Table 3. Univariate predictors and multivariate regression model in quiet state.
Parameter | R2 | beta | Slope (95% CI) | p-value |
univariate | ||||
amplitude | 0.03 | 0.16 | 0.29 (−0.04, 0.63) | 0.087 |
gMSE3 | 0.54 | 0.73 | 39.90 (33.00, 46.85) | <0.001 |
skewness | 0.20 | 0.44 | 2.06 (1.27, 2,85) | <0.001 |
pNN5 | 0.34 | 0.58 | 21.33 (15.73, 26.94) | <0.001 |
VLF/LF | 0.23 | −0.52 | −1.15 (−1.50, −0.79) | <0.001 |
meanHR | 0.16 | −0.41 | −0.22 (−0.31, −0.12) | <0.001 |
Multivariate model | ||||
gMSE3 | 0.66/0.63 | 0.46 | 24.88 (16.72, 33.03) | <0.001 |
skewness | 0.24 | 1.13 (0.56, 1.71) | <0.001 | |
VLF/LF | −0.26 | −0.56 (−0.84, −0.28) | <0.001 | |
pNN5* | 0.14 | 5.16 (−0.08, 10.39) | 0.054 |
Coefficient of determination R2 (training set/validation set in the multivariate model), standardized regression coefficient beta, slope (95% confidence interval) of the models, significance.
pNN5 was included only in the backward modeling.