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Human Influenza A virus undergoes recurrent changes in the hemagglutinin (HA) surface protein,
primarily involved in the human antibody recognition. Relevant antigenic changes, enabling the virus to
evade host immune response, have been recognized to occur in parallel to multiple mutations at antigenic
sites in HA. Yet, the role of correlated mutations (epistasis) in driving the molecular evolution of the virus
still represents a challenging puzzle. Further, though circulation at a global geographic level is key for the
survival of Influenza A, its role in shaping the viral phylodynamics remains largely unexplored. Here we
show, through a sequence based epidemiological model, that epistatic effects between amino acids
substitutions, coupled with a reservoir that mimics worldwide circulating viruses, are key determinants that
drive human Influenza A evolution. Our approach explains all the up-to-date observations characterizing
the evolution of H3N2 subtype, including phylogenetic properties, nucleotide fixation patterns, and
composition of antigenic clusters.

I
nfluenza virus is estimated to infect yearly 5% to 20% of the United States population, with an average of
,40000 related deaths1,2. The major responsible of these high rates of morbidity and mortality, in the United
States and worldwide, is the H3N2 subtype of Influenza A. The hemagglutinin (HA) surface protein of the

virus has been the major focus of public health surveillance, due to its primary role in the interaction between the
virus and the human immune system3. A crucial problem in the investigation and control of Influenza outbreaks
is to unravel the complex interplay between the antigenic properties and the genetic profile of the virus. Each year
sequences belonging to a single antigenic cluster are responsible for almost all the infections, and different
antigenic clusters replace each other every 2–5 years4. This reflects in the peculiar structure of the phylogenetic
tree, as inferred from the HA1 domain of the HA gene, characterized by a long trunk and short side branches
representing closely related sequences that co-circulate every year5. This shape has been related to the continuous
selective pressure that acts on the virus to evade hosts immunity6,7. Recently, transitions between antigenic
clusters have been associated with multiple substitutions in the HA1 domain of hemagglutinin8,9. These observa-
tions strengthened previous results that highlighted how, although related, antigenic and genetic evolution do not
follow the same patterns, antigenic evolution being more punctuated10. Further, genetic and antigenic distances
between strains do not completely correlate: few amino acids substitutions can lead to strong differences in
antigenic properties and conversely strains in the same antigenic cluster can exhibit high mutual genetic distance.
Moreover, amino acid changes which seem to be relevant in the transition between two specific antigenic clusters,
can exhibit a null antigenic effect when appearing in different sequences, so that changes in antigenic properties
cannot simply be associated with key influential sites10.

Despite substantial results have been achieved in the effort of understanding the main mechanism driving the
evolution of the Influenza A virus, fundamental questions such as how the extremely high mutation rate of the
virus is compatible with its limited genetic diversity at each epidemic season, what are the determinants of its
antigenic changes and what is the role of its global transmission dynamics in shaping its evolution remain largely
unanswered11–18.

Early models of Influenza evolution lacked a clear distinction between genetic and antigenic distances and
referred to isolated host populations. In that framework, multi-strains models13,14 were not able to reproduce the
characteristic shape of the phylogenetic tree without invoking a temporary strain-transcendent immunity – after
infection the host was hypothesized to acquire immunization against all the other strains for a period of some
months. In particular, in the simplified model studied in14, lacking the host population structure considered in13,
the temporary strain-transcendent immunity could not account alone for the comb-like shape of the Influenza A
phylogenetic tree, and an a priory different infectivity of the different strains had to be considered as well. The
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interplay between a complex host population structure and the
hypothesized generalized immunity thus remained a key question
to be elucidated. A different perspective was later adopted in15, where
static neutral clusters19,20 were adopted to introduce a genotype-
phenotype mapping accounting for the difference in the genetic
and antigenic evolution. This model was able to reproduce the main
features of the Influenza A phylodynamics and to account for the
variability of genetic similarity between strains in the same antigenic
cluster. Yet, a self-consistent explanation of how jumps in clusters
with substantial antigenically different properties are triggered was
not proposed. In particular, relevant antigenic changes were
explained by means of episodic strongly beneficial mutations.
However, this mechanism has turned out to be inconsistent with
the evolutionary pattern of this virus, where clonal interference
coupled with a high and continuous rate of beneficial mutations have
shown to play a relevant role in determining the selection of the
strains21.

Here we show that a mechanism based on epistatic effects22, i.e.,
dynamically correlated mutations in antigenic sites, coupled with a
reservoir that mimics worldwide circulating viruses, quantitatively
accounts for shifts between antigenic clusters and allows to reconcile
all the observations mentioned above, both experimental and theor-
etical, in a unique self-contained framework.

Results
The model. We consider a multi-strains stochastic model of virus
transmission and evolution, where the interaction between host and
virus is regulated by cross-immunity, depending on the antigenic
properties of the viral sequence and on the host infection history.
The epistatic mechanism we consider is such that jumps between
different antigenic clusters are triggered whenever substitutions
accumulate in groups of sites, which themselves depends on the
evolutionary history of the virus, introducing in this way
dynamically defined neutral clusters.

We define the antigenic distance between two strains as the max-
imal number of adjacent sites they differ on (we note that the adja-
cency of the sites is only a convenient, though general, way to model a
group of suitable sites and it is not related to any biological insight).
The antigenic space resulting from this definition of antigenic dis-
tance was studied in23, highlighting a non trivial structure of clusters
of immunity. Here the ideas presented in23 are extended in a more
realistic model of virus-host interaction. Two sequences elicit a com-
plete cross-immunity against each other if their antigenic distance is
lower that a fixed threshold D, otherwise a partial cross-immunity s
is considered. A sequence is assigned to an antigenic cluster when-
ever its antigenic distance from the cluster founder strain is lower
than D. The cluster founder strain is the first emerged strain char-
acterizing the novel antigenic cluster, i.e., exhibiting an antigenic
distance higher than D from all the previous clusters’ founder strains.
The circulation dynamics at a global geographic level has been poin-
ted out as a main mechanism through which the human Influenza A
virus is sustained between seasonal epidemics16–18. This global trans-
mission pattern is simplified in the model through the introduction
of a reservoir that represents in a coarse-grained fashion the viral
evolution outside the temperate region under consideration (see the
Methods section for a detailed description of the evolutionary
dynamics of the strains in the reservoir). In15 an immigration rate
from an external reservoir was also introduced in order to avoid virus
extinction but its implications for the model results were not fully
investigated.

The epidemiological structure model is defined as follows: we
consider a host (human) population of N individuals, each of which
can host a viral strain. A viral strain is represented by a binary
sequence of fixed length L. At each iteration step, the following
processes are considered: with probability Rdt each infected indi-
vidual tries to infect another one, randomly chosen in the population.

The infection takes place with probability 1 2 s if the chosen indi-
vidual is not infected itself and if none of the strains she was prev-
iously infected by elicits complete cross-immunity against the strain i
carried by the infected individual. With probability mdt each viral
sequence mutates a randomly chosen site; with probability ndt each
infected individual recovers; with probability cT?R dt an individual
is randomly chosen and, if infected, her viral sequence substitutes a
sequence in the reservoir; with probability cR?T dt a sequence ran-
domly extracted from the reservoir tries to infect a randomly chosen
individual in the population (with the same mechanism discussed
above). The time scale is set so to consider an infection period of a
week (refer to the Methods section for further details).

Outcomes. The model reproduces the seasonal outbreaks of infection,
with annual infection rate of 7% to 17%, and with antigenic clusters
that replace each other every 1–4 years, with peaks of infection in
correspondence of clusters transitions (Figs. 1, A–B)24. The assump-
tions of our model are validated by means of a thorough comparison
between the model results and measures performed on HA1
sequences of human H3N225. We restrict the analysis to nucleotide
sequences isolated from 1988 to 2011, for which a substantially larger
number of yearly isolates is available with respect to previous years,
and more attention has been paid in avoiding sampling biases26.
Strains are assigned to clusters of immunity according to the
vaccine composition recommendation of their year of isolation27.
This definition differs from the antigenic cluster classification based
on the hemagglutination inhibition (HI) assay titer, in particular
updates of the vaccine strains was often needed more than once
within a single antigenic cluster as defined in10. In Fig. 1 (C,D,E) we
report respectively the phylogenetic trees as reconstructed from the
Influenza sequences (C) and from the sequences generated by the
model (D,E), where different antigenic clusters are shown in
different colors. It is worth observing that the criterion based on
vaccine recommendation can result in a wrong attribution of the
antigenic clusters for sequences isolated in years where clusters
transitions took place, reflecting in the presence of two colors on
the phylogenetic tree’s branches of those years. This artifact can
however be revealed by the model. In the tree in Fig. 1D, sequences
generated by the model are associated to the antigenic cluster
responsible for pandemics in the year of their sampling. With this
assignment two different colors can coexist in the subtrees
corresponding to cluster transitions (in the zoomed area of Fig. 1D,
for example, we focus on the transition between the 3rd and the 4th
cluster). In Fig. 1E we show the same phylogenetic tree, but where
strains are associated with their actual cluster of immunity, such that
the superposition of two colors in the same year disappears. The
phylogenetic tree reconstructed from the model’s sequences appears
less structured within each year with respect to the one reconstructed
from the Influenza sequences data, due to the oversimplifying
assumption in our modeling scheme of not considering several
geographic regions. However, its global structure features an
extremely good agreement with the Influenza tree. In order to show
that, we focus on a measure of imbalance that has been shown28 to
efficiently discriminate between different evolutionary processes of
RNA viruses. Fig. 1F displays the mean depth of the phylogenetic
trees shown in panels C and D (or equivalently E) as a function of
the total number of internal nodes and leaves A (A 5 2n 2 1 in a
rooted binary tree with n leaves) of subtrees sampled from the

complete one. The mean depth is defined28 as d Að Þ~ 1
A

X
j
Mj,

where Mj is the topological distance of the node jth (leaf or internal)
from the root. This measure shows the remarkable agreement
between the model predictions and the real data. Finally, Fig. 1G
displays the root to leaves distances vs. time, i.e. the percentage of
genomic substitutions of strains sampled over time from the founder
strain, as measured from the phylogenetic trees in panels C and D (or
equivalently E). The substitution rate per site predicted by the model
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is compared with the H3N2 nucleotide substitution rate in the HA1
domain, showing again a remarkable quantitative agreement.

We now turn to a deeper investigation of the antigenic evolution as
predicted by the model, and as measured from the Influenza
sequences. We find that the model is able to reproduce both the
genetic variability within and between consecutive antigenic clusters
(Fig. 2), and the pattern of sites substitutions (Fig. 3), in quantitative
agreement with the measures on the Influenza sequences data. In
particular, the genetic distances between sequences belonging to the
same antigenic cluster and between sequences belonging to two con-
secutive clusters, well reflect genetic distances as measured from the
HA1 nucleotidic sequences of the H3N2 virus (Fig. 2, A–I). We note
both in panels D and G a significant overlap between the Intra-cluster
and Inter-clusters distributions, as observed in real data (Panel A). A
surprising quantitative agreement is also recovered for the mean
values of the distributions: Æhæ 5 18.32, Æhæ 5 13.56, Æhæ 5 16.66
for the Intra-cluster distributions and Æhæ 5 24.93, Æhæ 5 22.66, Æhæ 5

22.22 for the Inter-clusters distributions, respectively in panels A, D

and G. Further, a great variability in the Intra-cluster distributions
related to different antigenic clusters, and in the Inter-clusters dis-
tributions related to different consecutive antigenic clusters is
observed in the model results (Panels E and H and panels F and I
respectively), as well as in real data (Panels B and C respectively). In
Fig. 3 we explicitly explore the pattern of nucleotide substitution
in the sequences generated by the model and in the Influenza
sequences. We observe a striking agreement between the Influenza
data (A) and the model predictions (B) as for the patterns through
which alleles get fixed in the population and, quite surprisingly, as for
the total number of substitutions observed in the same time lapse. In
particular, both in Influenza data and in the model, multiple fixations
are observed in correspondence to antigenic clusters transitions, with
a high variability in the number of simultaneous fixations. The
latency time since the first appearance of a new allele to its fixation
exhibits a large distribution both in the Influenza data and in the
model data (Fig. 3C), as already observed for amino acids substitu-
tions in8.

Figure 1 | Infection pattern and phylogenetic properties. (A) Number of infected hosts as a function of time, as predicted by the model. Different colors

correspond to different antigenic clusters. The average duration time of a single cluster is 2.5 years, with an excursion from 1 to 4 years. (B) Annual attack

rate, i.e., the fraction of the population infected each year, as predicted by the model. (C) Phylogenetic tree as reconstructed from the HA1 sequence of

6859 viruses isolated between 1988 and 2011 (see Supplementary Information for details). (D) and (E) Phylogenetic trees as reconstructed from the model

sequences, with respective assignment of sequences to clusters as described in the main text. In the zoomed area of (D) we focus on the superposition of

two colors in the transition between the 3rd and the 4th cluster, due to a wrong attribution of sequences to antigenic clusters (see main text for discussion).

(F) Mean depth of the phylogenetic trees in Panels C and D (or equivalently E) as a function of the total number of internal nodes and leaves A. Model’s

predictions are in striking agreement with real data (see details in the Supplementary Information). (G) Root to leaves distances vs. time (see text for

details). The model predictions are in remarkable quantitative agreement with results from real data. The substitution rate of new alleles, as measured

from the slope of a straight line fitting the plot, is rreal 5 5.29 ? 1023 substitutions/site/year. The parameters of the model corresponding to all the

presented results are (refer to the main text for the definitions): N 5 105; L 5 103; D 5 4; s 5 0.6 m 5 4.16 ? 1023 mutations/site/year; n 5 1;

R tð Þ~R0za cos
2pt
T

� �
, with R0 5 2.0, a 5 0.4, and T 5 52; cT?R~10{4 and cR?T~10{2; dt 5 0.1.
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The role of epistasis. In order to shed light on the crucial role
epistasis is playing in shaping the evolution of the Influenza virus,
we further consider a version of the model where epistatic effects are
removed, by setting the antigenic distance as proportional to the
genetic one. This non-epistatic (NE) model is thus structured
precisely as the one with epistasis, with the only change in the
definition of antigenic distance and consequently of the antigenic
clusters. In the NE model the antigenic distance between two
sequences is simply defined as their genetic distance h, i.e. the
Hamming distance, the number of homologous sites at which two
strains differ. Remarkably, the NE model is still able to quantitatively
account for the limited genetic diversity of the hemagglutinin
sequences at each epidemic season as well as for the continuous
replacement of antigenic clusters (refer for this to the Supplemen-
tary Information). These findings suggest that the above mentioned

properties are mainly related to the global circulation pattern of the
virus, along with its short infection period. To our knowledge, this is
the first time that this implication has been highlighted.

We studied the NE model both for the same value of the cross-
immunity threshold D as considered in the epistatic model, and for a
sensibly higher value of D (refer for this to the Supplementary
Information), such that a realistic value for the substitution rate is
recovered. Without epistatic effects in point mutations it is not
possible to reproduce the genetic variability within and between
antigenic clusters, nor the amino acids substitutions patterns as
experimentally observed. In particular, in the NE model, with any
value of D, the distributions of Hamming distances of the strains
inside the same antigenic cluster and across two consecutive clusters
do not feature any overlap (Fig. 2J and Supplementary Information),
as observed instead in real data and in the model with epistasis.

Figure 2 | Properties of the antigenic clusters. (A) Distributions of the Hamming distances h between any possible pairs of strains assigned to the same

antigenic cluster (Intra-cluster), or any possible pairs of strains assigned to two consecutive clusters (Inter-clusters), as measured from the 987 nucleotides

of the HA1 domain of the haemagglutinin gene (HA) of the 6859 viruses isolated between 1988 and 2011. The sequences’ antigenic clusters are defined

according to the vaccine composition recommendation for the correspondent year, as discussed in the main text. The plot is an average over all the

available antigenic clusters. (B) Intra-clusters distributions for the same data as in A, separately reported for each antigenic cluster. (C) Inter-clusters

distributions for the same data as in A, separately reported for each pair of consecutive antigenic clusters. (D) Same measures as in (A), for the strains

produced by the epistatic model. Here the strains are associated to the antigenic cluster responsible for pandemics in their year of sampling. Panels (E) and

(F) are the equivalent of panels B and C, for the model data analyzed in panels D. (G), (H), (I) Same data as (D,E,F) but with the strains associated with

their actual antigenic cluster. Panels (J), (K), (L) Same data as (G,H,I) but for the non-epistatic (NE) model.
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Further, both distributions do not exhibit any variability between
different clusters (see Figs. 2, K and L and Supplementary Infor-
mation), again marking a difference with respect to the measures
performed on real data and to the results of the model with epistasis.
Moreover, the NE model features patterns of fixation of sites muta-
tion (Fig. 3, C and D and Supplementary Information) significantly
different from those observed in the Influenza data. The NE model
cannot thus capture the richness of the real data on human Influenza
A. The number of sites that get fixed in correspondence of clusters
transitions exhibits a very poor variability (Fig. 3,C and Supple-
mentary Information) and we do not observe single point mutations
that persist in a small fraction of the population for many years
before getting fixed (Fig. 3, C and D). The NE model predicts in fact
a fixation time of 1 year for all the nucleotide mutations (Fig. 3D and
Supplementary Information).

Discussion
In summary, we have introduced a modelling framework to invest-
igate the processes through which epistasis, i.e., a departure from

independence of the effects of mutations in different genetic loci,
can affect the phylodynamics of Influenza A virus. We coupled a
multi-strains model of virus transmission and evolution with a
dynamics of immigration and emigration from and towards a res-
ervoir that mimics the global transmission dynamics of the virus. By
specifying the genotype-phenotype mapping (the phenotype being in
this context the antigenic properties of a virus), epistasis plays a
crucial role on the evolutionary dynamics of the virus. Overall, we
find that the interplay between dynamically correlated mutations in
the genomic region under selective pressure by the host immune
system, and a transmission dynamics that ensures the virus survival
through circulation patterns at a global scale, is able to explain the
phylodynamics of the human Influenza A as well as its antigenic
evolution. The global transmission dynamics can reproduce, even
without epistatic effects, the limited genetic diversity of the hemag-
glutinin sequences at each epidemic season and the continuous
replacement of antigenic clusters. However, the substitution rate
predicted by the model without epistasis features realistic values only
for values of the cross-immunity threshold as high as D , 15 (refer to

Figure 3 | Patterns of fixations of nucleotide substitutions. (A) Temporal map of new alleles frequencies for substitutions that undergo fixation, for the

987 nucleotides of the HA1 region of the haemagglutinin gene (HA) of 6859 viruses isolated between 1988 and 2011. (B) Same as A for the sequences

generated by the model with epistasis. (C) Same as A for the sequences generated by the NE model. The temporal maps are constructed as follows: in the y-

axes the label of each site corresponds to its rank with respect to the year of fixation, a lower number corresponding to an earlier fixation. With a color code

is then shown, for each site of the detected substitutions, the allele frequency of the new allele that will undergo fixation, at each considered year (x-axes).

The graphs below panels A, B and C report the number of substitutions fixed per year, both for real data and data model. Here vertical red lines mark

transitions between antigenic clusters. (D) Histograms of the fixation times Dtfix for substitutions. Here the fixation time is defined as the timespan

between the first occurrence of a substitution (defined as present in at least 1% of the circulating strains) to its fixation (defined as present in 95% of the

circulating strains).
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Supplementary Information). Most importantly, it is only when epi-
static effects are taken into account that the genetic variability within
and between consecutive antigenic clusters can be reproduced in a
quantitative way (Fig. 2 and Supplementary Information). Further,
epistatic effects are essential to explain the pattern of fixations in
antigenic sites (Fig. 3 and Supplementary Information), as observed
in the HA1 nucleotidic sequences of the H3N2 virus. We think these
results, by shedding light on the implications of both the global
transmission dynamics and of epistatic interactions, could pave the
way to a more thorough comprehension and control of the determi-
nants of the Influenza A virus evolution. In addition, the enhanced
understanding of the complex interplay between the antigenic prop-
erties and the genetic profile of the virus can trigger progress both for
worldwide spreading models29 and prevention strategies.

Methods
Definition of the antigenic distance and of the antigenic clusters. A viral strain is
modeled as a binary sequence s of length L and the genetic distance h between two
strains is defined as the number of homologous sites they differ on (Hamming
distance). In order to take into account epistatic effects, we define the antigenic
distance E between two strains as the maximum number of adjacent sites they differ
on. For instance, the two sequences:

A~000000000000000000

and

B~100110001001000110

have genetic distance h(A,B) 5 7 and antigenic distance E(A,B) 5 2. We consider the
cross-immunity elicited by a strain against another (and viceversa) as complete if the
antigenic distance between the two strains is not greater than a fixed threshold D,
otherwise we consider a partial cross-immunity: the probability that an host previously
infected with one of the two strains can be later infected by the other is s , 1.

In order to identify antigenic clusters (or clusters of immunity), we define the
progenitor or founder strain of the i-th cluster as the first sequence, say si, appearing
either in the reservoir or in the temperate region, that evades the complete immunity
of all the previous i 2 1 clusters’ founders (the founder strain of the first cluster is the
first strain appearing in the population). A strain s is associated to a cluster i if E(s, si)
# D. This definition is not univocal, since a strain can satisfy the inequality for more
than one cluster: in this case it is associated to the most recent one.

Dynamics in the temperate region T . We consider a population of N individuals,
each of whom can host a viral strain. Each individual can be in one of the following
two states:

I: Infected, by a unique strain s;
S: Susceptible (if not infected) to the infection by suitable strains of the virus,
depending on its acquired immunity.

The immunity acquired by any individual i is determined by the set of strainsSi she
has been infected by in the past. A susceptible individual i has a complete immunity
against a strain s (cannot be infected by s) if the set Si contains at least a strain sk such
that E(sk, s) # D. Otherwise, she can be infected by s with a probability s , 1.

At each time step an infected individual k is chosen randomly. One first checks for
possible mutations of the viral strain: with probability m dt the strain mutates a
random site. Let us call s the resulting strain. Further, with a probability R(t) dt one of
the N 2 1 remaining individuals is picked up randomly and if she is susceptible and
her immune memory does not elicit complete immunity, she becomes infected by the
strain s with probability 1 2 s. Finally, with probability ndt the individual k is
recovered and the strain s is added to her immune memory set Sk .

Dynamics in the virus reservoir R. In order to simulate the global circulation
dynamics, we consider a reservoir of N strains, which represents, in a coarse-grained
fashion, the viral evolution outside the temperate region under consideration. The
dynamics of the virus is regulated by rounds of mutation and selection, through a
genetic algorithm. To each strain i is assigned a fitness, which is time-dependent and
depends on its cluster of immunity k, defined as:

fi tð Þ~ e{
Tk tð Þ

NPNc tð Þ
s~1 e{

Ts tð Þ
N

, ð1Þ

where Nc(t) is the total number of clusters of immunity at time t and Tk(t) is the
number of strains associated to the cluster k from its appearance to time t.

The fitness in (1) is such that newly appeared clusters have a higher probability of
survival. This mimics the dynamics of the strains in a population of individuals.

At each time step, a virus is picked up randomly in the population and with
probability m dt it undergoes a mutation. The selection of the strains occurs every NT sel

time steps. During the selection, strains are sampled and copied in the next genera-
tion, with a probability proportional to their fitness (1).

Interaction between T andR. The two regions T andR can exchange viruses with
emigration and immigration events. At each time step, a virus, say simm, is randomly
chosen from the reservoir, and moves to the region T (immigration) with a
probability cR?T dt. If the immigration event takes place, with probability R(t) dt an
individual in the temperate region is picked up randomly and if she is susceptible and
her immune memory does not elicit complete immunity against simm, she becomes
infected by the strain simm with probability 1 2 s. An emigration event occurs at each
time step with probability cT?R dt: an individual in T is picked up randomly and, if it
is infected, say by the strain semi, the virus semi enters in the reservoir, replacing one of
the existing strains.

Parameters selection. We chose the parameters values in agreement with realistic
estimates, whenever available, or such that to reproduce realistic estimates of related
quantities. For more general choices of the parameters set we shall always discuss the
robustness of the model with respect to their changes (refer for this to the
Supplementary Information).

Time scales. A week is chosen to be the unit of time, by setting the recovery time n 5 1.
Correspondingly, we set the selection time in the reservoir tsel 5 1, so that selection in
the reservoir occurs at the same time scale of the average duration of an infection. The
elementary time step is set to dt 5 0.1, i.e., about 17 h.

Sequence length. We consider binary sequences of length L 5 1000, in accordance
with the 987 nucleotides of the HA1 domain of the haemagglutinin (HA) segment in
the human influenza virus.

Basic reproductive number. The mean number of infection attempts R0 caused by an
infected individual follows a sinusoidal behavior, reproducing seasonal fluctuations,
of the form:

R tð Þ~R0za cos
2p
T

t

� �
, ð2Þ

where R0 is usually called the basic reproductive number and we set an oscillation
period of one year, i.e. T 5 52 in units of weeks. We set R0 5 230,31 and a 5 0.431,32. In
the Supplementary Information, we will show how the main observables of the model
depend on R0 and a over a wide range of realistic values.

Cross-immunity. Cross-immunity elicited by a strain against another is set to be total
(s 5 1) if the two strains have antigenic distance lower or equal to D, otherwise s 5

0.633–35. In the Supplementary Information, we will show how the main observables of
the model depend on the considered value of the s parameter.

Complete cross-immunity threshold. The threshold D is set to D 5 4 in all the results in
the main text. We will show how the results depend on this threshold in the
Supplementary Information.

Emigration and immigration rates. The emigration and immigration rates are set
respectively equal to cT?R~10{4 and cR?T~10{2, fulfilling the inequality
cT?RvvcR?T

16–18. Again, a discussion on the dependence of the model results on
these two rates is given in the Supplementary Information.

Population size and mutation rate. Finally, we set a population size of N 5 100000 and
a mutation rate m 5 4.16?1023 per site per year. In the Supplementary Information
we will also discuss the scaling properties of the model with respect to these two
parameters.
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