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Abstract
The burgeoning field of high-throughput sequencing significantly improves our ability to
understand the complexity of transcriptomes. Alternative splicing, as one of the most important
driving forces for transcriptome diversity, can now be studied at an unprecedent resolution.
Efficient and powerful computational and statistical methods are in urgent need to facilitate the
characterization and quantification of alternative splicing events. Here we discuss methods in
splice junction read mapping, and methods in exon-centric or isoform-centric quantification of
alternative splicing. In addition, we discuss HITS-CLIP and splicing QTL analyses which are
novel high-throughput sequencing based approaches in the dissection of splicing regulation.
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1 Introduction
High-throughput sequencing of transcriptome (RNA-seq) has provided an unprecedent depth
of understanding the complexity of transcriptome and its regulation. It has been known for a
long time that transcriptomes of eukaryotes are particulary complicated by alternative
splicing in which multiple transcript isoforms can be produced from a single gene [4]. RNA-
seq analyses estimate that more than 90 % of human genes are alternatively spliced [36, 51].
The importance of alternative splicing is underscored by the fact that defects in alternative
splicing regulation can lead to human diseases such as spinal muscular atrophy, retinitis
pigmentosa, several forms of cystic fibrosis, Prader–Willi syndrome, and so on [10, 30, 39,
52]. It is crucial to characterize and quantify alternative splicing events, understand how
these splicing events are regulated, and how the changes in splicing contribute to
development, cell differentiation, and human disease. Here we discuss the statistical and
computational methods for the analysis of alternative splicing based on high-throughput
sequencing data. First, we describe methods for mapping splice junction reads, which help
to catalogue the repertoire of alternative splicing events. Second, we present methods to
quantify alternative splicing in exon-centric analyses or isoform-centric analyses. Third, we
discuss the experimental advances of identifying the RNA binding sites of splicing
regulators. Fourth, we briefly summarize the studies of quantitative trait locus mapping for
splicing ratio variation (i.e. sQTL). The discussed methods are summarized in Table 1. With
the ongoing improvements of high-throughput sequencing technologies, the statistical and
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computational methods have been and will continuously be evolving rapidly. However, the
standard quality control methods are still urgently needed.

2 Splice Junction Read Mapping Algorithms
RNA-seq data contain two types of mappable reads (Fig. 1): (1) reads that can be mapped to
a reference genome without large gaps (such as exon body reads); (2) reads that span exon–
exon junctions and have to allow large gaps when mapping to the reference genome (i.e.
splice junction reads). Exon body reads can be mapped by standard short sequence aligners
that are based on either the “Burrows–Wheeler transform” data compression algorithm (e.g.,
Bowtie [23], BWA [27], SOAP2 [29]) or the “hashing” algorithm (e.g., Novoalign
(Novocraft Technologies), Stampy [32], MAQ [28]). On the other hand, splice junction
reads play an important role in the detection and quantification of alternative splicing events
because they provide the direct evidence of exon–exon joining events. There are two
common ways to map these splice junction reads. The first one is to enumerate all potential
junctions and map sequence reads that cannot be mapped to the reference genome to the
junction list. For example, Wang et al. [51] generated a list of all possible splice junctions
between any two known or predicted exons of the same gene locus based on multiple gene
annotations. The junction read mapping further required at least 4 bases on each side of the
junctions for their 32-bp reads. The second approach is de novo junction read mapping. For
example, TopHat [48] identifies junction reads including the ab initio ones through two
steps: at the first step, TopHat calls Bowtie [23] to map all reads to the reference genome. At
the second step, TopHat assembles the mapped reads into island sequences. Then TopHat
enumerates all possible canonical donor and acceptor splice site pairs (GT–AG) and maps
reads that cannot be mapped to the reference genome to these junctions using gapped
alignment. Another popular algorithm is SpliceMap in which half-read mapping is
performed for reads split in half and the mapped hits of half-reads are used as seeding for
potential junctions [1]. Note that TopHat version 1.0.7 and later also splits a read of 75 bp or
longer into multiple segments to assemble exons. SpliceMap requires a read length of at
least 50 bp and only considers canonical “GT–AG” splice sites, because the EST (Expressed
Sequence Tag) based analysis shows that more than 98 % of splice sites are canonical splice
sites in mammals [6]. Wang et al. [53] developed the MapSplice algorithm which splits each
read into multiple segments. Segments that cannot be mapped to the reference genome (i.e.
without exon body alignments) are aligned by the double anchored spliced alignment (i.e.
the two neighboring segments have exon body alignments) or the single anchored spliced
alignment (i.e. only one of the two neighboring segments has an exon body alignment).
Unlike TopHat and SpliceMap which utilize splice site features or intron lengths to choose
potential junctions, MapSplice chooses the most likely splice junctions based on the quality
and the entropy (i.e. the uniformity of positions with mapped reads) of alignments, which
improves the specificity of splice junction detection and enables the identification of non-
canonical junctions. In the simulated “error-free” data sets [53], about 10 % of the
discovered junctions were false for TopHat (version 1.0.12). The percentage decreased to ~1
% for SpliceMap and MapSplice. However, the computation time for MapSplice was about
20~30-fold shorter than for SpliceMap (C++, version 3.0). In a recent comparison of TopHat
(version 1.1.4), SpliceMap (version 3.3.5.2), and MapSplice (version 1.14.1) [14], two sets
of RNA-seq data were simulated with low polymorphism (indels or SNPs) and sequencing
error rates, or moderate polymorphism and error rates, respectively. MapSplice has the best
performance in terms of the lowest sum of false positive and false negative rates for junction
read detection. However, in these “error-prone” simulated data sets, the false positive rates
for MapSplice and TopHat are comparable but MapSplice has a much smaller false negative
rate (9.9 vs. 15.6 % or 19.8 vs. 25.5 %). In addition, MapSplice has the highest detection
rate for novel junctions in a mouse RNA-seq data set (98 vs. 81 % for SpliceMap and 27 %
for TopHat).
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Regarding the base level alignment accuracy, MapSplice has the highest percentage of bases
mapped correctly. The comparison shows that MapSplice is more powerful and robust. It
also indicates the need of a benchmark RNA-seq data set or a carefully simulated data set
for the comparison of different alignment algorithms. The de novo junction read mapping is
still a challenging problem especially for the low abundance transcripts. With the mapped
splice junction reads, different types of alternative splicing events can be characterized: such
as exon skipping (or cassette exons), mutually exclusive exons, alternative 5′ donor sites,
and alternative 3′ acceptor sites.

3 Alternative Splicing Quantification
To quantify alternative splicing, there are exon-centric analyses and isoform-centric
analyses. For the exon-centric analyses, the inclusion ratio of each individual exon is
considered. The considered exon can be included in multiple transcript isoforms and
excluded in another set of isoforms. For isoform-centric analyses, every isoform abundance
is quantified and compared with each other to infer the alternative splicing level. Here we
first discuss the exon-centric analyses, and then the isoform-centric analyses.

3.1 Exon-Centric Analyses
The initial high-throughput exon-centric analyses are based on microarray designs. For
example, Affymetrix human exon arrays contain millions of body probe sets interrogating
over 1 million exons. Some microarrays include both exon body probes and junction probes
[7]. Gene-level normalized exon intensity is defined as the ratio of the exon intensity to the
gene intensity. The ratios under two conditions are then compared to identify differential
alternative splicing events. In the analysis of RNA-seq data, more attention was paid to
splice reads spanning exon–exon junctions for the quantification of exon splicing ratios.

3.1.1 Ψ Estimates—Burge’s group developed “percentage spliced in” (PSI or Ψ)
estimates for the percentage of isoforms that include the considered cassette exon [20, 51].
One estimate is called ΨSJ [51], which estimates exon inclusion based on the inclusive and
exclusive junction reads as well as the body reads on the cassette exon (as shown in Fig.
2A). It is denoted as

(1)

where DI is the density of inclusion reads and DE is the density of exclusion reads. More
formally,

(2)

where NI and NE are the numbers of reads supporting the inclusive and exclusive isoforms
(as shown in Fig. 2A), e is the length of the cassette exon, r is the read length, and o is the
overhang constraint placed on splice junctions. The underlying assumption here is that all
considered positions are uniformly mappable. The ΨSJ has been applied to tissue RNA-seq
data to quantify alternative splicing events [51].

A more comprehensive estimate is ΨMI SO [20]. The ΨMI SO is based on a Bayesian
framework to calculate the posterior probability of annotated transcript isoforms. For exon-
centric analyses, an analytic solution was obtained under the uniform prior distribution. For
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isoform-centric analyses, the Dirichlet-Multinomial distribution was applied. The analytic
solution for the exon-centric analyses is:

(3)

where Ψo1 is the fraction of isoforms including the considered exon, Ψo2 is the fraction of
isoforms excluding the considered exon, and:

(4)

(5)

(6)

(7)

Here, NI, NE, NC are the numbers of inclusion, exclusion, and common reads (as shown in
Fig. 2B); p1 and p2 denote the probability of a read being generated from the inclusive or

exclusive isoforms and  where m(r, Ii ) represents the number of mappable positions
in isoform Ii for an RNA-seq experiment with the read length r. Then Ψo1 and Ψo2 are
further re-scaled by the effective length of isoforms to obtain ΨMI SO. Since ΨMI SO further
utilizes reads aligned to the bodies of the flanking constitutive exons (NC ), it provides an
improved estimate over ΨSJ. For the isoform-centric version of ΨMI SO, the paired-end
information such as the fragment length can be further incorporated into the Bayesian
model.

3.1.2 SpliceTrap—Wu et al. [54] also proposed a Bayesian statistics to summarize exon-
inclusion rates based on paired-end RNA-seq data. The pipeline was named “SpliceTrap.”
Specifically, they assembled all possible exon-skipping events, alternative 5′ or 3′ splice
sites, and intron retention based on annotation databases. We should note that although
intron retention was considered in SpliceTrap, it is extremely challenging to distinguish
intron retention from unspliced or partially spliced transcripts due to the inefficiency of
Poly(A) enrichment in RNA-seq. As shown in Fig. 3A, for each cassette exon, inclusion
isoforms (f1) contain both the middle exon and the two flanking exons. Skipping isoforms
(f2) contain the two flanking exons but not the middle exon. Wu et al. called it an exon trio.
For each alternative splice site event (Fig. 3, B and C), f1 represents the extended isoforms
and f2 represents the shortened isoforms. They called it an exon duo. Note that f1 and f2 are
not full-length transcript isoforms. They only contain the considered three or two exons and
they represent a family of isoforms with these three or two exons. The lengths and the
relative expression levels of these isoforms are L = {L1, L2} and E = {e1, e2}. Then, the
probability of observing fi given the expression level E is:

(8)

For each paired-end fragment rj, the beginning position is bj and the size of the fragment
(including the unknown sequence between mate pairs) is sj. Assume that the positions of the
mapped fragments are uniformly distributed and bj is independent of sj; then
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(9)

where li is the effective length of fi (li = Li − sj + 1). Then

(10)

Given the prior distributions P (E) and P (S), we have

(11)

where R are all fragments mapped to F = {f1, f2}. Then the posterior probability P (E|R) was
maximized to estimate the inclusion ratio e1 for every exon. The fragment size distribution P
(S) was empirically estimated from the data. The P (E) was estimated based on exon trios
with high coverage and further smoothed by fitting beta distributions. SpliceTrap
demonstrated improved accuracy when compared to Cufflinks and Scripture. The latter two
methods are however isoform-centric analyses which reconstruct full-length transcript
structures using directed graphs and assign relative expression to each transcript isoform.
They will be further discussed in Sects. 3.2.3 and 3.2.4.

3.1.3 GPseq—The above methods all assume that positions are uniformly mappable.
However, it is well known that RNA-seq exhibits strong spatial bias along the genome [34].
The random hexamer priming [16] or the sequence component [60] induces some of the
bias, but the reasons for the non-uniformity are still largely unknown. It is usually assumed
that the position-level read count follows a Poisson distribution with rate θ. The length-
normalized read count, which is a popular gene expression estimate (RPKM is the
measurement further divided by the total mapped reads), is then the maximum likelihood
estimator (MLE) of θ. However, a Poisson distribution with rate θ cannot explain the non-
uniform distribution of the reads across the same gene or the same exon. A different
distribution is needed to better characterize the randomness of the sequence reads.
Srivastava and Chen [45] proposed a two-parameter generalized Poisson (GP) model for the
gene and exon expression estimation. A GP model with parameters θ and λ was fit to the
position-level read counts across all of the positions of a gene (or an exon). The GP
distribution is given by [9]:

(12)

where X represents the position-level read count and x is the number of sequence reads
starting from that position. The estimated parameter θ reflects the transcript amount for the
gene (or exon) and λ represents the sequencing bias causing the overdispersion or
underdispersion in the read count variability. The two-parameter GP model fits RNA-seq
data much better than the usual Poisson model. It significantly improves gene (or exon)
expression estimation, and provides the foundation for downstream analysis such as
normalization across different samples, identification of differently expressed genes or
differentially spliced exons, and so on [45].
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3.2 Isoform-Centric Analyses
3.2.1 rSeq—Besides the analyses at the individual exon level, Jiang and Wong [19]
developed a method to estimate individual transcript isoform abundance from RNA-seq
data. This is achieved by solving a Poisson model. Suppose a gene has m exons with lengths
L = (l1, …, lm) and n transcript isoforms with expressions Θ = (θ1, …, θn). The count of
reads falling into a specific region s (e.g., an exon or an exon–exon junction) is the observed
data Xs. Let w be the total number of mapped reads. Then X follows a Poisson distribution

with mean λ. When s is exon j,  where cij is 1 if isoform i contains exon j

and 0 otherwise. When s is an exon–exon junction,  where l is the length
of the junction region, and j and k are indices of the two exons involved in the junction.
Assuming the independence among different regions, the joint log-likelihood function can
be written as:

(13)

The isoform abundance θ’s can be obtained by the maximum likelihood estimate (MLE).
When the true isoform abundance θ is not on the boundary of the parameter space, the
distribution of Θ̂ can be approximated asymptotically by a normal distribution with mean Θ
and covariance matrix equal to the inverse Fisher information matrix I (Θ)−1. However, in
one experimental condition, many isoforms are lowly expressed and the likelihood function
is truncated at θi = 0. The constraints θi = 0 for all i make the covariance matrix estimated by
I (Θ)−1 unreliable. Instead, Jiang and Wong developed a Bayesian inference method based
on importance sampling form of the posterior distribution of θ’s. They utilized the RefSeq
mouse annotations and applied their model to an RNA-seq data set. Their results have good
consistency with RT-PCR experiments (Pearson’s correlation coefficient >0.6).

3.2.2 RSEM—Besides the above linear model based method, Li et al. [26] developed an
EM-algorithm-based method RSEM (RNA-Seq by Expectation-Maximization) to allocate
reads to different transcript isoforms of the same gene. The improved accuracy is achieved
from the assignment of multi-reads (e.g., reads mapped to multiple locations of the genome)
with a statistical model. In their studies, reads with 25 bp length were simulated. However,
with the increased read length, the non-uniqueness issue only affects a very small percentage
of reads (e.g. 2–3 % for 100-bp reads in mice [14]). On the other hand, RSEM would be
useful for organisms with significant portion of repetitive sequences (e.g., maize). In RSEM,
gene expression was estimated as the sum of isoform expression levels. Bullard et al. [5]
estimated gene expression through “union-intersection” genes. Specifically, the union-
intersection genes are the regions consisting of the union of constitutive exons and without
overlapping with other genes. The constitutive exon is defined as a set of consecutive exonic
bases shared by all transcript isoforms of the gene.

3.2.3 Cufflinks—The rSeq and RSEM methods rely on the known gene annotations.
Cufflinks developed by Trapnell et al. [49] aims to quantify transcript isoforms including the
novel unannotated transcripts. Particularly, Cufflinks calls TopHat to do the sequence read
mapping and the mapped fragments are assembled to find the minimal number of transcripts
that “explain” the reads. If two sequence fragments do not overlap, or they contain the same
implied introns (or none), they are compatible (Fig. 4A for single-end read design and Fig.
4C for paired-end read design). Two fragments are incompatible if they cannot be treated as
originating from the same transcript (Fig. 4B for single-end read design and Fig. 4D for
paired-end read design). Sometimes it may be impossible to determine the compatibility. For
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example, in Fig. 4E, X5 overlaps two different introns in Y5 and Y6. These uncertain reads
are discarded in the transcript assembly, but included in expression quantification. The
compatible fragments are ordered according to the their beginning locations to construct a
partial order graph. Cufflinks then finds a minimum partition of the graph into chains that
are incompatible with each other (i.e. different isoforms). Sometimes, the minimum partition
is not unique. To “phase” distant exons, the read coverage is further incorporated. Thus, if
the two distant exons are from the same transcript isoform, they should have similar
sequence read coverage.

The transcript abundance is estimated by a generative statistical model. For each gene locus,
the effective length of a transcript is denoted as

(14)

where l(t) is the length of a transcript t and F (i) is the probability that the fragment is
starting from i. Then the likelihood function of the non-negative isoform abundance ρt is

(15)

where the products are over all fragment alignments R and transcripts T, and It (r) is the
implied length of a fragment determined by a pair of reads assuming that it is originating
from a transcript t. Similarly to rSeq, the maximum a posteriori (MAP) estimate for ρt is
identified through a Bayesian inference procedure based on importance sampling. The
proposal distribution is multivariate normal, with the mean given by the maximum
likelihood estimates via a numerical optimization procedure, and the variance-covariance
matrix given by the inverse of the observed Fisher information matrix. The final abundances
are reported in FPKM (expected fragments per kilobase of transcript per million fragments
sequenced) which is a scalar multiple of ρt. Then the FPKM measurements and their
associated confidence intervals are used for the differential expression analysis including the
differential splicing analysis. The later version of Cufflinks further incorporates the
sequencing bias through a specified weighting scheme [40].

3.2.4 Scripture—Scripture reconstructs transcriptomes using RNA-seq reads and the
reference genome sequence without using the gene annotation information [15]. Sequence
reads were first aligned using TopHat. Then the mapped reads including both the body reads
and the junction reads as well as the reference genome were used to construct connectivity
graphs. Each chromosome has a separate connectivity graph in which the nodes are bases
and the edges connect each base to the immediate neighboring base either in the genome
sequence or within a junction read. To further construct a transcript graph, they used a
statistical segmentation strategy to traverse the graph topology and determine contiguous
paths with significant mapped read enrichment over the background distribution. The
background distribution was estimated through permuting the read alignments in the genome
and counting the number of reads that overlap each region. Specifically, sliding windows
were used to scan the connectivity graph to identify significant segments. Consecutive
segments with only body reads were inferred exons. The edges of the exons were
determined by the bases connecting their neighbors in the junction reads. Alternative
splicing happens when a base can be connected to multiple bases. Thus, we have alternative
paths on this splicing site. By enumerating all possible paths in the transcript graph, we can
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obtain all possible alternative spliced isoforms. To remove unlikely isoforms, paired-end
reads and their distance constraints were utilized to filter out paths with little support from
the paired-end reads. Scripture has been applied to discover the gene structures of more than
a thousand large intergenic noncoding RNAs (lincRNA) [15].

3.3 Transcriptome Assembly
3.3.1 ABySS—For organisms without reference genomes, ABySS (Assembly By Short
Sequences) provides a transcriptome assembly just based on RNA-seq reads [3]. The
ABySS algorithm is based on a de Bruijn graph representation of sequence neighborhoods,
where a sequence read is decomposed into tiled sub-reads of length k (k-mers) and
sequences sharing k − 1 bases are connected by directed edges. After culling the false
branches and removing bubbles, unambiguously linear paths along the de Bruijn graph are
connected to form the assembly contigs. The uniqueness of ABySS is that the adjacency
information between k-mers is stored in a manner that is independent of the actual location
of the k-mer. Therefore, it allows parallel computation of the assembly algorithm across a
network of computers, which makes the computation feasible. Based on ABySS, trans-
ABySS specific to transcriptomes was developed [41]. A single specific value k for the
substring length was used in the genome assembly, because the genome sequencing library
provides a uniform representation of the genome. However, in a transcriptome library,
individual transcripts may differ a lot in expression levels. A single k value cannot yield an
optimal overall assembly. Therefore, a wide range of k values were used in trans-ABySS,
then contigs from independent assemblies were merged into a smaller set of meta-assembly
contigs for analysis. Similar tools include SOAPdenovo and its multiple k-mer version
SOAPdenovo-trans [26]; Oases and Oases-MK [43]. The assembly-based methods usually
perform worse in the transcript quantification. About 100× average coverage on expressed
transcripts is recommended for de novo assembly [58].

4 Alternative Splicing Databases
As we mentioned above, many tools rely on the accurate and complete gene annotations. In
the UCSC genome browser (http://genome.ucsc.edu/), there are multiple annotation tracks
for each organism. These human-curated or computationally predicted annotations provide
us useful prior information when mapping junction reads or quantifying alternative splicing.
In addition, many databases specific to alternative splicing events have been built. In Table
2 we list some of the online databases for alternative splicing events.

5 HITS-CLIP
Besides the quantification of alternative splicing, it is essential to investigate the detailed
splicing regulation mechanisms. Alternative splicing regulation involves a large number of
cis regulatory elements and trans-acting factors. The trans factors (i.e. splicing regulators)
are usually RNA-binding proteins that bind to exons or flanking introns of pre-mRNA and
subsequently affect spliceosome assembly and splice site choices. The genome-wide RNA
binding locations of splicing regulators can be determined through experimental techniques
based on crosslinking immunoprecipitation (CLIP) coupled with high-throughput
sequencing (HITS-CLIP, Fig. 5) [31]. The original CLIP can sequence hundreds of unique
protein-bound RNAs [50]. High-throughput sequencing enables the genomic scale studies of
RNA binding sites. So far, only a few splicing regulators have been profiled experimentally
at the genomic scale (e.g., [21, 31, 42, 55, 56]). In addition to splicing regulators, HITS-
CLIP (or CLIP-seq) has also been used to survey the binding sites of other RNA-binding
proteins. For example, it has been used to survey the miRNA binding sites through the
HITS-CLIP on argonaute proteins [8, 61]. As an analog of the ChIP-seq design, methods
developed for ChIP-seq can be readily applied to HITS-CLIP data. In the current literature,
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simple methods were usually applied. For example, regions with overlapping unique
sequence tags were defined as clusters [31, 42]. Clusters that were highly reproducible
between biological replicates and with a high peak were screened as binding sites [31, 55].
The signal-to-noise issue was addressed in the corresponding motif analysis. As discussed in
[12], the signal-to-noise ratio differs for different experiments. For certain HITS-CLIP
experiments, the noise was generally high. In an RNA target profiling of Fox2, only 22 % of
the CLIP clusters had the binding motif UGCAUG, compared with 11 % expected by
chance [56]. However, in a genome-wide study of the binding sites of Nova, the binding
motif YCAY was ~5–6-fold enriched in Nova CLIP clusters [57]. The signal-to-noise ratio
depends on the stringency of the biochemical conditions (e.g., purification), the specificity
of the reagents (e.g. antibodies), and the bioinformatic analysis of data. More complicated
statistical methods are in need to address the cluster identification.

6 sQTL Identification
The HITS-CLIP analyses map interactions between splicing regulators and target exons,
which provides the cues about alternative splicing regulation. In addition, DNA variants
altering splicing ratios can be mapped through the identification of splicing quantitative trait
loci (sQTLs). Kwan et al. [22] investigated the alternative splicing variation among humans
using exon array profiling in lymphoblastoid cell lines derived from the CEU HapMap
population. Through family-based linkage studies and allelic association studies, they
identified marker loci linked to particular alternative splicing events. They detected both
annotated and novel alternatively spliced variants, and that such variation among individuals
is heritable and genetically controlled. This analysis has been extend to RNA-seq data. For
example, transcriptomes have been profiled through RNA-seq for a Caucasian population
[33] and a Nigerian population [37] in the HapMap project. Both populations also have the
genetic variant information available. These enabled the increased sensitivity to detect
associations between DNA variants and splicing variation. Particularly, the original
microarray studies along with RT-PCR validation identified dozens of genetically regulated
alternative splicing events [11, 22]. Analyses of RNA-seq data increased the number to
hundreds, demonstrating the prevalence of genetic regulation on splicing variation. Detailed
analysis on transcript isoforms revealed that about ~60 % of the total variation in transcript
isoform abundance is due to transcription variation. The remaining variability can be largely
due to splicing variation [13]. With the development of high-throughput technologies, it is
possible to distinguish transcriptional, co-transcriptional, or post-transcriptional variation
among individuals and their corresponding DNA variants, which will ultimately help to gain
the knowledge of phenotypic variation and susceptibility to complex disease.

7 Future Perspectives
The revolution in biology brought by the next generation sequencing is still ongoing. The
sequencing experimental protocol itself still contains many issues that deserve special
attention in data analysis. The paper of Quail et al. [38] discussed some of the issues. For
example, during sequencing library preparation, a specific range of fragment sizes was
selected after the fragmentation step. However, the size of selected sample only represents a
small percentage of total DNA/cDNA and much of DNA vaporizes during the nebulization
fragmentation procedure. During the gel extraction step, many AT-rich sequences are likely
to be denatured, causing the GC bias. Benjamini and Speed [2] also reported the GC content
bias at the full fragment level, not only at the sequence read level, and they hypothesized
that PCR is the major source of the GC bias. For RNA-seq, contaminated unspliced or
partially spliced transcripts due to the inefficiency of Poly(A) enrichment (or transcripts
contain oligonucleotides similar to the Poly(A) signal) will affect the downstream analysis.
For example, it leads to the falsely declaimed intron retention events and it can confound the
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isoform quantification. Besides the positional bias, Zheng and Chen [59] reported a
significant positive correlation between the power of differential isoform identification and
the transcript length (i.e. sample size in the considered statistical model). Oshlack and
Wakefield [35] also observed that the power of differentially expressed gene identification is
strongly associated with transcript length, which could affect the downstream pathway
analysis. Statistical and computational methods for high-throughput sequencing data
analysis are still in their infancy. A benchmark RNA-seq data set is in urgent need for the
model comparison and validation. Currently, there is almost no way to validate the results
on each individual isoform at a large scale. Quantitative reverse transcription PCR (qRT-
PCR) can be designed for individual exons, but not full-length isoforms, and it may also
contain its own essay-specific noise and bias. The recent NanoString nCounter gene
expression system also contains outliers and displays high variance between technical
replicates [40]. All these make the development of isoform-centric analysis tools
challenging.

With the maturation of sequencing technology, the statistical and computational methods
keep evolving. For example, read length is increasing and many of reads may span multiple
junctions. Efficient methods are needed to incorporate this information to better infer
transcript isoforms. In the near future, the wide application of direct sequencing of RNA or
single molecular sequencing may provide us more accurate transcriptomic data. Novel and
efficient statistical and computational tools will need to meet the analysis challenges and
facilitate the broad application of the high-throughput sequencing technologies in a variety
of biological problems.
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Fig. 1.
Read mapping for RNA-seq. Exon body reads can be mapped to the reference genome
directly. Splice junction reads cannot be mapped to the reference genome without allowing
large gaps. They are usually split into multiple segments. Segments that can be mapped to
the reference genome help to locate splice junction sites
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Fig. 2.
Single-end reads considered in Ψ estimates. (A) ΨSJ considers the number of reads
supporting the inclusive isoform (NI ) and the number of reads supporting the exclusive
isoform (NE ). (B) Besides NI and NE, ΨMI SO also considers the reads supporting both
isoforms (NC )
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Fig. 3.
Paired-end reads mapped to alternatively spliced exons. (A) Cassette exon. (B) Alternative
5′ splice sites. (C) Alternative 3′ splice sites
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Fig. 4.
Compatibility and incompatibility of fragments. The boxes represent exons, the dotted lines
represent implied introns, and the solid lines represent the fragments between pair mates.
(A) Compatible single-end reads. (B) Incompatible single-end reads. (C) Compatible paired-
end reads. (D) Incompatible paired-end reads. (E) X5 is an uncertain read because it
overlaps the intron in Y5 and another different intron in Y6
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Fig. 5.
HITS-CLIP or CLIP-seq experiment
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Table 1

List of discussed methods for RNA-seq data analysis

Method Description Note

Sequence read aligners:

Bowtie Use the “Burrows–Wheeler transform”
data compression algorithm

Fast and memory efficient; supports paired-end reads.

BWA

SOAP2

Novoalign Use the hash-based algorithm More sensitive; supports paired-end reads.

Stampy

MAQ

De novo junction read mapping:

TopHat Align reads (or split-read segments) to
genome using Bowtie

Supports paired-end reads; finds “GT–AG”, “GC–AG”, and “AT–AC”
splice sites for long (≥75 bp) reads and only “GT–AG” splice sites for short
reads; users specify potential intron length.

SpliceMap Align split-read segments to genome
using Bowtie, Eland or SeqMap

Supports paired-end reads; requires the read length ≥ 50; only “GT–AG”
splice sites; users specify potential intron length.

MapSplice Align split-read segments to genome
using Bowtie

Supports paired-end reads; incorporates anchor significance and entropy of
read positions.

Alternative splicing quantification:

ΨSJ Based on inclusive and exclusive reads.

ΨMI SO Exon-centric analysis Incorporates body reads of the flanking exons; incorporates segment length
information for paired-end reads; uniform assumption for positions of
mapped reads; has an isoform-centric version.

SpliceTrap Utilizes known gene annotation information; incorporates segment length
information for paired-end reads; uniform assumption for positions of
mapped reads.

GPseq No uniform assumption for positions of mapped reads; estimates the local
bias directly from the data.

rSeq Isoform-centric analysis with reference
genome sequences and gene annotations

Linear model based on known gene annotations; Poisson assumption for
read counts.

RSEM EM algorithm based on known gene annotations; incorporate multi-reads;
uniform or specified distribution of the positions of mapped reads.

Cufflinks Isoform-centric analysis with reference
genome sequences, but without gene
annotations

Assembles read alignments into a parsimonious set of transcripts; uniform
or specified distribution of positions of mapped reads.

Scripture Segmentation strategy to assemble read alignments into transcripts;
uniform assumption for positions of mapped reads.

Transcriptome assembly:

ABySS Parallel de Bruijn graph assembler; single
k-mer value

Usually the performance is worse than the reference-genome based
approaches; useful for organisms without reference genomes; a small or a
large k works well for lowly or highly expressed genes.

SOAPdenovo

Oases
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Method Description Note

trans-ABySS Multiple k-mer values Good for all ranges of expression levels.

SOAPdenovo-trans

Oases-MK

Stat Biosci. Author manuscript; available in PMC 2014 May 01.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Chen Page 21

Table 2

Online databases for alternative splicing events

Database Description Link

Ensemble genome alternative splicing
events [46]

Human, Mouse, Zebra fish, Worm and Fruit fly http://www.ensembl.org/

H-DBAS [47] Human http://h-invitational.jp/h-dbas/

TassDB2 [44] Human and Mouse (only for short distance tandem splice
sites)

http://www.tassdb.info

SpliceInfo [18] Human http://spliceinfo.mbc.nctu.edu.tw/

ASG [25] Human http://statgen.ncsu.edu/asg/

DEDB [24] Fruit fly http://proline.bic.nus.edu.sg/dedb/

ASPicDB [7] Human http://t.caspur.it/ASPicDB/

HOLLYWOOD [17] Human and mouse http://hollywood.mit.edu
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