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Background: A key step in any process that converts lignocellulose to biofuels is the efficient fermentation of both
hexose and pentose sugars. The co-culture of respiratory-deficient Saccharomyces cerevisiae and wild-type
Scheffersomyces stipitis has been identified as a promising system for microaerobic ethanol production because

S. cerevisiae only consumes glucose while S. stipitis efficiently converts xylose to ethanol.

Results: To better predict how these two yeasts behave in batch co-culture and to optimize system performance, a
dynamic flux balance model describing co-culture metabolism was developed from genome-scale metabolic
reconstructions of the individual organisms. First a dynamic model was developed for each organism by estimating
substrate uptake kinetic parameters from batch pure culture data and evaluating model extensibility to different
microaerobic growth conditions. The co-culture model was constructed by combining the two individual models
assuming a cellular objective of total growth rate maximization. To obtain accurate predictions of batch co-culture
data collected at different microaerobic conditions, the S. cerevisiae maximum glucose uptake rate was reduced
from its pure culture value to account for more efficient S. stipitis glucose uptake in co-culture. The dynamic co-
culture model was used to predict the inoculum concentration and aeration level that maximized batch ethanol
productivity. The model predictions were validated with batch co-culture experiments performed at the optimal
conditions. Furthermore, the dynamic model was used to predict how engineered improvements to the S. stipitis
xylose transport system could improve co-culture ethanol production.

Conclusions: These results demonstrate the utility of the dynamic co-culture metabolic model for guiding process
and metabolic engineering efforts aimed at increasing microaerobic ethanol production from glucose/xylose
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Background

An essential component of the quest for energy independ-
ence is to develop renewable sources of energy via the
conversion of plant biomass to liquid transportation fuels.
Lignocellulosic biomass is a heterogeneous collection of
polymers that compose plant cell walls, namely celluloses,
hemicelluloses, pectins, lignins and proteoglycans [1]. The
production of liquid fuels from biomass currently occurs
in four major steps: pretreatment to make the feedstock
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more amenable to enzymatic degradation, hydrolysis of
the cellulose and hemicellulose fractions to release sugar
monomers and oligomers, fermentation of the released
hexose and pentose sugars to produce fuels, and recovery
of the fuels from the reactor bulk using separation tech-
nologies such as distillation [2,3].

The fermentation of sugar mixtures that result from bio-
mass hydrolysis is a significant bottleneck in the overall
process. Few fermentative microbes that efficiently convert
both hexose and pentose sugars to liquid fuels such as
ethanol have been identified [4,5]. The majority of current
research efforts are focused on engineering multiple meta-
bolic functionalities, such as the introduction of exogenous
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pentose consumption pathways, into a single organism [6].
However, this approach often results in conversion ineffi-
ciencies due to bottlenecks in metabolic pathways and may
place a heavy metabolic burden on the organism [7,8]. In
recent years, research has increasingly focused on the use
of defined microbial consortia for biotechnology applica-
tions [9]. Microbial communities perform the task of bio-
mass degradation in nature, albeit at a rate much slower
than required for an industrial process [10]. Mixed cultures
allow for the selection of microbes that are best suited for
performing one task of the overall conversion process [11]
and moves the engineering focus from introducing new
functionalities to improving existing metabolic pathways.
Other benefits of mixed culture systems include tunability
and increased resistance to environmental stress [12,13].

Saccharomyces cerevisiae is a robust, budding yeast that
has been widely used for fermentation of refined corn
starch to fuel ethanol [14]. Because this yeast is Crabtree-
positive, excess sugar that would otherwise overload its
limited respiratory capacity overflows into the fermenta-
tive pathway. Thus, the yeast produces significant titers of
ethanol when grown aerobically in batch culture [15].
However, S. cerevisiae is unable to utilize pentose sugars,
such as xylose and arabinose, that result from the hydroly-
sis of hemicellulose. The engineering of pentose metabol-
ism into the S. cerevisiae genome has been achieved, but
problems with co-factor imbalances and gene expression
have hindered the efficiency of these mutants [16].

Another species of yeast, Scheffersomyces stipitis (for-
merly known as Pichia stipitis), can natively ferment xy-
lose to ethanol but it retains a preference for glucose as
the carbon source. The growth and metabolite profile of
this yeast is highly sensitive to the oxygenation level. Un-
like S. cerevisiae, S. stipitis is a Crabtree-negative yeast that
only produces ethanol under oxygen-limited conditions
[17]. S. stipitis is among the most efficient native fermen-
ters of xylose when grown under microaerobic culture
conditions. In certain aeration regimes, however, this yeast
can reassimilate ethanol while often simultaneously con-
suming other growth substrates [18]. Unlike most fermen-
tative microorganisms, wild-type S. stipitis is unable to
grow anaerobically. Insertion of the URA1 gene from
S. cerevisiae has been shown to enable S. stipitis to grow
anaerobically on glucose [19]. However, there are no known
gene insertions that allow for S. stipitis anaerobic growth
on xylose [20,21]. Thus, aeration level is a critical operating
variable that must be tightly regulated to maximize xylose
conversion to ethanol by wild-type S. stipitis.

S. cerevisiae and S. stipitis have been co-cultured for
the production of ethanol from glucose and xylose mix-
tures [22-24]. In these studies, a respiratory-deficient
strain of S. cerevisiae was used so the dissolved oxygen
concentration could be more easily controlled at a level
that was favorable for ethanol production by S. stipitis.
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Because it lacks the respiratory capability of a wild-type
strain, respiratory-deficient S. cerevisiae could not utilize
non-fermentable carbon sources such as ethanol once
glucose had been exhausted [25]. The inability of these
strains to grow on the ethanol produced under certain
microaerobic conditions resulted in high ethanol titers.
In fact, co-culturing these two yeasts on a mixture of
glucose and xylose has been shown to yield more etha-
nol than can be produced by either yeast alone [23].

Constraint-based analysis using genome-scale metabolic
reconstructions is a widely used computational tool for
predicting how fluxes through microbial metabolic path-
ways will respond to changes in the culture environment
or gene deletions/insertions [26,27]. With the addition of
substrate uptake kinetics and extracellular mass balances
on growth-limiting substrates and metabolic byproducts,
these steady-state models can be adapted to predict cul-
ture dynamics that are critical in batch and fed-batch fer-
mentations [28-30]. Recently, constraints-based modeling
has been applied to mixed-culture systems [31-33]. In
addition to describing individual species metabolism,
mixed-cultures models must account for possible interac-
tions between the species as well as postulate a commu-
nity objective that captures the combined metabolic
behavior. While the assumption that each species attempts
to maximize its own growth rate is most common, other
community objectives that capture more complex behav-
ior such as altruism can be employed [34].

In this study, we used dynamic flux balance analysis
(DFBA) to drive the experimental optimization of ethanol
production from a respiratory-deficient S. cerevisiae and
wild-type S. stipitis co-culture growing microaerobically
on a mixture of glucose and xylose. A dynamic model of
S. stipitis metabolism was developed from a recently pub-
lished genome-scale reconstruction [20] by estimating glu-
cose and xylose uptake parameters from batch pure
culture data. Because the respiratory-deficient S. cerevisiae
mutant had non-specific genetic alterations, we consid-
ered several plausible modifications of the wild-type meta-
bolic network [35] to develop a S. cerevisiae dynamic
model consistent with batch pure culture data. Co-culture
experiments demonstrated that S. cerevisiae competed less
successfully for glucose than expected from combining the
pure culture dynamic models under the community ob-
jective of total biomass maximization. A revised co-
culture model with reduced S. cerevisiae glucose uptake
was shown to provide accurate predictions of batch co-
culture data over a range of microaerobic growth condi-
tions. The experimentally validated model was used to
optimize the batch ethanol productivity by adjusting the
inoculum concentrations and the aeration level. Finally,
the model was used to examine what modifications to the
S. stipitis xylose transport system would yield the largest
improvements in co-culture ethanol production.
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Results and discussion
S. stipitis pure cultures
Our initial dynamic model of S. stipitis metabolism did not
include a balance on dissolved oxygen in the culture media.
We were unable to satisfactorily fit this model to measured
biomass and ethanol concentration profiles through adjust-
ment of the sugar uptake rate parameters (see below). Be-
cause the dissolved oxygen (DO) concentration was above
the assumed microaerobic value during the initial portion
of the batch, we added the DO balance (8) to account for
the apparent gas—liquid mass transfer limitations. The mass
transfer coefficient (kza) was determined from the gas
sparge rate using a linear correlation (see Materials and
Methods). Starting with literatures values when available
[36], the uptake rate parameters for glucose (9), xylose (10)
and oxygen (11) were determined by minimizing the least-
squares difference between the experimental and predicted
concentration profiles. Parameter adjustments were made
by trial-and-error using glucose, xylose, biomass, and etha-
nol concentration profile measurements collected from two
microaerobic batch fermentations performed at air sparging
rates of 25 (kza = 5.5 h™") and 50 cc/min (kza = 10.1 hY).
The resulting uptake parameters are compiled in Table 1.
The S. stipitis dynamic models with and without the
DO balance (8) are compared in Figure 1 at an air spar-
ging rate of 50 cc/min using initial conditions of 0.40 g/L
biomass, 15.7 g/L glucose and 8.4 g/L xylose. A kza value
of 10.1 h™* was used in the DO balance, while the model
without the balance used a constant DO value of 0.0072
mM, the measured level at the end of the batch fermen-
tation. The constant DO model could not reproduce the
lag in ethanol production that resulted from the high
level of dissolved oxygen present during the early stages
of the fermentation. Additionally, the constant DO
model produced lower biomass yields and higher ethanol
yields than observed in experiment. Once the DO bal-
ance was added, the model could more accurately predict
the time at which S. stipitis began microaerobic substrate
consumption and ethanol production started to outpace
biomass growth. The other S. stipitis pure culture

Table 1 Substrate uptake rate parameters for pure and
co-culture dynamic flux balance models

Parameter S. cerevisiae 311 S. stipitis

Vgmax (Mmol/gdw/h) — 21.5 (pure culture) 185 (co-culture) 6.5

V,max (Mmol/gdw/h) - 55
Vomax (MMol/gdw/h) 2.5 1

Kq (/1) 05 1

K (/D) - 025
Ko (mM) 005 00125
Kieg/Kiez (9/1) 10/- 10/45
Kigz (9/L) - 05
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experiment used for uptake parameter fitting of the vari-
able DO model was performed with a k;a of 5.5 h™* and
initial conditions of 0.25 g/L biomass, 16.8 g/L glucose
and 8.4 g/L xylose (Figure 2A). As before, the model pro-
duced very accurate predictions of the glucose, xylose,
biomass and ethanol concentration profiles with the up-
take parameter values in Table 1.

To examine extensibility of the S. stipitis dynamic
model to different microaerobic conditions, batch exper-
iments were performed at two additional k;a values and
model predictions were generated with the same uptake
parameter values listed in Table 1. Figure 2B shows a
comparison of measured and predicted concentration
profiles for a batch culture performed with a k;a of
7.6 h™ and initial conditions of 0.25 g/L biomass, 16.8 g/L
glucose and 8.0 g/L xylose. The simulation results were
generally satisfactory, although the model predicted
slightly faster consumption of both substrates and small
overprediction of biomass production throughout most of
the batch. A second validation experiment was performed
with a larger k;a of 12.6 h™ and initial conditions of
0.2 g/L biomass, 15.6 g/L glucose and 8.6 g/L xylose. As
shown in Figure 2C, the model adequately captured the
fermentation dynamics throughout the first 15 hours but
it was unable to predict the subsequent reassimilation of
ethanol that is evident in the data.

Although the S. stipitis dynamic metabolic model gener-
ated satisfactory predictions over a range of microaerobic
conditions, the model failed to capture the ethanol and
biomass concentration profiles at higher aeration levels
once glucose had been exhausted. Ethanol can be simul-
taneously produced and reassimilated at these higher k;a
values [18], resulting in overprediction of ethanol secretion
and underprediction of biomass formation by our model.
This phenomenon is likely due to the relative ease at which
ethanol diffuses across the plasma membrane [37], while
the uptake of xylose has been shown to be facilitated by
oxygen [38]. Since xylose was more energetically favorable,
the LP solver returned a flux distribution with simultan-
eous xylose and ethanol uptake only if there was excess
oxygen available beyond that required for xylose metabol-
ism. Even in absence of xylose, the S. stipitis metabolic re-
construction predicted that k;a values greater than 34 h™
would be required just to meet the ATP maintenance de-
mand for growth on ethanol. By contrast, we observed
ethanol assimilation in our experiments for k;a values as
low as 12.6 h™. Without altering the objective function or
the ATP maintenance coefficient of the iBB814 model, the
observed disparity between model and experiment cannot
be resolved. Fortunately, the highest ethanol yields and ti-
ters observed experimentally were obtained at aeration
levels under which ethanol assimilation did not occur. As a
result, we do not consider k;a values above ~10 h'! in the
remainder of the paper.
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Figure 1 S. stipitis batch culture aerated at a k,a of 10.1 h™". Solid lines show dynamic model predictions when a balance on dissolved
oxygen was included, while the dashed lines show dynamic model predictions at a fixed dissolved oxygen concentration of 0.00072 mM.
Measured and predicted dissolved oxygen concentrations presented as percentage of the saturation value are shown in the inset.
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S. cerevisiae 311 pure cultures

Because S. cerevisiae 311 was created by applying eth-
idium bromide to a wild-type strain, the genetic alter-
ations that produced the respiratory-deficient mutant
were non-specific. As a result, modifications to the wild-
type iMM904 metabolic network necessary to describe
S. cerevisiae 311 metabolism were unknown. We used
the metabolic network model to identify putative gene
knockouts consistent with the known alteration of mito-
chondrial DNA by ethidium bromide treatment [39] and
to obtain predictions in agreement with our data. All the
gene knockouts considered prevented growth on non-
fermentable substrates and reduced oxygen demand. To
determine the reactions to be deleted, model fluxes in
the mitochondrial compartment were systematically set
to zero until FBA simulations matched the S. cerevisiae
311 phenotype of lower biomass yields, higher ethanol
yields and smaller oxygen demands than the wild-
type strain. This process identified knockouts of genes
encoding two enzymes: ubiquinol-6 cytochrome c reduc-
tase and mitochondrial cytochrome ¢ oxidase. Modifica-
tions to these enzymes may well have occurred in

S. cerevisiae 311, as other respiratory-deficient S. cerevisiae
mutants have been created through the direct removal of
the encoding genes [40].

The S. cerevisiae 311 dynamic model was built on the
modified iMM904 metabolic network with glucose up-
take parameters estimated from anaerobic culture data
and oxygen uptake parameters estimated from aerobic
culture data with the glucose parameters fixed [41]. The
resulting parameter values are listed in Table 1. Figure
3A shows a comparison of measured concentration pro-
files and model predictions for the anaerobic batch fer-
mentation initiated with 0.28 g/L biomass, 18.0 g/L
glucose and 1.8 g/L residual ethanol from the preculture
shake flask. Figure 3B shows results for the aerobic fer-
mentation initiated with 0.20 g/L biomass, 15.5 g/L glu-
cose and 1.8 g/L ethanol. In each case, the dynamic
model accurately predicted the entire ethanol profile and
the glucose and biomass profiles in the second half of
the batch. However, the model overpredicted glucose
uptake and ethanol synthesis during the first half of the
batch. While this discrepancy could have been attribut-
able to the preculture cells used for inoculation being in



Hanly and Henson Biotechnology for Biofuels 2013, 6:44
http://www.biotechnologyforbiofuels.com/content/6/1/44

Page 5 of 16

solid lines are dynamic model predictions
A

A 18
+ xylose B glucose
16 A ethanol *  biomass
e glucose model  emxylose model
14 ethanol model ====biomass model
§12
510
-
E 4
'Ef 8
8 6
4
2
04
0 5 10 15 20 25 30
Time (h)
B 18
+ xylose B glucose
16 A ethanol % biomass
- = xylose model = plucose model
== athanol model =———biomass model
g1.2
'E 10
[
E 8 4
E ]
4
2
o 2
0
Time (h)
c1s
+ xylose B glucose
18 A ethanol > biomass
14 = xylose model e zlucose model
= gthanol model = biomass model
-12
K]
_s 10
=
£ 4
'E' 8
8
6
4
2
0
0 5 10 15 20 25 30
Time (h)

Figure 2 S. stipitis batch cultures aerated at a k,a of A) 5.5 h™' B) 7.6 h™ and C) 12.6 h™. Data points are experimental measurements, while




\

Hanly and Henson Biotechnology for Biofuels 2013, 6:44
http://www.biotechnologyforbiofuels.com/content/6/1/44

Page 6 of 16

12

A 20
+ glucose
18 4
* W ethanol
16 * A biomass
14 = glucose model
- *
§ . =——zgthanol model
H = biomass model
€10
e
g
]
6
4
2
] +
] 2 6 10
Time (h)
B 16
4
+ glucose
14 B ethanol
A biomass
12

=
o

Concentration (g/L)
(<]

= plucose model
= gthanol model

biomass model

6
4
2
0
0 2 4 6 10 12
Time (h)
c 20
. 4 . #+ glucose
1
B ethanol
16 A biomass
- w——glucose model
- =——egthanol model
=1
§ 12 biomass model
2
€ 10
=
-
8
]
4
2

Figure 3 S. cerevisiae 311 batch cultures grown A) anaerobically B) aerobically and C) at a k,a of 5.5 h™. Data points are experimental

measurements, while solid lines are dynamic model predictions.

Time (h)

10

12




Hanly and Henson Biotechnology for Biofuels 2013, 6:44
http://www.biotechnologyforbiofuels.com/content/6/1/44

stationary rather than exponential phase [42], we were
unable to verify this hypothesis through additional ex-
periments in which the preculture cells were harvested
earlier.

To examine extensibility of the S. cerevisiae dynamic
model to different aeration levels, a microaerobic batch
experiment was performed at a kza of 5.5 h™ and model
predictions were generated with the same uptake param-
eter values listed in Table 1. Figure 3C shows the results
obtained for the fermentation initiated with 0.26 g/L bio-
mass, 18.7 g/L glucose and 1.4 g/L residual ethanol. The
model produced excellent agreement with data, and only
small deviations in the biomass concentration during the
initial portion of the batch and in the ethanol concentra-
tion following glucose exhaustion were observed.

Co-culture modeling

A preliminary dynamic co-culture model was developed
by direct combination of the two individual yeast models
assuming no species interactions other than competition
for glucose (see Materials and Methods). This approach
resulted in faster glucose consumption and a higher final
concentration of S. cerevisiae 311 than were observed in
our microaerobic batch fermentations (not shown). We
found that these discrepancies could be partially rectified
by reducing the S. cerevisiae maximum glucose uptake
rate from the pure culture value of 21.5 mmol/gdw/h to
18.5 mmol/gdw/h. Otherwise, the substrate uptake pa-
rameters remained fixed at the pure culture values listed
in Table 1.

Figure 4A shows a comparison of the resulting model
predictions and experimental data collected for three
batch fermentations at a k,a of 5.5 h™ with an equal in-
oculum of 0.15 g/L of each yeast species grown on 19.1
g/L glucose and 9.7 g/L xylose. Figure 4B shows corre-
sponding results for a k;a of 10.1 h™, 0.10 g/L of each
yeast species, 16.5 g/L glucose and 7.9 g/L xylose. With
the implemented change in the S. cerevisiaze maximum
glucose uptake rate, the dynamic co-culture model proved
to be as accurate as the individual species models. The
glucose consumption rate was slightly overpredicted dur-
ing the initial portion of the batch at both aeration levels.
Small discrepancies in the predicted biomass and ethanol
concentrations were observed during the glucose con-
sumption phase for k,a = 5.5 h™', while small but longer
lasting deviations were apparent in the biomass and xylose
concentrations at k;a = 10.1 ht

To examine prediction accuracy of dynamic co-culture
model at aeration levels not used for parameter adjust-
ment, we performed three additional co-culture fermenta-
tions at a k@ of 7.6 h™ with 0.145 g/L of each yeast as the
inoculum and initial sugar concentrations of 16.5 g/L glu-
cose and 8.5 g/L xylose. The model and data comparisons
shown in Figure 4C are qualitatively similar to those
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obtained at the other two aeration levels. The results in
Figure 4 collectively demonstrate that the co-culture
model provided satisfactory predictions over a range of
microaerobic conditions corresponding to k;a < ~10 h™".

Inoculum optimization

Following experimental validation, we utilized the dynamic
co-culture model to computationally determine optimal
bioreactor operating conditions for maximization of etha-
nol productivity. The productivity was defined as the final
ethanol concentration divided by the batch time, which was
chosen as the time at which the xylose concentration
dropped below 0.5 g/L. Our simulations indicated that the
aeration level had little effect on the ethanol titer but
strongly affected the batch time due to the xylose con-
sumption rate [38]. Our simulations also demonstrated that
the relative amount of each yeast in the inoculum strongly
affected the productivity through both the ethanol titer and
the batch time. Therefore, ethanol productivity was opti-
mized by adjusting the aeration level and inoculum concen-
trations. Rather than perform rigorous optimization [30],
dynamic simulations were run with different combinations
of the kza value and the initial yeast concentrations, and
the case that yielded the largest productivity was deemed
the optimal solution. All simulations were performed with
a mixture of 16.0 g/L glucose and 8.0 g/L xylose, while the
total inoculum concentration was fixed at 1.0 g/L to allow
direct comparison of results for different inocula.

The k;a value was constrained to be below 10.1 h™* since
larger values had the potential to result in undesirable
ethanol reassimilation by S. stipitis that was not captured
by the co-culture model. Regardless of the inoculum, we
found that increasing k;a improved productivity due to a
decrease in batch time that resulted from enhanced xylose
consumption. Consequently, the optimal solution was
achieved at k;a = 10.1 h™", and the optimization problem
was reduced to determining the inoculum concentrations.
This result demonstrated the importance of developing
improved metabolic reconstructions that more accurately
predict the relationship between aeration level and the on-
set of ethanol reassimilation. Figure 5 shows the effect of
the initial S. cerevisiae 311 concentration on the ethanol
titer, batch time and ethanol productivity. The initial
S. stipitis concentration is not shown since the total inocu-
lum concentration was constrained to be 1.0 g/L. The
ethanol titer increased with increasing S. cerevisiae con-
centration since this yeast converts glucose to ethanol at
higher yields than S. stipitis. Conversely, the batch time
decreased with increasing S. cerevisiae concentration be-
cause S. stipitis could better compete for glucose during
the initial growth phase and the larger S. stipitis biomass
concentration that resulted allowed for more rapid xylose
consumption. These two competing effects produced a
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clear optimum in the ethanol productivity at 0.1 g/L
S. cerevisiae and 0.9 g/L S. stipitis.

To validate the model predictions, we performed three
batch fermentations at the optimal conditions identified
in silico. Figure 6 shows the averaged result of these ex-
periments alongside the predicted growth and metabol-
ite concentration curves. Although we were unable to
obtain measurements during the first six hours, the opti-
mized co-culture model produced excellent agreement
with the measured concentration profiles after that time.
The model predicted a final ethanol titer of 9.43 g/L and
a productivity of 0.55 g/L/h, while the three fermenta-
tions were averaged to produce an ethanol titer of 9.07
g/L and a productivity of 0.521 g/L/h. According to our
in silico analysis at k;a = 10.1 h™, the optimized co-
culture would outperform both a pure S. stipitis culture
(9.43 g/L ethanol at a productivity of 0.505 g/L/h) and a
co-culture with equal inoculum (9.07 g/L ethanol at a
productivity of 0.469 g/L/h).

In silico transporter engineering

Our simulations demonstrated that S. stipitis xylose me-
tabolism was the rate limiting process that limited co-
culture conversion efficiency. Moreover, xylose transport
has been identified as the main bottleneck in pentose
sugar metabolism with pure S. stipitis cultures [43].
Therefore, we used the dynamic co-culture model to
predict the effects of modifying S. stipitis xylose trans-
port parameters on ethanol productivity. To model en-
gineering of the associated transport proteins, the
nominal values listed in Table 1 for the maximum xylose
uptake rate (v,,,..), the xylose uptake saturation con-
stant (K,), and the glucose inhibition constant for xylose

uptake (Kj,,) were perturbed both upward and down-
ward to determine their impact. The ethanol inhibition
constant for xylose uptake (Kj.,) was excluded from de-
tailed analysis because the ethanol concentrations
achieved in silico were too small to cause significant
xylose uptake inhibition. For the remaining three param-
eters, scaled sensitivity coefficients were calculated as:

S:

<A
S
SIE

(1)

where p is the nominal parameter value, A p is the par-
ameter change, ¥ is the optimal ethanol productivity
obtained with the nominal parameter value, and A p is
the predicted change in the ethanol productivity that re-
sults from the parameter change. All simulations were
initialized with 16 g/L glucose and 8 g/L xylose at the
optimum ka = 10 h™ and inoculum of 0.1 g/L
S. cerevisiae 311 and 0.9 g/L S. stipitis.

Figure 7 shows the ethanol productivities and scaled
sensitivity coefficients obtained when v, .., was changed
upward and K, and Kj,, were changed downward. In-
creasing the maximum xylose uptake rate offered the
largest improvement in ethanol productivity as indicated
by the relatively large sensitivity coefficients, with a
productivity enhancement of 14% achieved with a 25%
Vomax increase (Figure 7A). As indicated by the small
sensitivity coefficients, more modest gains in ethanol
productivity were predicted for decreases in the xylose
uptake saturation constant (Figure 7B) and the glucose
inhibition constant for xylose uptake (Figure 7C). How-
ever, complete elimination of S. stipitis diauxic growth
by removal of the glucose inhibition term from the
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symbols and coefficients of variation indicated by the error bars.
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xylose uptake expression resulted in a large productivity
enhancement of 85% (not shown). The simulated param-
eter changes could potentially be realized through pro-
tein engineering of the sugar transporters [44,45].
Because many S. stipitis transporters uptake both glu-
cose and xylose [36], a complementary approach could
be overexpression of specific transporters with more fa-
vorable xylose uptake characteristics and downregulation
or deletion of less favorable transporters [46].

Conclusions

Due to the ability of Scheffersomyces stipitis to efficiently
convert pentose sugars to ethanol, co-cultures of S. stipitis
and respiratory-deficient Saccharomyces cerevisiae are
promising for renewable ethanol production from glu-
cose/xylose mixtures [23,47]. Starting from genome-scale
metabolic reconstructions of the individual yeasts, we de-
veloped a dynamic metabolic model of S. cerevisiae/S.
stipitis co-cultures that was capable of predicting

microaerobic metabolism in batch culture. As a first step
towards co-culture modeling, dynamic models were devel-
oped for the individual yeasts using data from pure culture
experiments. The Crabtree-negative yeast S. stipitis was
shown to be very sensitive to the aeration level such that
the incorporation of a dissolved oxygen balance was ne-
cessary to capture non-microaerobic oxygen levels during
the initial batch phase and the subsequent switch from
respiratory and to fermentative growth. The S. stipitis
dynamic model was able to accurately reproduce mea-
sured glucose, xylose, biomass and ethanol concentration
profiles over a range of microaerobic growth conditions
characterized by oxygen-liquid mass transfer coefficient
(k,a) values below ~10 h™*. However, the S. stipitis model
was unable to capture ethanol reassimilation observed at
higher oxygenation levels due to model energetics that re-
quired a k;a greater than 34 h' just to meet the ATP
maintenance demand for growth on ethanol. Therefore,
subsequent co-culture experiments and simulations were
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restricted to microaerobic conditions with k;a values less
than ~10 h™".

The procedure used to create the respiratory-deficient
strain S. cerevisiae 311 introduced unknown genetic alter-
ations that could not be directly implemented in the wild-
type metabolic network. We used flux balance analysis to
screen putative gene knockouts in the mitochondrial com-
partment that would reproduce the S. cerevisize 311
phenotype of lower biomass yields, higher ethanol yields
and smaller oxygen demands than the wild-type strain.
The best agreement with S. cerevisiae 311 pure culture
data was obtained for deletions of two genes that encode
the ubiquinol-6 cytochrome c reductase and mitochon-
drial cytochrome ¢ oxidase enzymes involved in the elec-
tron transport chain. With the fluxes through the two
reactions catalyzed by these enzymes constrained to zero,
the oxygen demand was greatly reduced because oxygen
was not needed to serve as a final electron acceptor for
ATP synthesis. These results were consistent with more
directed genetic engineering efforts to create respiratory-
deficient S. cerevisiae mutants through direct removal of
these two genes [40].

A preliminary version of the dynamic co-culture model
was developed by directly combining the dynamic models
of the two yeast species under the assumption that each
species attempted to maximize its individual growth rate
and the only interspecies interaction was competition for
glucose substrate. By comparison of model predictions to
batch co-culture data collected at several microaerobic
conditions, we found that the preliminary model over-
predicted the glucose consumption and S. cerevisiae bio-
mass formation rates. Much improved predictions were
obtained by reducing the S. cerevisiae maximum glucose
uptake rate from its pure culture value of 21.5 mmol/gdw/h
to 18.5 mmol/gdw/h. This parameter change suggested
the presence of unmodeled species interactions that
resulted in S. stipitis having an antagonistic effect on
S. cerevisiae growth. Crabtree-negative yeasts like S. stipitis
have an established advantage when competing against a
Crabtree-positive yeast such as S. cerevisiae for the same
growth-limiting substrate [48]. This effect is further mag-
nified when the Crabtree-positive species is a respiratory
deficient mutant [49]. One possible cause for this effect
was the competition for nutrients other than glucose.
Growth under nitrogen limited conditions has been shown
to slow the uptake of glucose and other hexoses in wild-
type S. cerevisiae [50]. Respiratory-deficient S. cerevisiae
could be at a disadvantage in competing for nitrogen
sources such as ammonium when grown with respiratory
competent S. stipitis. Because sugar uptake parameters re-
flect the action of numerous transport systems, each hav-
ing distinct mechanisms and affinities, the decrease in this
parameter may indicate differences in transporter expres-
sion between pure and co-cultures of the two microbes.
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Following experimental validation, the dynamic co-
culture model was used to compute the aeration level and
initial cell concentrations that maximized batch ethanol
productivity. Our in silico analysis suggested that the co-
culture should be operated at the largest possible k;a value
before the onset of ethanol reassimilation by S. stipitis be-
cause this aeration level maximized the rate of xylose
conversion to ethanol. Because the S. stipitis metabolic net-
work model did not accurately predict this transition point,
the optimization was constrained by experimental data such
that the optimal solution was achieved at k;z = 10.1h™.
Optimization of the initial cell concentrations produced
an inoculum with 90% S. stipitis and only 10% S. cerevisiae
to form sufficient S. stipitis biomass following glucose ex-
haustion for efficient conversion of the remaining xylose.
Experimental validation of the optimal solution showed
that the co-culture model provided excellent agreement
with measured concentration profiles. Compared to an
unoptimized co-culture with equal initial cell concentra-
tions, the optimized co-culture was shown experimentally
to produce a 11% improvement in ethanol productivity.
Additional in silico analysis indicated that the co-culture
would yield higher ethanol productivities than a S. stipitis
pure culture due to the higher glucose to ethanol conver-
sion efficiency of S. cerevisiae.

The relatively slow conversion of xylose by S. stipitis is
the main bottleneck that limits overall co-culture perform-
ance. The dynamic co-culture model was used to explore
the potential impact of transporter engineering efforts
aimed at enhancing xylose uptake by increasing the max-
imum xylose uptake rate, reducing xylose uptake saturation
and reducing glucose inhibition of xylose uptake. Based on
sensitivity analysis for moderate parameter changes, the
maximum xylose uptake rate was predicted to yield the lar-
gest improvement in ethanol productivity. However, sub-
stantially larger improvements were predicted for complete
elimination of glucose catabolite repression in S. stipitis be-
cause this modification eliminated the diauxic growth pat-
tern and allowed xylose consumption to commence at the
beginning of the batch. Taken together, our computational
results suggest that an engineered S. stipitis strain which
rapidly consumes xylose in the presence of glucose and
does not reassimilate ethanol under microaerobic condi-
tions would be an ideal candidate for enhancing co-
culture performance. Future work should focus on the
creation of such S. stipitis strains as well as the mo-
del-based characterization of co-culture performance
for growth on actual biomass hydrolysates with inhibi-
tory compounds.

Methods

Experimental

The wild-type S. stipitis strain NRRL Y-7124 (ATCC
58376) was used in this study. S. cerevisiae 311 (ATCC
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42511), a mutant that was created by treating a wild-type
strain with ethidium bromide [51], was chosen as the
respiratory-deficient S. cerevisiae strain. Stocks of the two
yeasts were stored at 4°C on YM agar slants.

All pure and mixed cultures were performed in a syn-
thetic yeast minimal medium [52]. The composition per li-
ter of water was 1.00 g MgSO,, -7 H,O, 1.10 g/L KCl, 0.15 g
CaCl, - 2 H,0, 1.00 g (NH,),HPO,, 8.75 g/L (NH4),SO4,
60.3 mg myo-inositol, 30.0 mg Ca-panthothenate, 6.0 mg
thiamine-HCl, 1.5 mg pyridoxine-HCl, 0.03 mg biotin,
10.6 mg MnSO,, - H,O, 9.0 mg ZnSO, - 7 H,O, 5.0 mg
FeSO, - 7 H,0, and 2.4 mg CuSO, - 2 H,O. Pre-cultures
in media containing 20 g/L glucose and 20 g/L xylose for
S. cerevisiae and S. stipitis, respectively, were grown at
30°C for 36 hours on a shake table set at 175 RPM. The
inoculum concentration for each experiment was deter-
mined by calculating the volume of preculture required to
obtain the target initial concentration of each cell type
using the measured biomass concentration in the shake
flask media.

All fermentations were performed in a HEL BioX array of
4 250 mL vessels situated in a shared block that provided
both electric heat and independent magnetic agitation
(HEL Group Ltd., Barnet, UK). Electrochemical probes
monitored the dissolved oxygen and pH in each vessel,
while individual thermocouples recorded the media tem-
peratures. Bioreactor cultivations were performed at a con-
stant temperature of 30°C and pH of 5, the optimal growth
conditions for each yeast species [53]. The pH in each ves-
sel was controlled by the automatic addition of 1 N sulfuric
acid or 2 N NaOH. Glucose and xylose were autoclaved
separately and added to the growth media in the amounts
indicated for each experiment. Antifoam A was added to
the reactors as necessary to prevent foaming.

Aeration of culture media was found to be a crucial op-
erating variable. The agitation speed was held constant at
500 RPM for both pure and mixed culture fermentations.
The gas flow rate into each reactor was altered according
to the aeration level required for each experiment. A linear
relationship between the gas sparge rate and the gas—
liquid oxygen mass transfer coefficient (k;za) was deter-
mined using the static gassing out method [54]. Purely
aerobic cultures were aerated with pure oxygen, while
microaerobic fermentations were aerated with house
air passed through a HEPA-VENT filter (Whatman Ltd.,
Kent, UK).

Total cell weight was measured using a correlation be-
tween OD595 measured on a WPA UV1101 Biotech Pho-
tometer (Biochrom Ltd, Cambridge, UK) and dry cell
weight. Cell counts of S. cerevisiae and S. stipitis in co-
culture were performed on a hemacytometer in triplicate
and averaged. A typical cell count considered approxi-
mately 50 S. cerevisiae cells and 200 S. stipitis cells. Con-
version factors between dry cell weight and number of
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cells were found by drying pure culture samples of each
yeast after cell counts had been performed. These factors
were found to be 0.006943 gdw/L for S. cerevisiae and
0.001944 gdw/L for S. stipitis. Ethanol, glucose and xylose
concentrations were measured by YSI 2700 SELECT bio-
chemistry analyzers (YSI Inc., Yellow Springs, OH) config-
ured with the enzyme-bound membranes specified for
each metabolite. Raw readings were interpreted by 2700
Xylose PC Software (YSI Inc., Yellow Springs, OH) to
resolve cross-talk between the xylose and glucose speci-
fic membranes.

Modeling

The most comprehensive S. cerevisiae metabolic recon-
struction currently available, iMM904 [55], was used for
pure and mixed culture simulations. The fully compart-
mentalized network was reconstructed from 904 genes
and accounts for 1228 metabolites and 1412 reactions.
S. stipitis metabolism was simulated with iBB814 [20], the
first published genome-scale reconstruction for this or-
ganism. This model accounts for 814 genes, 971 metabo-
lites and 1371 reactions that are compartmentalized in the
cytoplasm, mitochondria, and extracellular space. Follow-
ing the publication of iBB814, a slightly more detailed
S. stipitis metabolic reconstruction was developed [21].
We do not anticipate that the use of this alternative recon-
struction would significantly alter the results reported in
this paper.

The S. cerevisiae/S. stipitis co-culture model was cons-
tructed by combining the iMM904 and iBB814 stoi-
chiometric matrices into a single matrix [56]. Flux
distributions for S. cerevisiae (v.) and S. stipitis (vy) were
calculated by solving the following linear program based
on the assumption that the two species attempted to
maximize their individual growth rates:

MaX J= e F I = We Ve + WY, (2)
Ac 0 fve| |0
5 A=)
|:Vc.,min :| < |:Vc:| < |:Vc,max:|
Vs, min Vs Vs,max
where the subscript i represents the species, A; is the
matrix of stoichiometric coefficients, v; is the vector
of reaction fluxes including exchange fluxes, v; i, and
Vimax are vectors of lower and upper flux bounds, y; is
the growth rate, and w, and w, are vectors of experimen-
tally determined weights that represent the contribution
of each flux to biomass formation in S. cerevisiae [55]
and S. stipitis [20], respectively. Other than competing
for the common substrate glucose, the two yeasts were
assumed to grow independently without species interac-

tions. Therefore the co-culture objective function y was
assumed to be the sum of the individual species growth



Hanly and Henson Biotechnology for Biofuels 2013, 6:44
http://www.biotechnologyforbiofuels.com/content/6/1/44

rates, and the inclusion of multi-level objective functions
[34] was deemed unnecessary. The co-culture model was
also used to simulate pure cultures of S. cerevisiae and
S. stipitis by constraining all fluxes of the unmodeled or-
ganism to zero.

The steady-state flux balance model (2) was extended
to a dynamic model through the addition of the follow-
ing extracellular mass balance equations:

% = pXe ®)
% = uX, (4)
j_f = X, — v, (5)
Z_f = VX, (6)
fl—f = Ve Xe + VesXs (7)
j—? = Vo Xe — Vo Xs + kpa(O* — O) (8)

where X, and X, are the biomass concentrations of
S. cerevisiae and S. stipitis, respectively, G, Z, and E are
the concentrations of glucose, xylose, and ethanol, re-
spectively, v, . and v, are ethanol exchange fluxes, v, is
the glucose uptake rate for S. cerevisiae, and vy, and v,
are the glucose and xylose uptake rates, respectively, for
S. stipitis. An equation for the dissolved oxygen concentra-
tion (O) was necessary to accurately describe microaerobic
growth of S. stipitis (see results). In this equation (8), v,
and v, are oxygen exchange fluxes, k;a is the volumetric
mass transfer coefficient of oxygen from sparged gas to the
culture medium, and O* is the saturation concentration of
oxygen. For all simulations, O* was taken to be 0.24 mM,
the saturation concentration for water at 30°C and 1 atm.

The following substrate uptake expressions were used to
calculate upper bounds on the actual sugar and oxygen
uptake rates:

G 1
Vg = Vg max = e 9)
1<g +G1+ Foom
Z 1 1 (10)
Vz = Vz max G E
K,+7Z1+ K 1+ o
0]
= —_— 11
Vo Voﬁmax1<u 10 ( )

where Vg0 Vzmax and Vg .., are the maximum uptake
rates of each substrate, K,, K, and K, are corresponding
saturation constants, K., and K, are ethanol inhibition
constants, and K, is a glucose inhibition constant. The
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glucose (9) and xylose (10) uptake rates were assumed to
follow Michaelis-Menten kinetics with an additional in-
hibitory term that reflects growth rate suppression at high
ethanol concentrations [57]. The glucose inhibition term
added to the xylose uptake kinetics accounted for diauxic
growth where S. stipitis favors glucose over xylose as the
carbon source. The oxygen uptake rate was calculated from
a Michaelis-Menten expression based on the dissolved oxy-
gen content of the medium [15].

Pure and mixed culture dynamic flux balance models
were solved using the Mosek optimization toolbox
(Mosek ApS, Denmark) to resolve the linear program for
intracellular metabolism within Matlab (Mathworks, Na-
tick, MA) [30]. Because S. cerevisiae could not meet the
non-growth associated ATP maintenance demand during
the xylose-only consumption phase, the maintenance
flux was constrained to zero after glucose depletion to
prevent the LP solver from returning zero fluxes for the
S. stipitis network. Due to time-scale differences between
the sugar and oxygen consumption rates, the differential
equation system (3)—(8) exhibited a high degree of stiff-
ness. To reduce the time required to generate large num-
bers of DFBA simulations for parameter fitting and in
silico culture optimization, Matlab stiff ODE solvers
odel5s and ode23tb were used to obtain approximate so-
lutions. An ODE solver with greater accuracy, ode23, was
used to generate model predictions once parameters had
been estimated or an optimum had been determined. A
typical co-culture batch simulation that was solved in
two minutes with odel5s required five hours with ode23.
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