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ABSTRACT

Motivation: The research area metabolomics achieved tremendous

popularity and development in the last couple of years. Owing to its

unique interdisciplinarity, it requires to combine knowledge from vari-

ous scientific disciplines. Advances in the high-throughput technology

and the consequently growing quality and quantity of data put new

demands on applied analytical and computational methods.

Exploration of finally generated and analyzed datasets furthermore

relies on powerful tools for data mining and visualization.

Results: To cover and keep up with these requirements, we have

created MeltDB 2.0, a next-generation web application addressing

storage, sharing, standardization, integration and analysis of metabo-

lomics experiments. New features improve both efficiency and effect-

ivity of the entire processing pipeline of chromatographic raw data

from pre-processing to the derivation of new biological knowledge.

First, the generation of high-quality metabolic datasets has been

vastly simplified. Second, the new statistics tool box allows to inves-

tigate these datasets according to a wide spectrum of scientific and

explorative questions.

Availability: The system is publicly available at https://meltdb.cebitec.

uni-bielefeld.de. A login is required but freely available.

Contact: nkessler@cebitec.uni-bielefeld.de
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1 INTRODUCTION

Metabolomics research covers all aspects of the investigation of

small molecule metabolite compositions resulting from cellular

processes and constitutes an integrated part of systems biology

(Bino et al., 2004). Like transcriptomics and proteomics, meta-

bolomics is capable of measuring extrinsically initiated changes

in organisms. The metabolome, the entity of all small molecules

in a cell, organism or tissue, is considered to be the closest to the

phenotype of all ‘-omes’ (Fiehn, 2002).
Compared with other molecular levels or -omics methods,

metabolomics is challenging in its high degree of interdiscipli-

narity, interlinking experts from research fields as diverse as

engineering, physics, chemistry and biology and from cheminfor-

matics over bioinformatics to statistics, data mining and finally

visualization.

Both sample acquisition and subsequent analysis are auto-

mated in high-throughput instruments, which has continuously

posed challenges on the systematic storage and computational

processing of the gathered experimental datasets, starting in the

early 2000s. The increasing number and quality of measurements

not only raised the generated data volume but also allowed to

address more complex biological questions within conducted ex-

periments. To comprehensively address these demands, bioinfor-

matics internet applications were developed. MeltDB, ‘a software

platform for the analysis and integration of data from metabolo-

mics experiments’, has been published by Neuweger et al. (2008).

Xia et al. (2009) released MetaboAnalyst, ‘a comprehensive tool

suite for metabolomic data analysis’. Carroll et al. (2010) pub-

lished the MetabolomeExpress web server as ‘a public place to

process, interpret and share GC/MS metabolomics datasets’.
Since around 2008, we have observed that the requirements to

comprehensive metabolomics software platforms have changed:

The general growth of the field of metabolomics and the increas-

ing number of collaborations diversified the user community of

researchers and their individual scientific goals. It is obvious that

the success of a metabolomics study depends on an efficient and

effective collaboration of this interdisciplinary research commu-

nity. Thus, not only the availability and sharing of the data is

important but also special functions have to be significantly ex-

tended with specific features to consider all researcher’s demands

and perspectives. In addition, the ever-increasing throughput and

the constant lack of time makes it immensely important that

automated pre-processing methods are reliable and that analyses

and manual intervention are fast and easy. Since Metabolomics

approaches are applied to more and more scientific objectives, a

powerful set of statistical methods is mandatory, ranging from

hypothesis-driven statistical tests to less specified and untargeted

data-mining methods, such as clustering and dimension reduc-

tion. Finally, the wealth of generated data poses a necessity for

exploratory data analysis tools and information visualization.
To tackle these new challenges systematically, a next gener-

ation of bioinformatics tools needed to be developed, covering

all of the aforementioned aspects of metabolome data analysis,

ranging from processing raw data (RD) to finishing and finally

the derivation of biological knowledge. During the stages of that

process, one can identify four successive data categories that

represent different levels of data classification and annotation

as well as different levels of abstraction. First, RD, stored

and organized in meaningful groups, build the basis. Then,

pre-processed data (PD) is computed, where peaks and their*To whom correspondence should be addressed.
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quantities have been detected. It follows integrated data (ID),
where peaks that putatively originate from the same compound

are consistently annotated over chromatograms of an experiment

and thus become comparable. Last, derivative data (DD) is

achieved by statistical analyses of metabolite quantities in an

experiment and then visualized to allow effective exploration
and to draw conclusions.

In this manuscript, we present MeltDB 2.0, which offers novel
tools to challenge the rising wealth of data quality and quantity

and support the analysis of all four categories RD, PD, ID and

DD and includes a multitude of updates. New and improved

preprocessing methods underpin the reliability of automatically

created annotations. At the same time, straightforward tools for
manual peak annotation simplify the curation even of large ex-

periments. To help answering questions of different scientific

objectives, the set of statistical analyses and data-mining tools

has been strongly enriched. To finally nail down the quintessence

of an experiments outcome, data exploration is supported by
new interactive and telling information visualizations.

2 IMPLEMENTATION AND METHODS

The first version of the MeltDB software platform, a three-tiered
web application and database server published in 2008

(Neuweger et al., 2008), provides means for the standardization,

systematic storage and analysis of gas chromatography–mass

spectrometry (GC-MS) metabolomics experiments. Within a

powerful project and user management, raw chromatograms of
various file formats can be uploaded and organized into chro-

matogram groups (e.g. replicates, factor levels) and experiments.

A flexible processing pipeline allows to find, quantify and iden-

tify peaks in the raw chromatograms. Subsequently, a set of

statistical tools and visualizations can be applied to analyze the

gathered data tables. This fast growing, free online platform

today hosts425 distinct projects conducted by4150 registered

users from around the world. More than 17 000 chromatograms

have been uploaded and analyzed yet.
In the following, all major improvements to the entire process

from RD to DD will be described in more details. Figure 1

summarizes the four stages of data processing and associates

visualizations and data mining methods that can be performed

in MeltDB 2.0 to each stage.

2.1 From RD to PD: improved pre-processing

In metabolomics data analysis, pre-processing is a critical step, as

ID and DD build on PD. To ensure a reliable data basis for

statistical data exploration, MeltDB 2.0 is equipped with several

new and updated algorithms for the early steps of experiment

data analysis.

The growing list of pre-processing methods now includes sup-

port for the centWave algorithm by Tautenhahn et al. (2008) for

chromatographic peak detection, which features a high sensitiv-

ity, and updates of the XCMS package (Smith et al., 2006) for

chromatogram alignment and profiling analyses. In addition, the

ChromA (Hoffmann and Stoye, 2009) software is added to the

list of supported chromatogram alignment tools. ChromA com-

putes pairwise alignments of chromatograms without a priori

knowledge, but it is capable of optionally using previously

matched or identified peaks as anchor points, which speeds up

the process.
The calculation of retention time indices in GC-MS measure-

ments is improved and can now also be performed manually

using the web interface. Peaks of added substances can be as-

signed with retention indices and will be used as anchors for

interpolating other peaks retention indices (Ettre, 1994), which

Fig. 1. The overview shows the information processing in MeltDB 2.0 as well as visualizations and tools that are applicable to each level of data: RD,

PD, ID and DD. Although different chromatogram viewers are available immediately after RD upload, heatmaps and data matrices can only be

computed as soon as data have been integrated, i.e. there are peaks that are consistently named across chromatograms. To finally derive knowledge from

the data, MeltDB 2.0 offers a versatile set of statistics and data-mining tools

2453

MeltDB 2.0

,
3
more than 
more than 
,
raw data
derivative data
raw data
pre-processed data
I
integrated data
derivative data
up
pre-processed data
In order 


support subsequent peak identification (Kopka et al., 2005). The

detection of alkanes as retention markers can be automated.

Furthermore, peak identification itself is facilitated with a

powerful feature: MeltDB 2.0 offers a new Reference list tool

to save peaks of measured reference substances as Reference in

the MeltDB database. The stored data comprises retention indi-

ces, quantification masses and mass spectra of reference com-

pounds. This helps to generate project specific databases that

complement the Golm Metabolite Database (http://gmd.

mpimp-golm.mpg.de/) (Kopka et al., 2005) or the National

Institute of Standards and Technology standard reference data-

base 1A (http://www.nist.gov/srd/nist1a.cfm). The tool allows to

aggregate References and to use their underlying mass spectra for

efficient peak identification and comparison.

2.2 From PD to ID: profiling methods

To complete the first step towards ID, peaks in different chro-

matograms that derive from the same small molecule have to be

named consistently and need to be associated to each other.

Thus, a new support for GC-MS-based metabolite profiling ex-

periments has been implemented. The focus for the profiling

approach in MeltDB 2.0 is to combine the results from chemo-

metrics approaches with further identification.

The generic MeltDB approach can be applied on netCDF,

mzXML (Pedrioli et al., 2004) and mzDATA (Orchard et al.,

2007) measurements from any supported analytical system. The

novel tool registers peaks for non-targeted metabolite profiling

based on multiple criteria. These are similarity of mass spectra,

retention time difference and the existence of common extracted-

ion chromatogram (EIC) peaks above a given signal-to-noise

threshold. It allows to annotate completely unknown peaks that

are consistently detectable in several measurements of a metabo-

lomics experiment. Thus, these potentially interesting peaks can

be subjected to further statistical analyses inMeltDB and become

accessible for profiling experiments, where the aim is in general to

find differences in the metabolic composition of two or more

sample groups.
Parameterizations of all pre-processing tools can be custo-

mized freely from within the web interface. Parameterizations

are persisted project wide so that other users from the same

project—who typically use similar instrumental setups—can

reuse them. As pre-processing methods are usually too long run-

ning tasks as to complete during a web request or to even allow

interactivity, these jobs are forwarded to our compute cluster and

run decoupled from the web server.

As soon as pre-processing is completed at least to the point of

profiling, data tables can be exported as XLS or TSV files. This

allows to subsequently use the MeltDB 2.0 processing results in

other external programs of choice.

2.3 Analyzing PD: efficient mass decomposition

To elucidate single mass signals in a spectrum, e.g. to identify an

unknown compound or to explain a certain fragmentation, po-

tential sum formulas explaining this signal may be insightful.

Thus, a combination of the efficient mass decomposition algo-

rithm described by Böcker et al. (2006) with the filter criteria

described by Kind and Fiehn (2007) has been implemented.

To improve the runtime of the approach and reduce the

number of false positives, the maximal numbers of heteroatoms

in the molecular formulae of metabolites in the mass ranges of

100Da from 0 to 2000Da have been extracted from public me-

tabolite databases. These numbers act as upper limits for the

molecular formula generation and drastically reduce the

number of formulae that are evaluated by the algorithm.
To evaluate the runtime improvement of the newly imple-

mented algorithm compared with the filter-free version, 200 com-

pounds from the Kyoto Encyclopedia of Genes and Genomes

(KEGG) compound database with specified sum formulas and

known molecular masses were chosen in the mass interval from 0

to 1000Da. For each of these compounds, mass decomposition

was performed using the filter-free and the improved algorithm

with a maximal mass deviation of �0:05Da. Runtime informa-

tion was obtained using a 64bit 2600MHz AMD system running

Solaris OS 5.10. Figure 2 shows the runtime in relation to the

molecular mass of the compound. It can be observed that the

filtered version is up to seven times faster, and the improvement

is observable especially for large molecules and masses.
In addition to the runtime improvement, the filtering of the

potential candidate formulae is applied afterwards to remove

infeasible formulae from the generated candidate list. Simple fil-

ters can generally be computed in constant time (Degree of

Unsaturation, Lewis check, Senior check, Heteroatom rule)

(Kind and Fiehn, 2007), but especially the computation of the-

oretical isotope patterns needs at least O n�K2
� �

time for each

sum formula with n being the size of the atom alphabet and K

representing the length of the computed distribution (Böcker

et al., 2006). The matching and scoring of the measured and

simulated isotope patterns adds O(K) runtime. Every infeasible

sum formula that is filtered out implicitly by the improved algo-

rithm does not need to be post processed in the filtering stage,

which furthermore improves the overall runtime of the method.
The improved and extended implementation is offered

through the MeltDB 2.0 web interface, and it can be applied

on every detected chromatographic peak. Users can specify the

expected mass error of the instrument and correct the effect of

potential adduct ions, which is especially important in LC-MS

Fig. 2. The improved algorithm was compared with the original mass

decomposition approach. For compounds of molecular mass close to

1000Da, 7-fold runtime improvements can be observed. As presented

in the graph, the relation of the runtimes of both methods is not linear.

Especially for large compounds, the improved variant becomes most

beneficial
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measurements. Several filters can be activated to reduce the
number of computed sum formulas. As the implementation
does automatically extract and sort, the dominant ions found
in the mass spectrum, the access to the mass decomposition is

greatly simplified for the researcher.
After the efficient generation and filtering step, the sum for-

mulae are compared with the KEGG compound database.

Matching sum formulae are highlighted, and both compound
name and synonyms are presented to the user.

2.4 From RD to DD: new user interfaces

Visual inspection and the possibility for manual curation is im-

portant at all data abstraction levels, i.e. from RD to DD. Intui-
tive and responsive data visualizations are required as well as
intelligent tools that allow to solve common tasks, such as the

inspection of processing results or the navigation from an experi-
ments overview to the spectrum of a single peak, in a few steps.
Introducing Asynchronous Javascripting and XML to MeltDB

2.0 using the jQuery library (http://jquery.com) allows a new
quality of interactive and dynamic data display (The user can
interact with visualizations to cause small changes to the data
representation. These changes are performed in place without

requiring a reload of the visualization) in terms of speed, respon-
siveness and user guidance. This was utilized to improve the
Experiment Total Ion Current view [cmp. (Fig. 3b)] with peak

specific tooltips containing information about the associated
compounds, latest annotations, and quantities (Fig. 3b.1). On

demand, the complete peak object can be loaded and displayed
inside the experiment TIC view, giving i.a. access to its spectrum,
the complete list of annotations and observations.
One additional major improvement that benefits from the

employment of Asynchronous Javascripting and XML is the dy-
namic manual annotation dialog [cmp. (Fig. 3c)]. The inter-
active annotation functionality for whole experiments has

been improved so that aligned peaks with high mass spectral
similarity can be annotated in parallel. The streamlined web
interface helps to annotate peaks across chromatograms in a

consistent manner, when researchers annotate manually, correct
errors of automated annotation tools or correct data that have
been imported beforehand. This consistency is ensured by an

autocompletion of compound names according to the KEGG
database and is important for statistical analyses and compari-
son of results among different experiments.

2.5 From ID to DD: extended statistics and data mining

In metabolomics, data analysis and mining can be driven by
various intentions and will strive for DD with different purposes.

One way to group these aims is to relate them to one of the
following questions: (i) What are the significant features of a
sample group separating it from other sample groups? (ii) Do

groups of samples form clusters according to their features
and quantities? (iii) Can a sample be assigned to a class based
on its spectral features? For each of these questions, a variety of

statistical analysis methods exists.

Fig. 3. This figure presents representative screenshots from the MeltDB 2.0 interface, which are part of an efficient workflow for manual data curation

and quality improvement. (a) The Show Absent/Present Compounds view lists which compounds were identified in which chromatogram groups in how

many chromatograms (pie charts). Checked fields tell that the respective compound was identified in all chromatograms of that group. The darker

column in the right represents the entire experiment. (b) The Experiment Total Ion Chromatogram view depicts the total intensities over time for all

chromatograms of an experiment. Detected peaks are marked with colored dots. Blue: Detected peak; Green: peak that was consistently detected

throughout chromatograms; Red: Peak that was identified using any database. Hovering a peak highlights other peaks (link-and-brush) with the same

annotation and description and shows a tooltip with detailed information (b.1). From this view, semi-automated tools for annotation (c) can be accessed.

The Annotate tool (screenshot shown) allows to manually define a description and select a KEGG compound. Similar peaks from other chromatograms

are suggested and can be annotated in a batch. Alternatively, the MeltDB-ownWarped Peak Detection can be applied to find and quantify peaks, which

are similar to ones that are already annotated in other chromatograms using the tool ReQuantify Peaks for Exisiting Annotations. Sample names in the

sreenshots were modified
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A binding to the R software (R Development Core Team,
2011) makes numerous statistical tools available from within
the MeltDB software (Neuweger et al., 2008). Its database ob-

jects are converted to R objects in a standardized manner.
Information about chromatogram associations to chromatogram
groups is pertained in the data representation. This ID conver-

sion avoids the cumbersome process of converting data tables
from proprietary software to a format a statistics software pack-
age can interpret and analyze. By default, data are gathered from

the database on the fly, but snapshots can be stored to speed up
statistical analyses vastly, especially for large experiments.
Statistical analyses and data mining tools in MeltDB are

accessed through a standardized parameterization and data selec-

tion form. Where appropriate, this basic form is extended with
specific options and parameters. The basic form consists of a list
of all chromatograms of the experiment from which the user may

select. Additionally, features can be selected to be considered
in the analysis. Features can either be identified compounds or
unidentified features that have been detected consistently among

most chromatograms. A feature or compound can be chosen as
reference to normalize to. When available, ribitol is preselected.
One can select whether peak intensities or peak areas will be used

for quantitation. Quantitations can be scaled lineary or logarith-
mically. Missing values can be handled in different ways.
To determine the significance and variances of features (see

question a), the t-test of the Perl CPAN package Statistics::
TTest (Juan, 2003) and Statistics::KruskalWallis (Lee, 2003) is
offered as well as analysis of variance using the aov method of

the R statistical software (R Development Core Team, 2011),
which fits a linear model. For all of these, Bonferroni, Holm
and Benjamini & Hochberg corrections are calculated

(Benjamini and Hochberg, 1995; Holm, 1979). For each feature
(metabolite) presented in the analysis of variance and Kruskal–
Wallis test results, a boxplot view and the extracted ion chromato-

grams of all samples can directly be accessed. In another view,
the m-values (log-2 signal ratios) of features of all chromatogram
groups of an experiment in reference to the same features in a

user-selected chromatogram group are displayed tabularly.
Volcano plots can be created plotting either the a-values (average
log-2 signal values) or t-test values (as negative decadic logarithm

of the P-value) against m-values. Variable importance estimation
via the random forest algorithm from the caretR package (Kuhn
et al., 2011) can be applied to find differing features in groups. The

metabolite set enrichment analysis published by Persicke et al.
(2011) is another powerful tool in MeltDB for the identification
of differentially regulated metabolic pathways.

Samples may aggregate to clusters according to their features
quantities (see question b), regardless of the groups they nomin-
ally belong to. To visualize these clusters, MeltDB provides the

dimensionality reduction methods principal component analysis
(PCA, prcomp method in R, cmp. Fig. 4b), independent compo-
nent analysis (ICA, fastICA package for R) and partial least

squares discriminant analysis (caret package for R) (Kuhn
et al., 2011; Marchini et al., 2010; R Development Core Team,
2011). Hierarchical clustering allows to display dendrograms of

chromatograms and is made available using the hclustmethod in
R, which can be applied with different linkage methods (cmp.
Fig. 4c). The heatmap method of R is used to show false color

maps of feature signals in chromatograms, sorting columns and

Fig. 4. A small collection of visualization and statistical tools in MeltDB

2.0. (a) The Flash� heatmap visualization tabularizes color-encoded

relative abundances of metabolites in either chromatograms or chromato-

gram groups (shown). Abundances may be normalized on the entire

experiment or per metabolite (shown). Rows and columns can be

sorted freely or automatically by alphabetical order or according to the

coefficient of variation. A gain factor may be set to reveal differences

between relatively small abundances. (b) The principal component

analysis is one of the most applied work horses in MeltDB 2.0. The

visualization is implemented using Highcharts components. Single chro-

matogram groups can be shown and hidden. A zoom functionality is

available, which is extremely useful in large experiments. Each data

point chromatogram name, and coordinates can be revealed via tooltip

(b.1). (c) Another work horse of data mining is the hierarchical cluster

analysis. The static visualization was generated in R. Sample names in the

screenshots were modified
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rows according to the before-mentioned hierarchical clustering of
feature signals and chromatograms, respectively. Here, data can
be normalized for either chromatograms or features.
Whenever a dataset is subdivided in k groups (see question c),

as samples were for instance taken from k sites or treated with k
different protocols, another suitable data mining strategy is to
apply supervised machine-learning methods to learn to approxi-

mate a relationship between metabolic profiles to the k categories
(Hastie et al., 2009). Such a classification can be helpful in the
design of automated screening and identification processes or

give insight into hidden links in small molecule patterns, which
are characteristic for a group k’. This propelled to extend
MeltDB with the powerful R package caret (Kuhn et al., 2011)

of which the variable importance estimation has been aforemen-
tioned. Now, classification algorithms (support vector machine,
random forest) can be trained with chromatogram groups repre-

senting c different classes f!0, ::,!c�1g and then be applied to
other chromatograms of samples that have not yet been assigned
to any class !i. For evaluation purposes, the user may opt to

partition chromatograms into training and testing groups ran-
domly. Additionally, MeltDB uses caret to compute and evaluate
the classification performances of the algorithms random forest,

k nearest neighbors, support vector machine, neural networks
and partial least squares, to estimate which classification algo-
rithm performs best on a problem.

Generally, the computed results can be downloaded as TSV,
XLS, PNG or PDF files in addition to the representation in the
web browser.

2.6 Diving into DD: new interactive visualizations

To ultimately grasp the gist of gathered and calculated DD
information, visualizations will be powerful tools, if they are

intuitive, fast, responsive, easily customizable and—most import-
ant—well represent the underlying data.
The R software is not only useful for statistical analysis com-

putation but also for the results visualization. Parameterization of

the analyzes and customization of the visualizations is realized
withMeltDBs tool forms, which can be easily extended on request
or requirement. Nevertheless, these visualizations are static, and

even small changes require server side computing and a page
reload. This makes visual data exploration a time-consuming pro-
cess. Therefore, new visualizations have been developed for

MeltDB 2.0, which are based on the R data output and thus are
consistent with their static ‘sister’ visualizations, but prepare the
results in a novel dynamic and interactive fashion.

There are several web technologies for the development of
rich internet applications (RIAs) available. Oracle�’s JavaTM

Webstart applications, using the Java Network Launch

Protocol, belong to the first RIAs created for the web (Farrell
and Nezlek, 2007). The Adobe� Flash� technology and the
Flash� Builder� made platform-independent RIA development

even easier and provided great functionality for user interface
design, backed by a large vivid community. Most recent changes
in the industry, namely, the development of HTML 5, made

Javascript-based RIA development applicable and seem to
shorten the unique qualities of Flash. In the development of inter-
active content for MeltDB, these concepts have been followed.
A Java Webstart application is introduced, displaying the first

three components of PCA and ICA results in a rotatable 3D

grid. Samples are color encoded according to their chromato-

gram groups and metabolites contributing to the three compo-

nents are represented in a bi-plot in the same grid. The 3D viewer

is accessible through the web interface and allows to effectively

explore dimensionality reduction results of hundreds of samples.
Basic visualizations such as scatter plots and bar charts are

now realized as Javascript-based interactive views that allow to

filter, zoom and demand additional details, following the infor-

mation visualization mantra of Shneiderman and Plaisant (2004).

For that, the Javascript libraries jQuery(http://jquery.com) and

Highcharts (http://highcharts.com) were used. An interactive

table of quantities was realized based on the AdobeTM

FlashTM platform. Metabolite signal intensities or areas are pro-

jected to a color scale and displayed for each chromatogram or

as the mean of a chromatogram group. The FlashTM application

is available through the MeltDB web interface and receives the

data table as an XML document provided by the MeltDB API.

Parameterization that is necessary for the compilation of the data

table can be assigned via the standard MeltDB tool form.
To compare raw 2D chromatograms visually, a new tool

called ColorizeMS was created. Users can chose three chromato-

grams to assign each to one channel red, green or blue of an

overlay image. Although common signals will appear in white,

signals that are missing in one or two chromatograms can easily

be spotted due to their coloration.

3 APPLICATION EXAMPLE AND RESULTS

This application example makes use of a dataset from another

study (in preparation) in which we investigated whether it is

possible to distinguish between wheat samples of different

years, farming schemes and cultivars. The data shown in the

following result from the GC-MS measurements of a wheat cul-

tivar that was grown in the years 2007 and 2010 and under

organic (O) and conventional (C) treatment. Consequently, sam-

ples can be divided into the four groups 2007-O, 2007-C, 2010-O

and 2010-C. Each group consists of four biological replicates,

which were each analyzed as two technical replicates. This results

in a total of eight chromatograms per group. Chromatograms of

low quality have been discarded.
The MeltDB 2.0 processing pipelines and its versatile tool box

for statistical analyses was applied to reveal potential differences

in the metabolic compositions of wheat from two distinct years

and treatments. These insights may lead to the determination of

bio markers that allow to distinguish between the respective

sample groups. However, the focus of this application example

is on the software and its capabilities, not on the biological in-

terpretation of the generated results.

The MeltDB setup started by uploading the chromatograms

(RD) in the netCDF file format. These were then organized into

an experiment of four chromatogram groups. Peak detection was

performed using the MeltDB Warped Peak Detection method.

Alkanes were detected by the RISimple method, and peaks were

thus provided with interpolated retention indices, completing the

steps toward PD. Subsequently, Multiple Profiling was per-

formed to consistently name peaks with similar spectra and re-

tention indices throughout chromatograms of the experiment.

Finally, to obtain ID, peaks were matched against the
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user-curated Reference List database to annotate identified peaks
with the respective compound names.
The tool Show Absent/Present Compounds reveals a tabular

presentation of pie charts, which shows in how many chromato-
grams of a particular chromatogram group or the entire experi-
ment a particular compound was identified (cmp. Fig. 3a).

Compounds that were identified automatically in the majority
of chromatograms are likely to be found by manual inspection in
the remaining measurements. This is easy owing to the mean

retention time that is provided for each compound to find the
respective peaks in the Experiment Total Ion Chromatogram view
(cmp. Fig. 3b). Here, peaks with the same annotation and de-

scription are visually connected by link-and-brush (Highlighting
an annotated peak will cause all other peaks with the same an-
notation and description to highlight too. This visually links sig-

nals that derive from the same original molecule throughout
measurements). Peaks that were not annotated automatically
(or annotated incorrectly) are easily spotted and may be anno-

tated semi-automatically now. This is possible using the Annotate
tool that is offered for each peak and allows to fill an annotation
form manually, but it also allows to select peaks with similar

spectra and similar retention time from other chromatograms
to be annotated in the same way (cmp. Fig. 3c). Another tool,
ReQuantify Peaks for Existing Annotations, provides means to

locally run the Warped Peak Detection with relaxed thresholds
and using existing annotations of a certain compound as samples
to be matched. Using these tools, even large experiments of

several hundred chromatograms can be annotated with high
coverage in a reasonable time frame.
In the following, tools for visualization and statistical analysis

are demonstrated that finally help to gather DD. In MeltDB 2.0,
these tools may generally be adjusted with an upstream form for
selection of chromatograms and compounds to be used.

Furthermore, the user can set the specific parameters of each
tool as well as the common settings, such as how to deal with
missing zeros in the data, whether to use peak intensities or peak

areas or whether to scale them logarithmically.
To get a first overview of the measured compound abundances

among chromatograms of the experiment, the Heatmap visual-

ization is a helpful choice (cmp. Fig. 4a). For a quick insight or
visual control, all chromatograms and all compounds should
be selected. Abundances are taken from peak areas, without

additional scaling. In this case, missing values were replaced
with zeros to make them easily spottable in the heatmap, as
zero values are displayed as black boxes. The Heatmap tabularly

represents all compound abundances in all chromatograms or
their mean abundances in chromatogram groups according to
a blue-to-red (low to high abundance) color scale. Rows (com-

pounds) and columns (chromatograms or chromatogram
groups) can be rearranged freely. Rows may additionally be
sorted alphabetically, by mean abundance or by coefficient of

variance. The color scale is either normalized on the whole ex-
periment or on each single compound. The color scale may be
shifted by a factor using a slider. The Heatmap as currently set

can be exported as a PNG file.
When analyzing data of multiple—and as in this case even

overlapping classes—it is generally interesting whether and

which clusters are formed. Typical workhorses to explore this
are Principal Component Analysis (pca) and Hierarchical

Cluster Analysis (hca). Figure 4b shows a screenshot of the inter-
active scatter plot of the pca, which was calculated on all chro-
matograms, and all compounds that were detected in all

chromatograms (option ‘strict’ for missing values). Measured
peak areas were taken for quantification. Data points with the
same color belong to the same chromatogram group. As the pca

shows, samples are clearly separated by years along the first
principal component (x-axis), which explains 75.24% of the vari-
ance in the data. Less clear but still visible is a separation ac-

cording to the cultivation type, mainly oriented along the second
principal component (y-axis), which explains 6.28% of the data.
A mouse over on a data point reveals its chromatogram name

and coordinates in the plot (cmp. Fig. 4b.1). Similarly, the hca as
shown in Figure 4c mainly clusters data according to their years,

whereas samples of the same cultivation type group cluster
hardly at all. The hca was performed as a Ward clustering
with the same basic settings as the pca.

4 DISCUSSION AND CONCLUSION

MeltDB 2.0 was developed to comprehensively provide means to

complete the entire process from RD to DD within a software
platform that supports researchers of diverse scientific back-

grounds and fosters collaborations in complex metabolomics re-
search projects. It was a further goal to make the final
exploration of produced results and statistical outcomes effective

and efficient. This has been achieved by improving the MeltDB
tool set throughout all four stages RD, PD, ID and DD. These
recent developments leveraged MeltDB to an interactive RIA

that allows to generate high-quality datasets and to dive deep
into their analyses.
As MeltDB was first published in 2008, a few other tools have

been released that take a similar line. The MetaboAnalyst (2.0)
web server offers a feature set similar to MeltDB, also supplying
means to cover the pipeline from RD to DD. MetaboAnalyst is

merely made for a one-time web service-like usage though,
whereas MeltDB offers a project and user management that sup-
ports collaborative work, allows to manually refine and annotate

processing results and stores data for documentation purposes
and to support larger and/or long-term projects.
The MetabolomeExpress web server is dedicated to making

revieweddatasets publicly available. For that, it offers a fixedpipe-
line and a set of statistical tools that comprises a clearly smaller set

of features, compared with MeltDB or MetaboAnalyst.
The hierarchical data model of MeltDB 2.0 serves single-

factorial experiment designs best. It is still possible to address

even complex multi-factorial designs, but then a careful organ-
ization (sometimes multiple organizations) of chromatogram
groups is necessary. The application example shown is a multi-

factorial experiment differentiating wheat samples of different
years and farming schemes. It is part of a study that additionally
considers different cultivars as a third factor, which was also

investigated in MeltDB 2.0.
Despite the advantages and opportunities of web platforms,

this technology also has its drawbacks. The most critical aspect

probably is the lack of tools, which lets users browse the original
RD and its raw signals in a smooth interactive way as known
from desktop applications. This can be of particular importance

especially for de novo identification of molecules. Thus,
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metabolomics web platforms, including MeltDB 2.0, are mostly

useful for experiments with large numbers of chromatograms,

which ask for the statistical comparison of sample groups.
Web platforms are also still limited in the consequent analysis

of LC-MS data. Here, spectral deconvolution is of critical

importance to reveal the interrelationships of mass signals,

which may lead to the identification of the original molecules.

Although software like the R tool CAMERA (Kuhl et al., 2012)

exists to address this, it has not yet been integrated into a larger

metabolomics software platform. We are currently working to

overcome that limitation.
Further developments also must include support for multi-

stage (MSn) data, another inevitable tool for proper de novo

identification.

From a more global and systemic point of view into the future,

the potential of integrated analysis with other omics data needs

to be explored more intensively. As an example, the MeltDB 2.0

API allows the ProMeTra (Neuweger et al., 2009) software to

map relative metabolite abundances to pathway maps, together

with either proteome or transcriptome data. Nevertheless, to our

knowledge, there is no software available for truly statistical

multiomics approaches.
In total, MeltDB has undergone substantial improvements in

its capacity as a ‘one-stop-shop’ providing a wide spectrum of

necessary tools to answer biological and statistical questions,

beginning from chromatographics RD files. The addition of

supervised machine-learning tools now allows to directly apply

gathered knowledge for classification purposes. Embedded in its

powerful permission management system, MeltDB 2.0 delivers a

powerful bioinformatics package for detailed systemic metabo-

lomics research projects.
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