Table 4. Univariate predictors and multivariate regression model in active state.
Parameter | R2 | beta | Slope (95% CI) | p-value |
univariate | ||||
amplitude | 0.34 | 0.57 | 0.41 (0.34, 0.48) | <0.001 |
gMSE3 | 0.05 | 0.23 | 12.84 (6.50, 19.18) | <0.001 |
skewness | 0.35 | 0.59 | 4.01 (3.37, 4,65) | <0.001 |
pNN5 | 0.23 | 0.48 | 17.03 (135.36, 20.69) | <0.001 |
VLF/LF | 0.00 | 0.02 | 0.03 (−0.19, 0.26) | 0.766 |
meanHR | 0.04 | −0.21 | −0.11 (−0.17, −0.05) | <0.001 |
Multivariate model | ||||
amplitude | 0.51/0.50 | 0.37 | 0.27 (0.18, 0.35) | <0.001 |
gMSE3 | 0.22 | 12.29 (5.70, 18.88) | <0.001 | |
skewness | 0.33 | 2.27 (1.59, 2.95) | <0.001 | |
pNN5 | 0.11 | 3.76 (−0.59, 8.11) | 0.090 | |
VLF/LF | 0.12 | 0.23 (0.05, 0.40) | 0.012 |
Coefficient of determination R2 (training set/validation set in the multivariate model), standardized regression coefficient beta, slope (95% confidence interval) of the models, significance.