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Abstract

Invasive Pseudomonas aeruginosa (PA) can enter epithelial cells wherein they mediate formation of plasma
membrane bleb-niches for intracellular compartmentalization. This phenotype, and capacity for intracellular
replication, requires the ADP-ribosyltransferase (ADPr) activity of ExoS, a PA type lll secretion system (T3SS)
effector protein. Thus, PA T3SS mutants lack these capacities and instead traffic to perinuclear vacuoles. Here, we
tested the hypothesis that the T3SS, via the ADPr activity of ExoS, allows PA to evade acidic vacuoles that otherwise
suppress its intracellular viability. The acidification state of bacteria-occupied vacuoles within infected corneal
epithelial cells was studied using LysoTracker to visualize acidic, lysosomal vacuoles. Steady state analysis showed
that within cells wild-type PAO1 localized to both membrane bleb-niches and vacuoles, while both exsA
(transcriptional activator) and popB (effector translocation) T3SS mutants were only found in vacuoles. The
acidification state of occupied vacuoles suggested a relationship with ExoS expression, i.e. vacuoles occupied by the
exsA mutant (unable to express ExoS) were more often acidified than either popB mutant or wild-type PAO1
occupied vacuoles (p < 0.001). An exoS-gfp reporter construct pJNEO5 confirmed that high exoS transcriptional
output coincided with low occupation of acidified vacuoles, and vice versa, for both popB mutants and wild-type
bacteria. Complementation of a triple effector null mutant of PAO1 with exoS (pUCPexoS) reduced the number of
acidified bacteria-occupied vacuoles per cell; pUCPexoSE381D which lacks ADPr activity did not. The H*-ATPase
inhibitor bafilomycin rescued intracellular replication to wild-type levels for exsA mutants, showing its viability is
suppressed by vacuolar acidification. Taken together, the data show that the mechanism by which ExoS ADPr
activity allows intracellular replication by PA involves suppression of vacuolar acidification. They also show that
variability in ExoS expression by wild-type PA inside cells can differentially influence the fate of individual intracellular
bacteria, even within the same cell.
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Introduction

Pseudomonas aeruginosa is a highly adaptable bacterial
pathogen that plays a major role in nosocomial infections
including pneumonia, septicemia, and urinary tract infections,
as well as community-acquired opportunistic infections of the
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skin, soft tissue, and ocular surface [1-7]. P. aeruginosa
adaptability is reflected by the diversity of genetic traits and
large genome sizes seen among clinical isolates, suggesting it
has a proclivity for acquiring new DNA through horizontal
transfer and retaining traits that enable survival in different host
tissues [8,9]. Part of P. aeruginosa’s success as a pathogen is
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derived from its ability to adapt to the in vivo environment, and
express virulence traits that help the bacteria evade host
defenses. In the latter regard, the type Il secretion system
(T3SS) plays a major role through the expression of one or
more of four known effector proteins ExoS, ExoU, ExoT and
ExoY which promote P. aeruginosa virulence by modulating
bacterial interactions with epithelial cells, immune cells, and
host tissues [10-16].

Phagocytes and some "non-professional" phagocytes,
including epithelial cells, facilitate the destruction of internalized
microbes by trafficking them through a series of intracellular
vacuolar compartments starting in phagosomes (similar to early
endosomes) and terminating in acidified bactericidal
phagolysosomes [17]. Some microbes meet a similar fate via
autophagy in which autophagosomes fuse with lysosomes to
form acidified bactericidal autolysosomes [18]. Successful
intracellular pathogens, however, either show intrinsic
resistance to acidified phagolysosomes, e.g. Coxiella spp. or
Mycobacterium spp. [19,20] and/or escape default trafficking to
establish alternative intracellular survival niches. For example,
Listeria monocytogenes uses listeriolysin O to destabilize
vacuolar membranes and escape to the cytosol [21], and
Streptococcus pyogenes uses streptolysin O to reduce
lysosomal colocalization bacterial-occupied vacuoles [22].
Burkholderia cenocepacia containing vacuoles acquire late
endosomal markers, but delay recruitment of the NADPH
oxidase needed for vacuole acidification using type 6 secretion
system-dependent interference with RhoGTPases [23,24].
Other Gram-negative bacteria utilize a T3SS to survive
intracellularly. These include Salmonella enterica altering the
maturation of early endosomes by manipulating Rab proteins
involved in vacuolar fusion, allowing formation of a Salmonella-
containing vacuole [25-27], and Shigella spp. using a T3SS
effector IcsB to escape autophagy in the cytosol [28].

We previously reported that the ADPr activity of the P.
aeruginosa T3SS effector ExoS promotes P. aeruginosa
intracellular survival and is associated with the formation of
membrane bleb-niches within human epithelial cells [16,29].
Mutants in the T3SS that cannot express ExoS, e.g. exsA
(T3SS transcriptional activator) mutants and pscC (T3SS
needle) mutants, or exoS mutants lacking ADPr activity, do not
induce bleb formation, are defective in intracellular survival,
and traffic to perinuclear vacuoles [16,29]. Using exsA mutants,
we have shown that these perinuclear vacuoles are LAMP3+
[29], a feature of late endosomes. In contrast, popB mutants
(which lack the T3SS translocon, but can secrete effectors)
traffic to LAMP3- vacuoles and retain the capacity to replicate
intracellularly. Like wild-type P. aeruginosa, replication of popB
mutants is dependent on the ADPr activity of ExoS [30].

The aim of this study was to further our understanding of
how ExoS ADPr activity enables P. aeruginosa to replicate
intracellularly, and how epithelial cells suppress P. aeruginosa
viability when ExoS activity is absent. Thus, we tested the
hypothesis that ExoS-mediated intracellular survival involves
evasion of acidified intracellular compartments, and that
without ExoS, internalized bacteria are trafficked to acidified
vacuolar compartments wherein they lose viability.
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Materials and Methods

Bacterial Strains

P. aeruginosa strain PAO1, T3SS mutants, and plasmid-
complemented strains used in this study are described in Table
1. For fluorescent imaging, bacteria were transformed by
electroporation with plasmids encoding either green fluorescent
protein (pSMC2) [31] or dTomato (p67T1) [32] and selectively
cultured at 37°C overnight on tryptic soy agar (TSA) (BD
Bioscience, CA) containing carbenicillin (200 pg/mL) (Sigma,
MO). If antibiotic selection was not needed, bacteria were
grown on TSA plates at 37°C overnight. Bacterial inocula were
prepared by resuspending in warm keratinocyte growth
medium (KGM) (no antibiotics) to an optical density of 0.1 at
650 nm (Spectronic 21D; Milton Roy, PA), and diluted 1:10 to
yield ~1 x 107 CFU/mL. Inoculum sizes were confirmed by
viable count. To study exoS transcription, PAO1 and the popB
mutant were transformed by electroporation with a reporter
plasmid, bearing gfp under control of the exoS promoter
(pJNEO5) [33], and cultured at 37°C overnight on TSA
containing gentamicin (200 pg/mL) (Lonza, MD). Expression of
the GFP-reporter was confirmed under T3SS-inducing
conditions [Tryptic soy broth supplemented with 1% glycerol,
100 mM monosodium glutamate, and 2 mM EGTA (Sigma,
MO)].

Cell Culture

Telomerase-immortalized human corneal epithelial cells
(hTCEpi) [34] were cultured in KGM containing the antibiotics
gentamicin (30 pg/mL) and amphotericin B (15 ng/mL) (Lonza,
MD) at 37 °C under 5% CO, on sterile 25 mm glass coverslips
until ~ 80% confluence. Prior to infection (24 h), cultures were
washed with 3 equal volumes (2 mL) of warm phosphate
buffered saline (PBS) and switched to KGM without antibiotics.

Confocal Microscopy

Epithelial cells were inoculated with ~10” CFU/mL of bacteria
and incubated for 3 h at 37 °C (5% CO,). Viable extracellular
bacteria were then eliminated by washing with 3 equivalent
volumes (2 mL) of warm PBS and culturing in warm KGM (2
mL) containing amikacin (200 pg/mL) (Sigma, MO) for 1 h at 37
°C (5% CO,). Infected cultures were then stained with the
acidophilic dye - LysoTracker DND-22 (Life Technologies, NY)
as a 1 uyM solution in warm, phenol red - free KGM (Promocell,
Germany) containing amikacin (200 pg/mL) for 30 min as
described above. Cultures were then immediately transferred
to an attofluor chamber (Life Technologies, NY) and viewed
with a Fluoview FV1000 laser scanning confocal microscope
(Olympus, PA) equipped with 60 x magnification water-
immersion objective, 100W halogen illumination (for Nomarski
differential interference contrast - DIC), 405 nm and 559 nm
diode lasers (used for the excitation of LysoTracker DND-22
and dTomato, respectively) and a multi-line argon laser (used
to excite GFP at 488 nm). Fluorescent and transmitted light
was collected simultaneously using spectral-based PMT
detection and integrated DIC in 0.5 pym increments along the z-
axis. Resulting images were processed and quantified with
FV1000 ASW software (Olympus, PA) using 210 fields per
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Table 1. Bacterial strains, mutants and recombinant

plasmids used.

Replicates
Strain, mutant, in Epithelial
and/or plasmid T3SS Description cells Reference
Wild-type P. aeruginosa.
PAO1 Expresses ExoS, ExoT, + [13,29]
ExoY
Lacks T3S transcriptional
PAO1exsA::Q . [29,48]
activator
(exsA mutant) No T3S expression
PAO1ApopB Lacks T3S translocon + [13,29]
Encodes ExoS, ExoT,
(popB mutant)
ExoY
PAO1AexoSTY No known T3S effectors [13,29]
PAO1AexoSTY + Complementation with [16.49]
pUCPexoS plasmid-expressed ExoS '
Complementation with
PAO1AexoSTY + .
plasmid-expressed ExoS [16,49]
pUCPexoS (E381D) . B
without ADPr activity
PAO1AexoSTY +
Plasmid control - [16]
pUCP18
Plasmid encoding
constitutively-expressed
pSMC2 ) NA [31]
green fluorescent protein
(GFP)
Plasmid encoding gfp
pJNEOS fused the ExsA-dependent NA [33]
promoter of exoS
Plasmid encoding
p67T1 constitutively expressed NA [32]

dTomato

doi: 10.1371/journal.pone.0073111.t001

condition. Each field contained an average of 10 infected
epithelial cells. Thus, for each condition, ~100 infected cells
and >300 bacteria-occupied vacuoles were counted or
measured respectively. The diameter of each bacteria-
occupied vacuole was also noted. Mean values of bacteria-
occupied vacuoles per cell and relative percentage of total
occupied vacuoles are reported along with standard error of the
mean (SEM). In some instances, the mean value of all
intracellular bacteria per cell, including bacteria within bleb
niches, was also tabulated. Statistical significance was
assessed with ANOVA followed by a Welch’s corrected t-Test
based on the unequal variance of each normally distributed
dataset.
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Intracellular Survival Assays

Bacterial survival and intracellular replication was assessed
using culture conditions slightly modified from those described
above. Paired sets of epithelial cell cultures were grown in 12
well tissue culture plates to confluence in KGM containing
antibiotics (gentamicin and amphotericin B as above) and
switched to antibiotic-free media 24 h prior to infection. To
block vacuolar acidification, a subset of cultures were treated
with a vATPase inhibitor, bafilomycin A1 (Sigma, MO),
suspended in KGM (final concentration of 200 nM). These
treatments were initiated 1 h prior to infection and maintained
throughout the assay. Epithelial cells were inoculated with ~108
CFU/mL of bacteria (in 1 mL) and incubated for 3 h at 37 °C
(5% CO,). Viable extracellular bacteria were then removed by
washing with 3 volumes (2 mL) of warm PBS, then incubating
with  warm KGM containing amikacin (200 pg/mL), as
previously described, for 1 h (4 h time point) or 5 h (8 h time
point) amongst paired cultures, to allow intracellular replication.
Viable intracellular bacteria were recovered from PBS-washed
cultures using a 0.25% Triton X-100 solution (0.5 mL/well) and
enumerated by viable counting on TSA plates. Each sample
was assessed in triplicate, and data were expressed as a mean
+/- SEM per sample. Intracellular replication was reported as
the increase in recovered CFU at 8 h post-infection as a
percentage of a baseline measurement made after 4 h.

Statistical Analysis

Significance of differences between groups was assessed
using ANOVA and Welch’s corrected t-Test (based on unequal
variance among normally distributed datasets) or the Chi-
square test. P values < 0.05 were considered significant.
Experiments were repeated at least three times unless stated
otherwise.

Results

P. aeruginosa Mutants Lacking Expression of Type Il
Secretion Traffic to Acidified Vacuoles

We have previously shown that T3SS (exsA) mutants of P.
aeruginosa strain PAO1 traffic to perinuclear vacuoles that
label with the late endosomal marker LAMP3 after they are
internalization by epithelial cells, and that this correlates with
an inability to thrive [29]. Here, we examined whether vacuoles
occupied by exsA mutants of PAO1 were acidified. Confocal
imaging of human corneal epithelial cells infected with GFP-
expressing P. aeruginosa and labeled with LysoTracker (LT)
DND-22 showed different intracellular localization for wild-type
bacteria and T3SS mutants (exsA or popB) at 5 h post-infection
(Figure 1). As expected, intracellular exsA mutants were
confined to vacuoles, and the majority of these vacuoles were
found to be LT-labeled (i.e. acidified) (Figure 1B, co-localization
appears yellow). In contrast, translocon (popB) mutants and
wild-type bacteria, which can both replicate intracellularly (due
to their capacity to secrete ExoS), showed little or no co-
localization with acidified vacuoles (Figure 1C and 1D,
respectively). As expected, wild-type bacteria caused
membrane bleb-niche formation in (~50%) of PAO1 infected
cells (Figure 1D inset). Interestingly, LT (-) individual bleb
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Fig 1
GEP

LysoTracker

Merge DIC Merg

Uninfected

pB mutant exsA mutant

Figure 1. Colocalization of the P. aeruginosa exsA mutant with acidified vacuoles in epithelial cells compared to that of
wild-type bacteria or a popB (translocon) mutant. Confocal microscopy images of human corneal epithelial cells at 5 h post-
infection with GFP-expressing P. aeruginosa (green). Prior to imaging, infected cultures were infused with LysoTracker (LT) DND-22
(pseudo-colored red). Panels depict (A) Uninfected control, (B) PAO1 exsA mutant (C) PAO1 popB (translocon) mutant and (D)
wild-type PAO1. Uninfected cells appeared healthy. The intracellular exsA mutant appeared more frequently in LT (+) (acidified)
vacuoles which co-localized yellow (arrows) than either the intracellular popB mutant or wild-type PAO1. PAO1-infected cells which
displayed bleb-niche formation (1D inset) showed reduced fluorescence (< 10% fluorescence intensity of PAO1-infected non-
blebbing cells, p < 0.001 Welch’s corrected t-Test). Occasional bleb-niches contained LT (+) vacuoles containing bacteria (1D inset,
yellow). Representative images are shown. Magnification ~ 600 x.

doi: 10.1371/journal.pone.0073111.g001

niches occasionally contained LT (+) vacuoles containing blebbing PAO1-infected cells [3737.0 +/- 708.8] [p < 0.001
bacteria (see Figure 1D inset). However, blebbing cells Welch’s corrected t-Test]. Non-blebbing PAO1-infected cells
otherwise stained poorly with LT, displaying > 20-fold reduced showed similar intensity to cells infected with the exsA mutant
total fluorescence intensity [174.5 +/- 78] compared to non- [3537.7 +/- 205.9].
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The number of vacuoles per cell occupied by exsA mutants,
popB mutants or wild-type PAO1 with (LT+) or without (LT-)
LysoTracker staining was quantified (Figure 2). For exsA
mutants, the mean number of bacterial-occupied LT (+)
vacuoles per cell was 3.8 +/- 0.3, significantly more than the
number of bacterial-occupied LT (-) vacuoles at 1.9 +/- 0.3 [p <
0.001 Welch’s corrected t-Test] (Figure 2A). The popB mutant
was more likely to occupy LT (-) vacuoles than the exsA mutant
with 3.6 +/- 0.7 bacteria-occupied LT (-) vacuoles per cell
versus 1.9 +/- 0.3 for the exsA mutant [p < 0.05, Welch’s
corrected t-Test] (Figure 2A). Indeed, the popB mutant was
located exclusively in LT (-) vacuoles in ~13% of all infected
epithelial cells versus ~2% for the exsA mutant [p = 0.01, Chi-
square test]. There was no significant difference in the
numbers of LT (+) and LT (-) bacteria-occupied vacuoles per
cell for the popB mutant compared to wild-type PAO1 infected
cells (Figure 2A). As would be expected, considering that wild-
type PAO1, but not the popB mutant, can form and traffic to
bleb-niches, there were significantly fewer bacterial-occupied
vacuoles per cell for PAO1 compared to popB mutant-infected
cells, regardless of LysoTracker-staining [LT (-) = 1.7 +/- 0.2
versus 3.6 +/- 0.7, respectively, p < 0.05: LT (+) = 1.9 +/- 0.2
versus 3.95 +/-0.3, respectively, p < 0.001 Welch’s corrected t-
Test] (Figure 2A). From counts of individual GFP-expressing
wild-type bacteria, it appeared that epithelial cells with bleb-
niches contained significantly more intracellular bacteria [mean
value of 7.1 +/- 1.3 bacteria per cell] than non-blebbing cells
[2.4 +/- 0.3 bacteria per cell, p = 0.002 Welch’s corrected t-
Test].

LT (+) vacuoles occupied by the popB and exsA mutants
were found at a similar frequency [mean value of 3.95 +/- 0.3
per cell versus 3.8 +/- 0.3 per cell, respectively, p = 0.79,
Welch’s corrected t-Test] (Figure 2A). To normalize for
differences in bacterial internalization between these two
mutants, the mean percentage of bacteria-occupied LT (+)
vacuoles was calculated as a function of the total number of
occupied vacuoles in a given cell (Figure 2B). For the exsA
mutant most occupied vacuoles were LT (+) (73.9 +/- 2.1%),
significantly more than either the popB mutant (52.4 +/- 5.4%, p
= 0.001 Welch’s correct t-Test) or wild-type PAO1 (45.9 +/-
5.8%, p = 0.001 Welch’s corrected t-Test), which did not
significantly differ from each other (p = 0.42 Welch'’s corrected
t-Test).

Using the same experimental conditions, P. aeruginosa
infected epithelial cells were then examined for vacuole size
and vacuole spatial localization, the latter classified as either
perinuclear or otherwise (Table 2). LT (+) vacuoles occupied by
the exsA mutant were significantly larger in diameter [1.15 +/-
0.04 pm] than the corresponding LT (-) group [0.99 +/- 0.06
um, p < 0.05 Welch’s corrected t-Test]. The LT (+) occupied
vacuoles were also more likely to be perinuclear (Table 2).
PAO1 occupied LT (+) vacuoles were also significantly larger
than their LT (-) counterparts, and more of those LT (+)
occupied vacuoles were perinuclear, although that difference
was not significant. LT (-) vacuoles occupied by the popB
mutant were larger [1.07 +/- 0.06 ym] than those occupied by
PAO1 [0.89 +/- 0.07 pm].
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Table 2. Mean size and spatial distribution of bacteria-
occupied vacuoles.

% Bacteria-Occupied Vacuoles

Bacterial Mean Vacuole Size (+/- SEM) which are Perinuclear [Mean (+/-
Strain pm SEM)]

Non-Acidic Acidic Non-Acidic

Vacuoles Vacuoles Vacuoles Acidic Vacuoles
exsA

0.99 +/-0.06  1.15+/-0.04T 10.9+/-15 34.3 +/-3.71
mutant
popB 1.07 +/-

1.18 4/-0.05 12.8 +/-2.0 24.4 +/-5.4

mutant 0.061t
PAO1 wild-
) 0.89 +/-0.07 1.10 +/-0.05T 19.2 +/-4.8 32,9 +/-5.3
ype

Values compared using ANOVA (p = 0.004) and pairwise using Welch'’s corrected
t-Test
t Significant difference from non-acidic vacuoles of the same strain (p < 0.05,
Welch'’s corrected t-Test)

T T Significant difference from non-acidic vacuoles of PAO1 (p < 0.05, Welch’s
corrected t-Test)
doi: 10.1371/journal.pone.0073111.t002

Together, the data show that without the T3SS, i.e. exsA
mutants, the majority of intracellular P. aeruginosa are
trafficked to acidified perinuclear vacuoles within epithelial
cells, while wild-type and translocon (popB) mutants (both able
to secrete T3SS effectors including ExoS) are less likely to
occupy acidified vacuoles, even though the popB mutant
cannot translocate effectors across host membranes.

Bafilomycin Rescues Intracellular Survival of the exsA
Mutant

We next explored if association of the exsA mutant with
acidified vacuoles was related to a reduced capacity to thrive
intracellularly. For this purpose, intracellular survival assays
were performed with and without bafilomycin A1, an inhibitor of
vacuole acidification, using the exsA mutant. Wild-type PAO1
and the popB (translocon) mutant were included as controls
(Figure 3). As expected, wild-type and translocon mutants
replicated intracellularly, and their replication rate was
unaffected by bafilomycin A1. Without bafilomycin, the exsA
mutant was confirmed to be defective in intracellular replication
[86.4 +/- 15% relative to baseline] compared to wild-type (216.8
+/- 40%) and popB mutant bacteria (259.6 +/- 65%, p < 0.05,
Welch’s corrected t-Test). With bafilomycin A1 (200 nM)
intracellular replication by the exsA mutant was rescued to
levels similar to wild-type PAO1 (250.7 +/- 52.2%) (Figure 3).
Control experiments (not shown), confirmed that 200 nM
bafilomycin A1 blocked LysoTracker staining of epithelial cells
and had no impact on bacterial viability. Thus, vacuolar
acidification was required for cells to suppress intracellular
replication by the exsA mutant.
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Fig 2 Vacuole Type
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Figure 2. Quantification of acidified versus non-acidified vacuole occupation by wild-type P. aeruginosa and its type Il
secretion mutants. (A) Confocal microscopy images were used to classify bacteria-occupied vacuoles in human corneal epithelial
cells as either LT (+) (acidified) or LT (-) (non-acidic) at 5 h post-infection with P. aeruginosa PAO1 or its type lll secretion mutants
(exsA or popB). The data are shown as the mean (+/- SEM) number of bacteria-occupied vacuoles per cell. Grey columns denote
LT (-) vacuoles, black columns LT (+) vacuoles. The exsA and popB mutants were both associated with increased numbers of
acidified LT (+) bacteria-occupied vacuoles per cell compared to wild-type PAO1 (p < 0.001, Welch’s corrected t-Test). The exsA
mutant showed more acidified than non-acidified bacteria-occupied vacuoles per cell (p < 0.001, Welch’s corrected t-Test). (B) To
normalize differences in internalization and replication, the percentage of LT (+) bacteria-occupied vacuoles was calculated as a
function of the total number of bacteria-occupied vacuoles per cell. Mean percentage (+/- SEM) is shown. The exsA mutant was
associated with more acidified bacteria-occupied vacuoles per cell than either the popB mutant or wild-type bacteria (p < 0.001,
Welch’s corrected t-Test). A representative experiment of 3 independent experiments is shown in both panels (A) and (B).
Calculations excluded cells showing bleb-niche formation. Significant differences between all groups were identified using ANOVA
analysis (p < 0.0001), and characterized on a pairwise basis using Welch'’s correct t-Test [*p < 0.05, **p < 0.001].

doi: 10.1371/journal.pone.0073111.g002
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Figure 3. Intracellular survival and replication of P. aeruginosa PAO1 and its type lll secretion mutants in corneal epithelial
cells in the presence bafilomycin A1 (200 nM) (black boxes) versus control cells treated with vehicle only (grey
boxes). Bafilomycin treatment restored intracellular survival of the exsA mutant to that of the popB mutant and wild-type PAO1.
Bafilomycin A1 was added 1 h before infection and continued throughout the assay. Intracellular survival was expressed as the
mean percentage increase in viable intracellular bacteria at 8 h versus 4 h post-infection (+/- SEM). A representative experiment of
3 independent experiments in shown above. ANOVA (p = 0.0002) and Welch’s corrected t-test were used for statistical analysis (* p

popB mutant

<0.05).
doi: 10.1371/journal.pone.0073111.g003

The ExoS ADP-ribosylation Domain Reduces Bacterial
Occupation of Acidified Vacuoles

We previously reported that the ADPr domain of ExoS
confers intracellular replication without the T3SS translocon or
other known effectors [30]. Thus, we tested if this domain of
ExoS impacts P. aeruginosa occupation of acidified vacuoles.
A triple effector mutant of PAO1 (PAO1AexoSTY)
complemented with exoS (pUCPexoS) was compared to the
same mutant complemented with ADPr-inactive exoS
(PUCPexoSE381D) and a vector control (pUCP18). The two
controls occupied more LT (+) acidified vacuoles than LT (-)
vacuoles (Figure 4A) [pPUCP18 LT (+): 2.6 +/- 0.2 versus LT (-):
1.5 +/- 0.1, pUCPexoSE381D LT (+): 1.9 +/- 0.1 versus LT (-):
0.9 +/- 0.1, p < 0.001 Welch’s corrected t-Test], similar to the
results for the exsA mutant (Figure 2A). Complementation with
ADPr active ExoS reduced this bias towards bacteria-occupied
LT (+) vacuoles relative to LT (-) vacuoles (Figure 4A) [LT (+):
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1.5 4/- 0.1 versus LT (-): 1.6 +/- 0.2, p = 0.82 Welch’s corrected
t-Test]. This was the case even after normalizing for
differences in bacterial internalization, i.e. when the mean
percentage of bacteria-occupied LT (+) vacuoles was
calculated as a function of the total number of occupied
vacuoles: PAO1AexoSTY + pUCPexoS (39.9 +/- 4.5%) versus
PAO1AexoSTY + pUCPexoSE381D (67.7 +/- 3.7%) [p < 0.001
Welch’s correct t-Test], the latter was not significantly different
from PAO1AexoSTY + pUCP18 (63.8 +/- 3.3%) (Figure 4B). It
was noted that pUCPexoS-complemented bacteria partitioned
exclusively to LT (-) vacuoles in 35% of the infected, non-
blebbing cells versus only 10% of the cells infected with
pUCP18 strain [p < 0.001 (chi-square)]. This would account for
the lower overall percentage of LT (+) vacuoles per cell
calculated for the exoS-expressing strain, despite the apparent
overlap in the mean number of LT (+) versus LT (-) occupied
vacuoles per cell.
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Figure 4. Quantification of acidified versus non-acidified vacuole occupation by a triple effector type Ill secretion mutant
of P. aeruginosa complemented with either exoS or exoS without ADPr activity. (A) Confocal microscopy images were used
to classify bacteria-occupied vacuoles as LysoTracker LT (+) (acidified) or LT (-) at 5 h post-infection with a triple effector mutant of
P. aeruginosa (PAO1AexoSTY) complemented with exoS (pUCPexoS), exoS without ADPr activity (PUCPexoSE381D) or a vector
control (pUCP18). Data are shown as the mean (+/- SEM) values of bacteria-occupied vacuoles per cell. Grey columns denote LT
(-) vacuoles, black columns denote LT (+) vacuoles. Calculations excluded cells showing bleb-niche formation. Without ExoS ADPr
activity (complementation with pUCP18 or pUCPexoSE381D), there were significantly more acidified bacteria-occupied vacuoles
per cell (p < 0.05 Welch’s corrected t-Test). (B) The number of LT (+) bacteria-occupied vacuoles per cell was also calculated as a
function of the total number of bacteria-occupied vacuoles per cell. Mean percentage (+/- SEM) is shown. Expression of ADPr active
exoS was associated with reduced occupation of acidified vacuoles. Calculations also excluded cells showing bleb-niche formation.
(C) Mean (+/- SEM) values of intracellular bacteria were determined to account for both the number of bacteria per vacuole and
bacteria within blebbing cells in non-vacuolar niches. Complementation of the triple effector mutant PAO1AexoSTY with exoS
(pPUCPex0S) significantly reduced the number of intracellular bacteria per cell within acidified compartments. Grey columns denote
LT (-) vacuoles, black columns LT (+) vacuoles. Each panel above is a representative experiment of 3 independent experiments.
Significant differences were observed between groups by ANOVA (p < 0.0001). Welch’s corrected t-Test was used in pair-wise
comparisons [*p < 0.05, **p < 0.001].

doi: 10.1371/journal.pone.0073111.g004
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To account for variation in the number of bacteria per
vacuole and the ability of some bacteria to traffic to non-
vacuolar compartments, the mean number of intracellular
bacteria per cell was also calculated, regardless of whether
bacteria occupied vacuoles or bleb-niches, and their
association with LysoTracker was recorded (Figure 4C).
Complementation of PAO1AexoSTY with exoS was associated
with significantly fewer intracellular bacteria in acidified
compartments [+ pUCPexoS LT (+): 1.4 +/- 0.2, p < 0.001
Welch’s corrected t-Test] compared to either the control
plasmid [pUCP18 LT (+): 4.2 +/- 0.3] or complementation with
ADPr-inactive exoS [+ pUCPexoSE381D LT (+): 2.7 +/- 0.2].
Interestingly, complementation with ADPr-inactive exoS also
reduced bacterial occupation of LT (+) compartments
compared to the control plasmid complemented mutant, but not
to the reduced levels achieved by pUCPexoS complementation
(Figure 4C). These data show that the ADPr domain of exoS is
important in P. aeruginosa evasion of acidified compartments
in epithelial cells after internalization.

Transcription of exoS by Intracellular P. aeruginosa
and Evasion of Acidified Vacuoles

Expression of ExoS by P. aeruginosa is activated in a low
calcium environment or by contact with host cells [35,36]. ExoS
also regulates contact-dependent T3SS expression [37]. Since
our data showed that ExoS ADPr activity reduces bacterial
occupation of acidified compartments, we used a
transcriptional reporter to study both relative levels and spatial
patterns of exoS expression by intracellular P. aeruginosa. To
accomplish this, P. aeruginosa PAO1 was transformed with a
reporter construct pJNEQO5S (Table 1) that expresses gfp under
control of the exoS promoter [33]. They were also transformed
with plasmid p67T1 (Table 1), such that they constitutively
express dTomato, another fluorophore. Under non-inducing
conditions, i.e. tissue culture media, nearly all of the plasmid-
bearing bacteria produced detectable, but low levels of GFP [<
1000 total fluorescence intensity] (data not shown). Under
T3SS-inducing conditions (i.e. low calcium media), ~ 50% of
transformed PAO1 expressed GFP at levels > 1000 total
fluorescence intensity. Consequently, these values were used
as guidelines to classify intracellular bacteria as having a low or
high exoS transcriptional output.

When this transcriptional reporter strain was studied in the
context of epithelial cell infection, the results show a clear
distinction between intracellular bacteria with high or low exoS
output and occupation of LT (+) vacuoles (Figure 5). High exoS
transcriptional output coincided with low occupation of LT (+)
vacuoles and vice versa. For example, high exoS
transcriptional output was observed in 26 +/- 6.7% of all
intracellular PAO1, very few of which occupied LT (+) vacuoles
(6.6 +/- 2.2%) (Figure 6), and most were within blebbing cells.
The remaining intracellular PAO1 (74 +/- 6.7% of total bacteria)
displayed low level exoS transcription and were more likely to
occupy LT (+) vacuoles (56.4 +/- 3.5%) than the high
transcriptional output group (p <0.001 Welch’s corrected t-Test)
(Figure 6). Similar results were obtained with the popB mutant
transformed with the same plasmids. For example, high exoS
transcriptional output was seen in 106 +/- 1.6% of all
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intracellular translocon mutants, which were less likely to
occupy LT (+) vacuoles (21.4 +/- 9.0%) as compared to
bacteria with a low exoS transcriptional output (59.4 +/- 3.0%, p
< 0.001 Welch’s corrected t-Test) (Figure 6). Together, the data
show that exoS expression is associated with reduced
occupation of acidified vacuoles by intracellular P. aeruginosa.

Discussion

The data presented in this study show that the T3SS, and
specifically the ADPr activity of ExoS, redirects P. aeruginosa
away from acidified compartments within epithelial cells that
have internalized them, and that this enables intracellular
replication. Thus, ExoS mutants lacking ADPr activity traffic
more often to acidified compartments, where they fail to thrive.

The fact that inhibition of vacuolar acidification restored the
ability of the T3SS defective exsA mutant to replicate
intracellularly shows that the inability to thrive results from
acidification of the vacuoles that they are confined within. This
provides insights into the likely mechanism by which epithelial
cells kill intracellular P. aeruginosa lacking ExoS ADPr activity;
inhibiting acidification reduces the activity of acid-dependent
antimicrobial factors, e.g. acid-hydrolases, within epithelial
vacuoles by drug-induced elevation of vacuolar pH and/or the
prevention of phagosome maturation by inhibition of lysosome
fusion as shown previously for autophagosome maturation [38].

Whether ExoS inhibits vacuolar acidification directly, or by
redirecting bacteria to other compartments within the cell is yet
to be directly determined. Supporting the latter possibility, wild-
type PAO1 traffics to membrane blebs, where they are free to
replicate without suppression by intravacuolar factors.
However, popB (translocon) mutants, which also replicate
within cells in a ExoS ADPr activity-dependent fashion, do not
traffic to blebs and instead replicate within vacuoles [30].
Supporting the likelihood that ExoS acts locally upon the
vacuole to inhibit acidification/promote intracellular replication
is our data showing that popB mutant infected cells, like cells
infected with wild-type bacteria, harbor a larger percentage of
bacterial-occupied vacuoles that are not acidified compared to
cells infected with exsA mutants. Also supporting the
probability of direct manipulation, rather than an escape
mechanism, is that ExoS ADPr activity, when introduced into
cells without bacteria, blocks endocytic vesicle trafficking [39].

ExoS ADPr activity acts upon multiple cellular targets [40].
For example, inhibition of endocytic vesicle trafficking and
lysosomal degradation of the epidermal growth factor receptor
results from ExoS ADP-ribosylation of Rab5 and Rab9 [39].
Thus, ExoS inhibition of phagosome maturation through ADP-
ribosylation of Rab5, and perhaps ExoS ADPr effects on other
Rab GTPases (e.g. Rab6 or Rab9) with which it is known to
interact [41], could explain our results. Those effects of ExoS
could help internalized bacteria remain in immature
phagosomes rather than trafficking to inhibitory LAMP3+,
acidified (mature) phagolysosomes. Arguing against Rabs
being the critical target for this activity of ExoS ADPr activity,
however, is that popB mutants inhibit vacuolar acidification and
replicate intracellularly. These mutants remain in vacuoles and
should be unable to translocate ExoS across host (vacuolar or
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Fig 5
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Figure 5. Colocalization of P. aeruginosa with acidified versus non-acidified vacuoles in relation to exoS transcriptional
output. Confocal and Differential Interference Contrast (DIC) microscopy of human corneal epithelial cells at 5 h post-infection with
P. aeruginosa PAO1 complemented with a reporter construct pJNEO5 encoding the exoS promoter fused to gfp (green), and p67T1
which constitutively expresses dTomato (red). Bacteria were classified as having a high exoS transcriptional output using a
threshold value of 1000 units of GFP fluorescent intensity (green) based on expression levels observed under T3SS-inducing
conditions (see Results). Prior to imaging, epithelial cells were infused with LysoTracker DND-22 (blue). ExoS-expressing bacteria
(high output, green) [solid arrows] were located primarily outside of acidified (blue) intracellular compartments, which often
contained bacteria with low exoS output [dashed arrows]. Blebs are indicated with open arrows. Representative images are shown
from two independent experiments. Magnification ~ 600 x.

doi: 10.1371/journal.pone.0073111.g005
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Figure 6. Quantification of acidified vacuole occupation by P. aeruginosa in relation to exoS transcriptional output. Data
show the mean (+/- SEM) percentage of bacteria-occupied acidified (LT+) vacuoles at 5 h post-infection for P. aeruginosa PAO1
and a popB (translocon) mutant. Bacteria were transformed with an exoS transcriptional reporter plasmid pJNEO5 (exoS-gfp) and
plasmid p67T1 (dTomato). Infected cells were also stained with LysoTracker. Bacteria with high exoS expression (grey columns)
were significantly less likely to occupy acidified vacuoles than those with a low exoS expression (black columns) (* p < 0.001,
Welch'’s corrected t-Test). Data is representative of 3 independent experiments.

doi: 10.1371/journal.pone.0073111.g006

plasma) membranes to access Rabs that are located in the
cytoplasm outside of vacuoles. None of the other known
targets of ExoS ADPr activity including Ras [42] and the ERM
proteins (Ezrin, Radixin, Moesin) [43], however, are known to
be located inside vacuoles. However, it remains possible that
ExoS can escape vacuoles in a translocon-mutant background
through an alternative mechanism to exert its effects on
vacuole acidification.

The observation that acidified vacuoles were sometimes
within membrane blebs suggests that vacuolar trafficking might
also be impacted. If so, that may or may not involve ExoS. A
potential mechanism could be lysosomal exocytosis, a process
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triggered by plasma membrane damage including that induced
by a T3SS as shown for Salmonella spp. [44]. This results in
upregulated production of vesicles/lysosomes that are then
exported to the plasma membrane for repair purposes [45].
Such a mechanism could conceivably contribute to formation of
membrane blebs, and might induce bacterial trafficking to them
during P. aeruginosa infection of epithelial cells.

Some individual bacterial cells among populations of mutants
lacking ExoS ADPr activity were found in LT- (non-acidified)
vacuoles. While it is possible that P. aeruginosa uses virulence
factors in addition to the T3SS to avoid trafficking to acidic
compartments, it is more likely that these were bacteria in the
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process of being trafficked to acidic compartments and had not
yet reached their destination. The data showing that bacterial-
occupied LT- (non-acidified) vacuoles were located further
away from the nucleus than those that were LT+ supports that
there are earlier steps in trafficking, considering that mature
lysosomes tend to be perinuclear. Further, the finding that LT-
vacuoles containing exsA mutants (ExoS secretion incapable)
were smaller than those containing popB mutants (ExoS
secretion capable) suggests they represent different
compartments, consistent with the fact that only the latter can
replicate inside vacuoles.

Some bacteria in wild-type infected cells expressed low
levels of exoS, as shown using an exoS transcriptional
reporter, and as expected these tended to localize to acidic
vacuoles. Low levels of ExoS expression by those bacteria
might follow loss of viability because they had been trapped in
acidic vacuoles. Alternatively, these could be low-level
expressers among the viable population and that is why they
were trafficked to acidic vacuoles. The T3SS of P. aeruginosa
is known to be triggered by host cell contact or low calcium
conditions and requires translocation of the negative regulator
ExsE [36,46]. Thus, individual bacteria inside a cell could be
exposed to environments with differential triggering potential.
Differences in gene expression among individual bacterial cells
can also occur even when the entire population is exposed to
the same inducing conditions, a phenomenon referred to as
bistability [47]. Bistable gene expression could provide a
survival advantage considering that activities of some P.
aeruginosa T3SS effectors (e.g. the GAP activity of ExoS and
ExoT) can inhibit host cell invasion and that the desirability of
being internalized by a cell can depend on the host cell type
and the prevailing extracellular conditions. Whatever the case,
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this when known targets of ExoS are located within the cell
cytoplasm is to be determined.
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