-
transplantation outcomes, the related Bcl-2 gene and other markers like platelet endothelial
cell adhesion molecule (PECAM), nuclear factor (NF)–κB, CD40, and interferon (IFN)–γ
did not prove useful for prediction of renal function or any of the other short-term outcomes.

Based on these initial results, we asked whether a PCR-based transcriptional profiling
strategy focusing on the expression of select proinflammatory, T-cell activation, and
cytoprotective genes aids in prediction of not only short-term but also long-term clinical
outcomes. We have now assessed clinical outcomes, such as the quality of renal function,
proteinuria, graft loss, and death-censored graft loss, over a 4-year follow-up period.

2. Subjects and methods
Study subjects, immunosuppressive regimen, specimen collection, and laboratory methods
are as published elsewhere [6].

2.1. Clinical variables
The clinical data included recipient age, race, prior transplantation, type of induction
therapy, warm ischemic time (WIT), cold ischemic time (CIT; for cadaveric donor
transplants only), donor type (living or deceased), donor age, and donor race, HLA
matching, DGF, AR, diabetes in the recipient, sirolimus use, normalized and time-averaged
area under the curve (AUC) immunosuppressive drug levels, and triglyceride levels, systolic
blood pressure, and diastolic blood pressure values around the 1-year anniversary.

2.2. Criteria for categorizing clinical outcomes
Clinical data were retrieved from computerized medical records and chart reviews. DGF was
defined as a requirement for dialysis during the first week post-transplantation in the
absence of AR, vascular complications, or urinary tract obstruction. The diagnosis of AR
was confirmed by pathologic examination of the graft biopsy. Serum creatinine values
closest to the yearly post- transplantation anniversary were selected. If serum creatinine was
not obtained within a 3-month period before or after the anniversary, serum creatinine was
listed as not available. MDRD glomerular filtration rate (GFR) was calculated using four
variables: creatinine, age, race, and gender. Proteinuria was assessed based on dipstick
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readings from none to 4+. Death-censored graft loss was defined as graft loss for any reason
but death.

2.3. Quantification of gene expression and statistical analyses
The comparative Ct method was used to quantify gene expression. The expression of target
genes were normalized to 18-second ribosomal RNA and to the calibrator. For PCR
quantification, the reader was scaled on a median scale to normalize the data. This approach
is widely accepted, as this reduces mean based noise from the data and brings all sample
reports onto the same median scale.

This study examined the association between gene expression and several endpoints. Gene
expression data were standardized to have a mean of 0 and a standard deviation of 1.
Standardizing the variables is important for multivariate analyses because it allows variables
measured at different scales to contribute equally to the analyses. We used a logistic
regression for the analysis of our dichotomous outcomes and multiple linear regressions for
the continuous outcomes.

The selection of relevant predictors is an important step in constructing a predictive model.
Because the main focus of this analysis was to obtain a highly predictive model of several
outcomes, we performed subset selections to determine our working model. For outcomes
that were continuous, the Mallow's Cp statistic for multiple linear regressions was used as
the model selection criterion. Mallow's Cp is a consistent measure of the goodness of fit of a
model as well as finding the best subset that includes only the most important predictors of
the outcome of interest. For outcomes that were binary, we used the branch and bound
algorithm with the likelihood score in logistic regression to select the best models. The
Branch and Bound search algorithm is a widely used schema for solving combinatorial
optimization problems. Upon choosing the models with the highest likelihood scores, we
determined the working model using the Akaike Information Criterion (AIC). The AIC
statistic is often used in model selection, because it uses the log-likelihood and penalizes it
with the number of predictors in a model. This penalty ensures that the increase in log-
likelihood will not be due to the inclusion of irrelevant predictors. The AIC helps identify
the model that can account for most of the variability with the least amount of variables.
Another reason for using Mallow's Cp and the AIC is that it allows us to do model selection
without encountering the problem of multiple comparison, as we are not doing any formal
tests in constructing our working model.

We performed the model selection on the predictors set of: genes alone, clinical variables
alone, and genes plus clinical variables combined. To obtain predicted values under the
working model, we performed 10-fold cross-validation. The process of 10-fold cross-
validation included partitioning the sample into 10 parts and using nine-tenths of the patients
for constructing a model, then validating it on the remaining one-tenth of the patients and
repeating the same process 10 times using a different partition. The advantage of this
method is that all observations are used for both constructing a model and validating one
(each observation is used for validation exactly once). Using the predicted values from the
cross-validation, we were then able to construct receiver operating characteristic (ROC)
curves from the working regression models. To assess how well the prediction model
performs, we used the AUC for the ROC curves. A model with no predictive power would
have an AUC of 0.5, whereas a perfectly predictive model would have an AUC of 1.0. We
also obtained p values to determine whether the AUC was significantly different from 0.5.

SAS version 9.1 for Windows was used to conduct the model selection and cross-validation,
whereas R was used to obtain the ROC curves and AUC values.
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3. Results
3.1. Clinical outcomes

Among the 75 consecutive renal transplant recipients who were enrolled in the study, gene
expression data were available in 73 patients. These 73 patients were followed for 4 years
post-transplantation. After 4 years of follow-up 21, of 73 (28.77%) renal allografts failed
(Table 1). Eleven of the 21 (52.4%) graft losses were caused by death, and 10 patients had
death-censored graft loss by year 4 year post-transplantation (Table 1). Of the patients with
death-censored graft loss, three were because of interstitial fibrosis/tubular atrophy (IF/TA)
(14.3%), three were lost because of AR (14.3%), and three were lost because of a
combination of IF/TA and AR (14.3%). One allograft was lost to fungal pyelonephritis.
Twelve of the 73 (16.4%) patients died during the follow-up period (1 patient died after
graft loss and therefore counted as a death-censored graft loss) (Table 1). The cause of death
was not known to our transplant center in six cases, Two patients each died of of the
following causes: sepsis, cardiovascular disease, and malignancy.

3.2. Outcomes
We examined the relationship of gene expression data with the following outcomes: serum
creatinine, MDRD GFR, proteinuria, graft loss, and death-censored graft loss. These end
points were analyzed for the second, third, and fourth years after renal transplantation. The
effect of gene expression data on year 3 and 4 outcomes did not remain significant after
adjustment for clinical variables (data not shown), so we present only the year2 outcomes.
We also performed a prediction analysis with variables selected in our regression models for
each of the outcomes (serum creatinine, MDRD GFR, proteinuria, graft loss and death-
censored graft loss).

3.2.1. Two-year serum creatinine—Serum creatinine 2 years after renal transplantation
was assessed in our linear regression model (Table 2). The gene expression profiles were not
significantly associated with higher serum creatinine values. Among the clinical variables,
older donor age and an episode of AR showed significant correlation with serum creatinine
2 years after transplantation. Using clinical variables such as donor age, AR, and diabetes in
the recipient, we were able to create a predictive model for serum creatinine with an AUC
value of 0.755 (p = 0.0001).

3.2.2. MDRD GFR at 2 years post-transplantation—In the unadjusted regression
model TGF-β, Bcl-xl, IL-10, PECAM, CD3 and IFN-γ showed significant association with
estimated MDRD GFR 2 years post-transplantation (Table 2). In the adjusted linear
regression model, higher donor age was associated with lower MDRD GFR at 2 years, and
high PECAM and low CD3 intragraft gene expression at the time of transplantation
predicted higher MDRD GFR at 2 years. Using clinical variables, such as recipient race,
donor age, degree of HLA matching, but not gene expression data, we were able to create
predictive model with an AUC value of 0.652 (p = 0.043).

3.2.3. Two-year proteinuria—CD40 intragraft expression showed a negative association
with proteinuria 2 years after transplantation both in the unadjusted and adjusted logistic
regression models. The presence of AR was associated with the presence of proteinuria
(Table 2). Using the expression of TNF-α, IL-6, CD40, and CD3, we created a prediction
model with an AUC value of 0.673 (p = 0.027). Using clinical variables, such as donor age,
AR, and diabetes in the recipient, we built a predictive model with an AUC value of 0.773
(p = 0.001). Combining the gene expression data and the clinical variables our prediction
model achieved an AUC value of 0.859 (p = 0.0001) (Fig. 1).
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3.2.4. Two-year overall graft survival—In the unadjusted logistic regression analysis,
only high TNF-α intragraft gene expression showed significant association with graft loss 2
years post-transplantation. After adjustment for clinical variables, although no clinical
variable became significant in addition to high intragraft TNF-α gene expression, low
intragraft Bcl-2 gene expression became significantly associated with graft loss at 2 year
post-transplantation follow-up (Table 2).

Using the intragraft gene expression of TNF-α, Bcl-2, and IFN-γ, we created a predictive
model with an AUC value of 0.577 (p = 0.182). Using clinical variables, DGF, AR, and
systolic blood pressure we built a predictive model with an AUC value of 0.637 (p = 0.122).
Combining the gene expression data and the clinical variables our prediction model had an
AUC value of 0.724 (p = 0.027) (Fig. 2).

3.2.5. Two-year death-censored graft survival—Of all the targeted genes tested in
the unadjusted logistic regression model, only high intragraft expression of TNF-α predicted
death-censored graft loss at 2-year follow-up. Adjustment for clinical variables available at
the time of transplantation did not result in the addition of any other significant variables
(Table 2). We were unable to predict death-censored graft loss even by combining the gene
expression data with clinical variables.

In summary, after performing multivariate regression modeling for the best predictors of
long-term outcomes, the following associations with intraoperative intragraft gene
expression were found: (1) high CD3 and low PECAM were associated with worse 2-year
allograft function; (2) low CD40 expression was associated with proteinuria; (3) low Bcl-2
predicted worse overall (but not death-censored) 2-year graft survival; (4) high TNF-α
predicted worse death-censored and overall 2-year graft survival; (5) using the expression of
several genes and clinical variables, a predictive model allowing good prediction could be
built for graft loss and proteinuria; and (6) after adjustment for clinical variables, none of the
gene expression profiles was associated with distinctive clinical outcomes at 3 or 4 years
post-transplantation.

4. Discussion
The harvesting, preservation, and subsequent implantation of a donor kidney necessarily
results in ischemia-reperfusion injury. The consequent endothelial activation and injury
leads to enhanced endothelial cell–leukocyte adhesion, activation of leukocytes and release
of inflammatory mediators, such as cytokines and reactive oxygen species. Donor death and
the necessity of cold preservation further complicate injury in deceased donor transplants.
This inflammatory response is known to occur in all other solid organ transplants, such as in
lung transplantation [7].

Proinflammatory forces promote apoptosis, whereas antiapoptotic processes limit the extent
of apoptotic damage occurring in a transplanted kidney. The balance of these two forces
may very well determine the long-term fate of a graft. It stands to reason that intragraft
expression of proinflammatory genes, such as TNF-α and T-cell markers for graft
infiltration such as intragraft CD3 gene expression likely promote an inflammatory
response, antiapoptotic genes, such as Bcl-2 and inhibitors of humoral immune responses,
such as PECAM-1 should serve to limit the extent of inflammatory responses. We have
selected molecular targets based on a hypothesis related to their putative role in promoting
or deterring ischemia-reperfusion injury. The ability of this hypothesis-driven, targeted
molecular approach to predict short-term outcomes such as DGF, AR, and serum creatinine
values 6 months post-transplantation confirmed the validity of our molecular marker
selection [6]. Furthermore, as we demonstrate here, genes from the same panel show
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significant associations with long-term outcomes, such as quality of renal function,
proteinuria, graft loss, and death-censored graft loss 2 years after renal transplantation.
Specifically, high intragraft gene expression of the proinflammatory molecule TNF-α in the
renal allograft at the time of transplantation is associated with higher rates of DGF and AR
in the early post-transplant period and an increased likelihood of graft loss and death-
censored graft loss years after renal transplantation.

High intragraft gene expression of the T-cell marker CD3 in the renal allograft at the time of
transplantation is associated with AR in the early post-transplantation period and lower
quality renal function 2 years after renal transplantation [6]. Our data support the hypothesis
that evidence of T-cell immunity, as shown by the presence of CD3, a T-cell lineage marker,
at the time of transplantation is closely linked to poor renal function 2 years after
transplantation.

Low expression of the antiapoptotic Bcl-xl gene is associated with lower-quality renal
function 6 months after renal transplantation and the hypo-expression of antiapoptotic Bcl-2
gene is associated with graft loss. Our finding of low Bcl-2 expression predicting graft loss 2
years after transplantation is consistent with a report of low Bcl-xl expression in association
with chronic rejection [8]. PECAM-deficient mice show an autoimmune disease phenotype
with hyperreactive B-cells and autoantibodies [9]. Although low PECAM expression was
not associated with worse 6-month renal function, it is associated with diminished renal
function 2 years after renal transplantation.

Acute rejection and low CD40 intragraft gene expression predicted proteinuria 2 years after
renal transplantation. Although the prior occurrence of AR predicting proteinuria fits our
paradigm of more inflamed organs being associated with worse outcomes, the association
between low intragraft expression of the potent co-stimulatory CD40 molecule and
proteinuria does not. Our study cannot provide insights into the potential cellular
mechanisms behind this observation, but the association observed is strongly significant.

Although several studies have used molecular methods to predict graft survival, they have
focused on the role of the recipients in long-term transplant outcomes [10, 11]. Instead, we
have concentrated on the donor kidney's role in determining long-term renal allograft
outcomes.

Brown et al. have also focused upon donor characteristics. They demonstrated that a specific
donor complement-3 (C3) allotype was associated with better long-term renal allograft
survival [12]. Although it has yet not been elucidated how this donor C3 allotype results in
graft protection, it is known that, in mice, allografts that do not produce C3 survive much
longer than allografts that produce C3, which results in a proinflammatory milieu [13].

Current clinical practice for prediction of long-term posttransplantation outcomes is to use
easily assessable recipient socioeconomic and clinical characteristics [14–16]. Acute cellular
rejection now rarely results in graft loss, but it is still a strong predictor of poor long-term
graft survival [17, 18]. The T cells mediating acute cellular rejection do not work in
isolation, but their behavior is influenced by their microenvironment. A proinflammatory
milieu such as that observed in DGF may determine the behavior of T-cells and,
consequently, the fate of the graft [19, 20]. Because clinical risk factors for poor long-term
transplant outcomes such as DGF and AR themselves are often correlates of intragraft
inflammation, markers of intragraft inflammation detected by real-time PCR may provide
important complementary information for predicting clinical outcomes.

The combination of clinical variables and gene expression data can provide prognostic
information. Clinical variables predicted proteinuria with an AUC value of 0.773, gene
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expression data predicted proteinuria with an AUC value of 0.673, but combining both we
increased the AUC value of our predictive model to 0.859. The comparative Ct method that
we used to quantify PCR results allows the relative quantification of expression compared
with a calibrator. To have an absolute cut-off value useful when analyzing a biopsy sample
in clinical practice, the standard curve PCR quantification method would be useful.
Although the high intragraft expression of a proinflammatory cytokine (TNF-α) predicts
graft loss, the high intragraft expression of a T-cell marker (CD3) predicts poor long-term
renal function. It is reasonable to assume that the more inflamed the transplanted organ, the
poorer the outcome; but, the question arises as to why we are not seeing the exact same
genes predicting both graft loss and the quality of renal function, However, many
nonimmunologic factors can cause changes in allograft function, such as the institution of
angiotensin converting enzyme inhibitors for congestive heart failure, but may not directly
negatively influence graft survival.

The outcome of renal transplantation must be dependent on both donor and recipient factors.
Intuitively, with the passage of time, recipient factors should become more important in
determining the fate of the allograft. Although we could demonstrate that gene expression
profiles in the donor kidney at the time of transplantation predict clinical outcomes 2 years
after renal transplantation, we were unable to extend this observation to clinical outcomes
taking place 3 or 4 years after renal transplantation. Our formal prediction analysis
madeitpossible to focus on the interplay between several genes and clinical variables. We
have successfully built predictive models for graft loss and proteinuria allowing for
improved prediction of these conditions. In the future, molecular analysis of the graft at the
time of transplantation may facilitate individualized, optimized care.
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Fig. 1.
Prognostic accuracy of clinical variables and gene expression profiling of the donor kidney
at the time of transplantation for proteinuria 2 years after transplantation. The ROC curves
show sensitivity (i.e., true positive rates) for all possible 100-specificity (i.e., false-positive
rates) values. Increasing AUC indicates better prognostic accuracy.
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Fig. 2.
Prognostic accuracy of clinical variables and gene expression profiling of the donor kidney
at the time of transplantation for graft loss 2 years after renal transplantation. The ROC
curves show sensitivity (i.e., true-positive rates) for all possible 100-specificity (i.e., false-
positive rates) values. Increasing AUC indicates better prognostic accuracy.

Bodonyi-Kovacs et al. Page 10

Hum Immunol. Author manuscript; available in PMC 2013 September 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Bodonyi-Kovacs et al. Page 11

Table 1
Patient characteristics

Cumulative incidence of graft loss, death, and death-censored graft loss over 4-year follow-up

Clinical outcome No. of events %

1-Year graft loss 8 10.96

2-Year graft loss 15 20.55

3-Year graft loss 17 23.29

4-Year graft loss 21 28.77

1-Year death 8 10.96

2-Year death 11 15.07

3-Year death 11 15.07

4-Year death 12 16.44

1-Year death-censored graft loss 1 1.37

2-Year death-censored graft loss 5 6.85

3-Year death-censored graft loss 7 9.59

4-Year death-censored graft loss 10 13.7

Serum creatinine and MDRD GFR over 4-year follow-up among the 73 patients

No. of events Creatinine level (mg/dl) (mean ± SD) MDRD GFR (ml/min/1.73 m2) (mean ± SD)

1-Year creatinine 64 1.62 ± 0.80 51.14 ± 17.93

2-Year creatinine 54 1.80 ± 0.90 49.24 ± 22.46

3-Year creatinine 51 1.93 ± 1.47 49.24 ± 21.94

4-Year creatinine 41 1.79 ± 0.95 49.24 ± 21.52

Dipstick proteinuria over 4-year follow-up among the 73 patients

No. of events Proteinuria (g/day) (mean ± SD)

1-Year proteinuria 64 1.04 ± 1.30

2-Year proteinuria 46 1.23 ± 1.45

3-Year proteinuria 38 0.89 ± 1.31

4-Year proteinuria 40 1.15 ± 1.41
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