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Abstract

The database of Genotypes and Phenotypes (dbGaP) contains various types of data generated from genome-wide
association studies (GWAS). These data can be used to facilitate novel scientific discoveries and to reduce cost and
time for exploratory research. However, idiosyncrasies and inconsistencies in phenotype variable names are a major
barrier to reusing these data. We addressed these challenges in standardizing phenotype variables by formalizing
their descriptions using Clinical Element Models (CEM). Designed to represent clinical data, CEMs were highly
expressive and thus were able to represent a majority (77.5%) of the 215 phenotype variable descriptions. However,
their high expressivity also made it difficult to directly apply them to research data such as phenotype variables in
dbGaP. Our study suggested that simplification of the template models makes it more straightforward to formally
represent the key semantics of phenotype variables.
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Introduction

With the advancements in genome-wide association studies
(GWAS), the number of public genotypic and phenotypic data
repositories, such as the database of Genotypes and
Phenotypes (dbGaP), has significantly increased [1,2]. The use
or reuse of GWAS data can promote exploratory research,
validate existing findings, and reduce research time and costs.
However, data in public repositories are not always collected in
a standardized or harmonized way, making it difficult to reuse
these data. A Phenotype, as defined and reported in GWAS
studies, is a characteristic or trait of interest, which is any
observation ranging from disease risk to physical properties
(e.g., blood pressure, disease onset age, disease condition,
premature days, height). Standardization of phenotype data is
particularly challenging.

As shown in Table 1, phenotype variables are often named
without a specific naming convention, or are often labeled with
abbreviated codes that do not convey clear meaning. Many of
these variables are accompanied by descriptions that help
users understand what data the variable intends to represent.
However, keyword searches applied to variable descriptions do
not always provide accurate results due to syntactic and lexical

complexities associated with the descriptions such as use of
negation and synonyms [3].

Idiosyncrasies in variable names play a major hurdle to
utilizing the data stored in dbGaP and are the focus of this
paper. As a first step towards standardizing the phenotype
variables in dbGaP, we tested the adequacy of an existing
information model for clinical data, the Clinical Element Models
(CEM), developed by GE Healthcare/Intermountain Healthcare
Data Modeling and Terminology Team [4] to formally represent
phenotype variable descriptions in dbGaP. Our intention was to
test the feasibility of using the CEMs as a type system for the

Table 1. Idiosyncratic height variable representation in
dbGaP.

Variable ID Variable Names Variable Descriptions
phv00071000.v1 Htcm Standing height at follow up visit

phv00165340.v1.p2 ESP_HEIGHT_BASELINE
Standing height in cm at
baseline

phv00083471.v1.p2 lunghta4 HEIGHT (cm)

doi: 10.1371/journal.pone.0076384.t001
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natural language processing (NLP) algorithms that standardize
phenotype variables in dbGaP by identifying key semantics and
representing them using a formal structure.

For our feasibility testing, we evaluated (1) the content
coverage of existing CEMs on a small set of phenotype
variables, and (2) the feasibility of formalizing phenotype
variable descriptions using CEM template models.

Background

Challenges in standardizing phenotype variables in
dbGaP

dbGaP contains various types of data generated in many
GWAS studies, such as phenotypes, genotypes, and pedigree
information of subjects, as well as specifics on samples,
measurements and experiments. As of July 2013, dbGaP
contains more than 420 studies, which in turn hold more than
2,600 data sets and 137,000 variables [2]. Although dbGaP
contains abundant phenotype variables and provides a web-
based user interface for searching studies by phenotypes of
interest, idiosyncrasies in the variable names make it difficult to
identify relevant studies with a sufficient level of accuracy [5].

The Phenotype Finder IN Data Resources (PFINDR)
initiative, put forth by the National Heart, Lung, and Blood
Institute (NHLBI), aims to make various phenotype data
available for GWAS related investigations. Challenges
associated with non-standardized phenotype variables
generated in different research institutions are widely
recognized [6]. The eMERGE (Electronic medical Records and
Genomics) Network [7], funded by the National Human
Genome Research Institute (NHGRI), is another project dealing
with the use of phenotypes collected in the electronic medical
record to support GWAS. Standardization of the phenotype
variables collected from different institutions/studies is a
common challenge for these initiatives [7].

eMERGE aims to make clinical data in electronic health
record (EHR) available for GWAS. In eMERGE, phenotype
variables are standardized through detailed semantic
annotation, including mapping to standardized terminology
systems and data elements [8,9]. In eMERGE, the phenotype
data are standardized during the submission process through
metadata annotation and mapping to existing standards such
as National Cancer Institute Thesaurus (NCIT) [10], cancer
Data Standard Registry and Repository (caDSR) [11], Study
Data Tabulation Model (SDTM) [12], and Systematized
Nomenclature of Medicine-Clinical Terms (SNOMED-CT) [13].
Users can search and browse through standardized phenotype
variables and their metadata using eleMAP, a web-based tool
for managing phenotype variables developed by eMERGE [7].
Users from the participating institutions register their data to
eleMAP in a standardized format using a provided template [9].
Similarly, we plan to adopt semantic annotation as part of the
standardization of phenotype variables in Phenotype
Discoverer (PhenDisco), a project funded through PFINDR.

Both the PFINDR program and the eMERGE network aim to
standardize phenotype variables. However, unlike eMERGE,
PFINDR deals with the large amount of phenotype data already
stored in dbGaP lacking representational standards. Manually

standardizing such a huge set of data would be cumbersome
and prohibitively costly. Therefore, devising an algorithmic
means of processing the existing phenotype variables in
dbGaP is crucial to this task. As a first step, we needed to
develop a systematic method of identifying core semantics
from the variable descriptions.

The Strategic Health IT Advanced Research Projects
(SHARPn) are closely related to eMERGE activities. The
SHARPn were instigated by the Office of the National
Coordinator for Health Information Technology to address key
obstacles to the adoption of Electronic Health Records (EHR)
such as security of health information and building shared
network architectures. In particular, its fourth project [14,15,16],
focuses on the secondary use of Electronic Health Records to
improve healthcare. A vital task in facilitating secondary use is
the development of appropriate clinical models and NLP tools
to convert the information currently encoded in EHR free-text
fields to structured data.

Natural Language Processing (NLP) has proven effective in
determining semantic categories and relations in the
biomedical domain. For example, the Genomics Information
Extraction System (GENIES) extended an existing NLP system
to identify categories, a lexicon, and a grammar [17]. Navigli
and colleagues reported extracting both taxonomic and non-
taxonomic relations between concepts based on existing
domain ontologies [18]. In another project, SemSpec utilizes an
existing NLP system to extract hypernymic propositions,
through syntactic structures in the text and knowledge from a
domain ontology [19]. The success of these systems shows
that NLP can help in determining semantic categories and
relations in biomedical text that carry core information delivered
in the text. In these studies, formal representations of text,
serving as a model system for NLP, played a crucial role.

Existing information and terminology models
Existing terminology and information model standards

provide conceptual models for formally representing a
healthcare domain. For example, the Systematized
Nomenclature of Medicine, Clinical Terms (SNOMED-CT)
system provides the concept models, from which a concept is
constructed, in 9 different clinical domains such as Clinical
Findings, Procedures, Evaluation Procedures, Specimen, Body
Structure, Pharmaceutical/Biological Product, Situation with
Explicit Context, Event, and Physical Object [20]. As an
example, the concept model for Situation with Explicit Context
is presented in Figure 1. SNOMED-CT is a compositional
terminology and these conceptual structures primarily serve as
the syntaxes for concept composition [21].

The Reference Information Model (RIM) of the Health Level
7 (HL7) is an example of an information model standard [22].
RIM provides a shared view on the healthcare domain, from
which a message is generated, regardless of the message
structure [22] (Figure 2). RIM describes the healthcare domain
using an object-oriented modeling approach based on 4 major
constructs such as Act, Entity, Role, and Participation, each of
which is further described using various classes and their
associated attributes.

Standardizing Phenotype Variables Using CEM
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Although both SNOMED-CT concept models and RIM
provide a means of formally describing any given healthcare
domain, their limited scope and approach to representation
make them less plausible options for representing phenotype
variables in dbGaP. The SNOMED-CT concept models provide
sophisticated ways of expressing a complex clinical concept in
a certain clinical domain by attaching multiple attribute
concepts (i.e., qualifiers and modifiers) to a key concept. While
it offers a very high level of sophistication for representing a
unit of clinical concept, it lacks recursive or nested structures,
which are often required for representing a phenotype data
element. A phenotype data element usually does not require
such level of sophistication but spans multiple concept
domains.

For example, there is no straightforward way of representing
the phenotype variable “number of sisters who had breast
cancer” with the SNOMED-CT concept models. The most
relevant model is the Situation with Explicit Context model, as
this variable is to capture family history information. However,
the Situation with Explicit Context model covers only a part of
the variable, “sisters had breast cancer.” Full representation
would require combining multiple SNOMED-CT concept
models or modifying them by introducing additional attributes,

Figure 2.  Reference Information Model (RIM) core
domain.  RIM of Health Level 7 (HL7), an existing terminology
and information model standards, uses an object-oriented
modeling approach derived from four main classes: Act, Entity,
Role, and Participation (https://wiki.nci.nih.gov/display/SAIF/
HL7+Reference+Information+Model).
doi: 10.1371/journal.pone.0076384.g002

increasing the complexity of modeling while decreasing fidelity
toward the standards upon which the model is built.

On the other hand, RIM is an integrated model that
encompasses the entire healthcare domain. However, it does
not provide a complete set of attributes for the concepts
represented by its classes. In RIM, many conceptual attributes
are represented through the terminology systems used for
encoding the values of its class attributes [23,24,25,26,27,28].
Figure 3 shows an example of modeling a phenotype variable
“mother smoked when she was pregnant” using a SNOMED-
CT concept model and HL7 RIM. The SNOMED-CT concept
models do not include an explicit subject of information
attribute thus subject of the finding is described using the
relationship context attribute. While the HL7 RIM explicitly
represents the patient’s mother using the Person and Role
classes, it stores the key concepts “smoking during pregnancy”
in the “value” attribute of the Observation class without
specifying its semantic role.

Clinical Element Models (CEM) provides a logical structure
for representing clinical data. CEM serves as the basis for
retaining computable meaning during data exchange between
different systems, and was originally designed to support
sharing computable meaning when clinical data are applied to
decision support [4]. CEM consists of abstract instance models
that represent instances of medical data at a general level, and
abstract constraint models that further specify the general
medical instances with a set of constraints. The current CEM is
designed to provide a means of capturing the computable
meaning of clinical information in an electronic medical record
(EMRs) system in a consistent and robust manner [29]. It
provides flexible and comprehensive ways to represent wide
ranges of clinical data with sufficient detail, using various
attributes and qualifiers/modifiers. Figure 4 illustrates that
height can be specified in detail through the use of various
qualifiers and attributes in CEM [29].

Template models that serve as the basis for creating a CEM
are available in six domains: Disease and Disorders,
Procedures, Signs and Symptoms, Medications, Anatomical
Sites, and Laboratory Tests (Figure 5) [30]. The

Figure 1.  Attributes used to define Situation with Explicit Context concepts in the Systematized Nomenclature of
Medicine, Clinical Terms (SNOMED-CT).  SNOMED-CT system provides concept models constructed in different clinical domains.
An example of a concept model for Situation with Explicit Context is presented. This model includes six attributes: Associated
Procedure, procedure Context, Temporal Context, Subject relationship Context, Associated finding, and Finding Context. Grey oval:
concept domain; white oval: attributes; blue line: hasAttribute.
doi: 10.1371/journal.pone.0076384.g001
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computationally friendly nature of the CEM approach has been
recognized as a useful feature for standardizing EHR data and

Figure 3.  Representing “mother smoked when she was
pregnant” using SNOMED-CT and HL7 RIM.  SNOMED-CT
concept models provides a high level of sophistication for
representing a unit of clinical concept, but it lacks a way of
representing a phenotype data element, which usually does not
require the level of sophistication but spans to multiple concept
domains. Here we showed that the SNOMED-CT concept
models do not include an explicit subject of information
attribute thus subject of the finding is described using the
relationship context attribute. HL7 RIM, an integrate model of
healthcare domain, does not provide a complete set of
attributes for the concept. HL7 RIM stores the key concepts
“smoking during pregnancy” in an unspecific attribute “value”
without specifying semantic roles of each concept.
doi: 10.1371/journal.pone.0076384.g003

successfully adopted as a type system for NLP processing in
SHARPn [14,15,16]. However, its applicability to the phenotype
variables generated from research has not been tested. The
goal of this study was to test the feasibility of using CEM as a
type system for NLP algorithms that process phenotype
variable descriptions in dbGaP.

Methods

This study was conducted in two phases. In Phase I, we
tested the feasibility of representing phenotype variables in
dbGaP with CEMs. For the first phase of the feasibility testing,
we used phenotype names that the dbGaP team abstracted
from the phenotype variables submitted to them [31]. These
phenotype variables were manually generated thus less
idiosyncratic yet more comprehensible than the original dbGaP
variables. A few examples of these phenotype names are
presented in Table 2. We will refer to this set of phenotype a
“phenotype pilot set” from this point forward. We used the
phenotype pilot set as a training set for reviewers. We also
used it for initial assessment of the scope of CEM to evaluate
whether CEMs could cover phenotype information in our study.
In Phase II, we modeled 200 original phenotype variables
selected from two phenotype data dictionaries in dbGaP using
the CEM template models.

Figure 4.  Structure of the HeightMeasure CEM.  (http://intermountainhealthcareorg/CEM/Pages/Detail.aspx?
NCID=520862031&k=height.) CEM represents height measurement with sufficient details through various attributes and qualifiers/
modifiers.
doi: 10.1371/journal.pone.0076384.g004
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A. Phase I: representing the phenotype pilot set to
existing CEM

1) Mapping phenotype names to existing CEM.  We
retrieved 379 unique phenotype names from the phenotype
pilot set and mapped them to the existing CEM. Three
reviewers (KL, MT, MR) trained in biomedical informatics
conducted mapping. First, the three reviewers were trained in
mapping using 50 randomly selected phenotype names. The
results from mapping this training set were collaboratively
reviewed with two additional reviewers (HK, MC) and
disagreements were resolved. After reaching complete
agreement in mapping another 15 phenotype names, the three
reviewers split the remaining phenotype names and
independently mapped them to CEMs.

The reviewers were instructed to select the closest matches
when exact matches were not found. The reviewers then
specified levels of matches with one of the followings: exact
match, broad match, and narrow match, which are the

categories widely adopted in studies evaluating content
coverage of standardized terminologies [8,32,33].

Table 2. Examples of phenotype names in the phenotype
pilot set and phenotype variable descriptions in dbGaP.

Phenotype pilot set dbGaP
Waist/hip ratio in Type II Diabetes
Mellitus Cases

Total prednisone bursts since last visit

Human episodic memory
Child had atopic dermatitis for 2 yrs and
was seen by a doctor for it

Immunoglobulin A nephropathy
No. of positive core skin tests (all tests) at
Follow-up

Hip geometry, neck section modulus,
gender differentiated in females

Treatment group assigned at Baseline was
LABA arm

doi: 10.1371/journal.pone.0076384.t002

Figure 5.  Six CEM template models.  Template models that serve as the basis for creating a CEM are available in six domains:
Disease and Disorders, Procedures, Signs and Symptoms, Medications, Anatomical Sites, and Laboratory Tests. Detailed attributes
and qualifiers/modifiers in these models are shown.
doi: 10.1371/journal.pone.0076384.g005
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Exact matches indicate that the selected CEM has exactly
the same meaning as the mapped phenotype variable. For
example, the phenotype name “systolic blood pressure”
mapped to the SystolicbloodPressureMeas CEM in an exact
match. Broad matches indicate that the selected CEM had a
more general meaning than the mapped phenotype variable.
For example, the phenotype name “myocardial infarction”
mapped to the HealthIssue CEM in a broad match. Narrow
matches indicate that the selected CEM had a more specific
meaning than the mapped phenotype variable. The phenotype
name “myeloperoxidase” mapped to the
CellsMyeloperoxidase100CellsNFrPtXXXQnLabOb CEM is an
example of the narrow matches.

In addition to selecting the closest matches and specifying
the levels of matches, we also investigated why broad matches
and narrow matches arose. Unlike content coverage evaluation
of a terminology system, which deals with semantic coverage
of a single concept, the phenotype names we dealt with in this
study consisted with multiple concepts. For each phenotype
name, we first identified theme and modifier of phenotype
name and of its mapped CEM, then determined whether and at
what level the broad match or narrow match is caused by
theme or modifier. The levels were recorded as broad, exact,
narrow, missing modifier, or not applicable. For example, while
phenotype variable name “myocardial infarction” mapped to
CEM HealthIssue, it was deemed a broad match because the
theme “health issue” is more general concept than “myocardial
infarction”. Modifiers did not affect this matching level, as this
case does not have one.

Phenotype name “Mean corpuscular hemoglobin
concentration (MCHC)”, which mapped to
ErythrocyteMeanCorpuscularHemoglobinConcentrationMCncPt
RBCQnAutomatedCountLabObs CEM is an example of narrow
match. In this case, the theme of phenotype name (i.e., “Mean
corpuscular hemoglobin concentration (MCHC)”) and the
theme of mapped CEM (i.e.,
“MeanCorpuscularHemoglobinConcentration”) are identical but,
the mapped CEM has an additional modifier
“MCncPtRBCQnAutomatedCountLabObs” making the CEM
have more specific meaning. Therefore, this match is deemed
narrow match.

2) Representing phenotype names using a CEM template
model.  From the pilot set, we selected 50 phenotype names
that were not mapped to an existing CEM and classified them
into one of six categories that represent the six CEM template
models shown in Figure 5. Three reviewers (KL, MT, HK), who
also had participated in Phase I, were trained with the CEM
template models by modeling these 50 phenotype names using
a relevant CEM template model.

B. Phase II: representing phenotype variable
descriptions in dbGaP using CEM template models

In this second phase, we investigated whether CEM template
models could be applied to formalize the dbGaP variables. We
retrieved 200 non-demographic phenotype variable names and
descriptions from two data dictionaries of one pulmonary study
registered to dbGaP. Two reviewers (KL, MT), who had
participated in the modeling exercise in Phase I, conducted the

modeling of the 200 phenotype variable descriptions (100
each) using a relevant CEM template model (Figure 3).
Another reviewer (HK), who had also participated in Phase I,
reviewed and verified the accuracy of the modeling of the 200
variable descriptions.

Results

A. Representing the phenotype name pilot set to CEM
More than half (63%) of the 379 “phenotype names” from the

phenotype pilot set were mapped to CEMs. However, the
majority (60%) of these matches were broader matches (i.e.,
mapping to a more general CEM) [34]. The detailed mapping
results are presented by phenotype categories in Table 3.
Almost all disease variables were mapped to the HealthIssue
CEM as broad matches, since no disease-specific CEM
satisfying our needs was available. For analysis of broad
matches, our results showed that 133 out of 143 (93%) were
deemed broad due to broad themes, among which 117 (88%)
were the Diseases and Disorders related variables mapped to
HealthIssue CEM. Many of the Laboratory Test phenotypes
were mapped to multiple more-specific CEMs (i.e., narrow
matches) because Laboratory Tests CEMs carry very detailed
test related information based on Logical Observations,
Identifiers, and Codes (LOINC) [35]. For example, there are a
number of CEMs on glucose level tests, which are specified
with specific time points of test (e.g., 2 hours post prandial, 4
hours post prandial). The phenotype name “glucose level test”
was not specified with temporal information in the phenotype
pilot set. Among 47 narrow matches, 44 (93.6%) were deemed
narrow due to the additional modifiers, and majority of them
(97.7%) were Laboratory Tests related variables.

There were 24 non-exact matches that did not fit to either
broad or narrow matches. For example, the phenotype name
“Viscosity” was mapped to the
SerumViscosityViscPtBldQnLabObs CEM. Because this
“phenotype name” did not provide sufficient information on the
specimen type, the reviewers were unable to determine the
level of match for this mapping. Therefore, we introduced a
new category of “related match” to capture this type of
matches.

Table 3. Results of mapping phenotype names to CEM.

Phenotype categories Exact Broad Narrow Related Not mapped Total
Diseases and Disorders 0 116 0 5 7 128
Procedures 0 0 0 0 0 0
Signs and Symptoms 2 19 2 2 56 81
Medications 0 0 0 0 0 0
Anatomical Sites 0 0 0 0 0 0
Labs 20 2 44 10 21 97
Other Findings 4 6 1 7 32 50
Unknown 0 0 0 0 23 23

Total number 26 143 47 24 139 379

doi: 10.1371/journal.pone.0076384.t003
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Fifty phenotype names that did not belong to any of the six
categories were grouped into the Other Findings category. A
few examples of phenotype names are “age at death,” “HIV-1
time to progression,” “HLA-C gene expression,” “biologic age
by osseographic scoring system,” and “recombination rate,
gender specific in males.” Eighteen out of fifty phenotype
names in the Other Findings category were mapped to CEMs.

There were 139 phenotype variables (37%) that did not map
to CEM. Fifty-six out of 139 (40%) were in the category Signs
and Symptoms. A few examples of unmapped Signs and
Symptoms phenotype names include “human episodic
memory” and “Cognitive performance, Boston Naming test.”
There were 21 out of 139 (15%) unmapped phenotype names
belonging to the Laboratory Tests category. For example,
phenotype names such as “plasma CD40 ligand” and “platelet
aggregation (collagen induced)” were not mapped to any
CEMs.

Twenty-three phenotype names were not mapped to any
CEM due to the lack of sufficient information (“Unknown”).
“mean ratio” and “polytomous analysis” are a few examples of
such cases. In summary, two-thirds of the phenotype names in
our pilot set were mapped to CEMs with a small fraction of
exact matches (6.9%).

B: Representing the phenotype variable descriptions
with CEM template models

We conducted the modeling of the 200 non-demographic
phenotype variables selected from a pulmonary study in
dbGaP (Table 4). When categorized by topic, 59% (N = 118) of
the 200 variables fell into the non-disease/disorder related
Findings. A small number of variables were classified as
Medications-related (N=4, 2%) or Laboratory tests (N=16, 8%)
variables. About 26% of the variables (N=52) were deemed
irrelevant to this study on modeling, as they represented study-
specific information (e.g., visit number used for baseline visit,
participant assigned to combination therapy group) or workflow
related information specifically for study follow-ups (e.g.,
number of days since last visit, total ER visits). These variables
were deemed irrelevant to the representational responsibilities
of CEM, and were thus excluded.

We were unable to classify or model 8 variables (4%), as
their descriptions did not provide sufficient Information. A few

examples of such cases are phenotype variable “affection
status” and “affection status in PEAK.”

In summary, except for 60 (30%) phenotype variables that
were either irrelevant to CEM modeling or unclear in their
meaning, all phenotype variables (N=140, 70%) were
represented with CEM template models.

We found that none of the phenotype variable descriptions
from the 200 variables selected in these studies were mapped
to Procedure CEM template model. To test the feasibility of
representing procedure-related variables using the Procedure
template model, we manually selected an additional 15
procedure-related phenotype variable descriptions and
modeled them. A few examples in this category are “Surgery to
remove one ovary after natural menopause,” “Have surgery for
snoring surgery,” and “Child jaw surgery.” All 15 phenotype
variable descriptions were able to be mapped to Procedure
CEM template model. The most commonly-used attributes
were body location, device, method, relative temporal context
and subject.

Discussion

Although direct mapping of phenotype names to an existing
CEM yielded a very small number of exact matches, modeling
with the CEM template models covered a majority of the
phenotype variable descriptions we tested.

During the modeling process, however, we took note of
several challenges. First, there was a slight difference between
representing phenotype data as clinical data (i.e., as in CEMs)
and representing it as research data (i.e., as in dbGaP). The
former was often aggregated and reformatted into the latter, to
meet data analysis and workflow management demands in
research. We expect that many such cases can be resolved by
modeling with multiple template models, which can be
integrated in a nested fashion, as illustrated in Figure 6.

We are aware that combining multiple CEM template models
as described above is not the best way of using the CEM
template models. However, we attempted various approaches
to utilizing CEM template models because our final goal was
not to create new CEM, but rather to develop an NLP-type
system that algorithmically standardizes the phenotype
variables in dbGaP.

Table 4. Categories of the phenotype variable and relevant CEM template models used.

Topics Number of variables Percentage (%) CEM template models used

Diseases and Disorders 2 1 Diseases and Disorders

Findings (excluding Disease or Disorder) 118 59 Signs and Symptoms

Medications 4 2 Medication, Signs and Symptoms

Laboratory tests 16 8 Laboratory Tests, Signs and Symptoms

Not applicable 52 26 −

Unknown 8 4 −

Total number 200 100 −

doi: 10.1371/journal.pone.0076384.t004

Standardizing Phenotype Variables Using CEM
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Second, most of the phenotype variables have the nuance of
“Findings” regardless of their main topic. For example, although
a phenotype variable “number of prednisone bursts since last
visit” has medication-related information as a main topic, its
true intention is to capture the total number of administered
prednisone bursts between visits. We first modeled this using
the medication template by treating “since last visit (until
present)” as duration and the total number of administrations
as frequency. However, we also modeled this variable as a
“Finding” using the Signs and Symptoms template, considering
that this represents information aggregated from individual
prednisone burst administration instances.

This discrepancy stems from the fundamental difference
between the clinical data items for which CEM are designed to
model, and the phenotype variables collected through GWAS:
the former are usually created from discrete instances of
clinical events or observations as they occur. However, the
latter are the data items processed for research use, meaning
that they are generated post-hoc of events or observations
often by aggregating or interpreting raw data (i.e., discrete
instances of events or observations).

Similarly, a phenotype variable “Log10 blood eosinophils at
Follow-up” was modeled in two ways: using the Laboratory
Tests template to capture the topic and the Signs and
Symptoms template to represent its nuances as a “finding.”
The temporal information “at follow-up” was presented with the
Signs and Symptoms template using relative temporal context
attribute. Specific constraints for value representation such as
Log10 could be accommodated using additional qualifiers within
the model. However, we think that metadata on value
constraints is a better means to capture this information, as it is
not a semantically essential component of the variable.

A similar challenge to applying CEMs to represent clinical
data for research purposes was noted in the SHARPn project
[15]. The SHARPn researchers suggested additional or
different data requirements for particular secondary data use
cases, since CEMs were originally created to retrieve EHR
data [15,16]. The SHARPn team has been involved in revising
or extending CEMs to meet the secondary data uses and has
noted that creating common models to normalization of data is
much needed but a big challenge [16,36].

Figure 6.  Nested modeling of "Corticosteroid dose at
follow up.".  We modeled a phenotype variable description
“Corticosteroid at follow up visit” using integrated multiple
relevant CEM template models, including Signs and Symptoms
CEM template model and Medication template model.
doi: 10.1371/journal.pone.0076384.g006

Finally, we realized that many attributes of the CEM template
models were not utilized in modeling the phenotype variables
from dbGaP. The CEM template models are designed to
express clinical data with a sufficient level of detail and thus
provide a rich set of attributes that can be used to specify
clinical events and observations. Despite CEM being less
sophisticated than terminology models like SNOMED concept
models, their expressivity still made the modeling exercise
unnecessarily complex.

On the other hand, these models lacked an attribute
dedicated for the main topic concept of a phenotype variable.
With CEM templates, topic concepts are modeled with
“associated code” attribute, which is to contain not only the
main theme of the data element but also the entire data
element in a pre-coordinated concept using a standardized
concept code. For example, we modeled the finding variable
“age of mother first diagnosed with breast cancer” using Signs
and Symptoms model, as it is the most relevant to representing
findings variables. The main topic “age” was modeled with
“associated code,” “mother (of the patient)” was modeled using
the subject attribute, and “first diagnosed with breast cancer”
was modeled using the “relative temporal context” attribute.
However, putting the entire variable “age of mother first
diagnosed with breast cancer” with the “associated code”
attribute is another legitimate way of modeling.

We have to note here that there was a CEM update in March
of 2013, after we completed this study. In order to determine
whether our findings still hold with the revised CEMs, we
selected 110 from the 379 variable names that we used for the
phase I of this study and mapped them to the revised CEMs.

We did not find significant differences in the mapping except
that revised CEMs provided more exact matches, since specific
disease-related CEMs such as CoronaryHeartDiseasseAssert
and DiabetesMellitusTypeOneAsser were added to the revised
version. However, most disease-related variable names were
still mapped to HealthIssue as broad matches. We also found a
few more non-disease related exact matches for the previously
unmapped phenotype variables because the revised CEMs
contained additional items such as
ExerciseStressTestResultAssertextends, ObservationAssert,
FIMScoreLocomotionWalkingWheelchairMeas, and
FIMScoreMemoryMeas, This demonstrated that our original
findings of the direct mapping between CEMs and the dbGaP
phenotype names are still relevant.

The modeling process reported in this study was done
manually and served as a first step in testing the feasibility of
using an existing information model for clinical data like CEM to
standardize phenotype variables based on their free text
descriptions. Our ultimate goal was to algorithmically formalize
variable descriptions into an information model, in this case
CEM template models, to support further NLP processing.

Although conducted on a small scale with 215 phenotype
variables, this exercise provided valuable insight into the use of
CEM for formalizing phenotype variables. Based on the
outcome of this exercise, we decided that developing our own
information models for phenotype variables by benchmarking
existing standard models would provide more meaningful
results. By manually annotating a large number of phenotype

Standardizing Phenotype Variables Using CEM

PLOS ONE | www.plosone.org 8 September 2013 | Volume 8 | Issue 9 | e76384



variables using the attributes defined in SNOMED and CEM,
we have developed custom information models for
demographic variables and findings variables with only relevant
attributes.

Figure 7 is our in-house developed information model for
age-related findings variables. The previous example of “age of
mother first diagnosed with breast cancer” was successfully
represented with this model. This model was proven to be
successful at representing the key concepts of phenotype
variables with a high level of accuracy (92%) [37]. The
evaluation of the findings model is currently in progress.

We have identified key topic concepts with 70% accuracy
and the subject of information concepts with greater than 95%
accuracy based on UMLS concept mapping and heuristic rules.
We are currently focusing on improving the topic concept
identification. There are also some existing NLP topic
identification tasks that are more challenging than others. For
example, Percha et al. used a series of regular expression
based rules to classify mammography reports into BI-RADS
breast tissue composition categories (e.g. fatty, dense),
achieving an accuracy of >99% [38], whereas Harkema et al.
achieved an average accuracy of 74% when extracting
complex variables relevant to measuring the quality of
colonoscopy exams (e.g. “had the patient had a previous
colonoscopy?”) [39].

Conclusions

Reuse of data in dbGaP will facilitate novel scientific
discoveries and reduce the cost of research involving

integration of genotype and phenotype information. However,
nonstandard representations of phenotype variables in dbGaP
constitute a major barrier for reusing the data. As a first step
towards addressing the issues of unstandardized phenotype
variables in dbGaP, we explored the possibility of formalizing
phenotype variable descriptions using CEM. Although the use
of existing information models of CEM did not fully cover our
phenotype variables, it provided a fundamental approach for
representing phenotype variable descriptions, based on which
we are developing information models for standardizing
phenotype variable descriptions.
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