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ABSTRACT

Motivation: Pyrosequencing technology provides an important new

approach to more extensively characterize diverse sequence popula-

tions and detect low frequency variants. However, the promise of this

technology has been difficult to realize, as careful correction of

sequencing errors is crucial to distinguish rare variants (�1%) in an

infected host with high sensitivity and specificity.

Results: We developed a new approach, referred to as Indel and

Carryforward Correction (ICC), to cluster sequences without substitu-

tions and locally correct only indel and carryforward sequencing errors

within clusters to ensure that no rare variants are lost. ICC performs

sequence clustering in the order of (i) homopolymer indel patterns

only, (ii) indel patterns only and (iii) carryforward errors only, without

the requirement of a distance cutoff value. Overall, ICC removed

93–95% of sequencing errors found in control datasets. On pyrose-

quencing data from a PCR fragment derived from 15 HIV-1 plasmid

clones mixed at various frequencies as low as 0.1%, ICC achieved the

highest sensitivity and similar specificity compared with other com-

monly used error correction and variant calling algorithms.

Availability and implementation: Source code is freely available for

download at http://indra.mullins.microbiol.washington.edu/ICC. It is

implemented in Perl and supported on Linux, Mac OS X and MS

Windows.

Contact: jmullins@uw.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Massively parallel sequencing (MPS) technologies, such as 454

pyrosequencing (Margulies et al., 2005), are becoming common

to rapidly and cost-effectively detect and quantitate rare

sequence variants. Pyrosequencing generates up to millions of

reads that can include rare variants to detect low frequency

drug resistance and immune escape variants in viral (Human

immunodeficiency virus [HIV] and Simian immunodeficiency

virus [SIV]) populations (Bimber et al., 2009, 2010; Burwitz

et al., 2011; Fischer et al., 2010; Hedskog et al., 2010; Henn

et al., 2012; Love et al., 2010; O’Connor et al., 2012; Poon

et al., 2010; Simen et al., 2009; Tsibris et al., 2009; Wang et al.,

2007). However, the PCR required before pyrosequencing of

HIV/SIV populations introduces misincorporation errors, and

the pyrosequencing process introduces a significant number of

indels and carryforward errors (Margulies et al., 2005). To ac-

curately estimate population diversity by MPS, it is crucial to

distinguish biological variants from process errors with high sen-

sitivity and specificity. Previous studies of 454 pyrosequencing

data have managed to reduce sequence-processing errors by im-

proving PCR and sequencing platforms (Gilles et al., 2011; Huse

et al., 2007; Shao et al., 2013; Vandenbroucke et al., 2011; Wang

et al., 2007). Also, several error correction and variant calling

algorithms have been published (Archer et al., 2010; Bragg et al.,

2012; Eriksson et al., 2008; Huse et al., 2010; Macalalad et al.,

2012; Prosperi and Salemi, 2012; Quince et al., 2009, 2011;

Ramirez-Gonzalez et al., 2013; Reeder and Knight, 2010;

Salmela and Schröder, 2011; Wang et al., 2007; Zagordi et al.,

2010a, b, 2011). Salmela and Schröder (Salmela and Schröder,

2011) used multiple alignments of reads as well as quality scores

to distinguish correct base calls from erroneous ones, and their

method is easily adjustable to reads derived from different MPS

platforms. Prosperi and Salemi (Prosperi and Salemi, 2012) de-

veloped a program for viral population reconstruction with a

built-in Poisson error correction method and post-reconstruction

probabilistic clustering. Macalalad et al. (2012) introduced V-

Phaser, a single nucleotide variant calling tool that uses phase

and quality filtering with a probability model that incorporates

and recalibrates individual base quality scores to increase both

sensitivity and specificity. Sequence clustering is also a common

way to reduce sequencing errors. One approach is to cluster se-

quences using genetic distances (Bragg et al., 2012; Huse et al.,

2010). Another approach is based on flowgrams rather than se-

quences, which allows pyrosequencing errors to be modeled nat-

urally, as performed by Quince et al. (2009, 2011) and Reeder &

Knight (2010). Both approaches require a distance cutoff value

that combines substitutions, insertions and deletions in a single

distance measure. The cluster centers are haplotypes, and the

cluster sizes are interpreted as the haplotype frequency in the

population. Error correction in a cluster is performed by collap-

sing variation within the cluster. Therefore, there is a risk for loss

of real variants in a population if an inappropriate cutoff value is

set, especially in a population of low genetic diversity.
To address the challenge of detecting genetic variants, espe-

cially those occurring at low frequencies, we developed a new

approach that clusters sequences without substitutions and lo-

cally corrects only indel and carryforward errors within clusters*To whom correspondence should be addressed.
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to ensure that no rare variants are lost. Indel and Carryforward
Correction (ICC) provides a complete suite for users to analyze

pyrosequencing data, including read quality filtering and align-

ment, indel and carryforward error correction, variant calling

and calculation of single nucleotide variant and haplotype fre-

quencies. To determine the efficiency of ICC in correcting errors,

we calculated and compared error rates before and after ICC

correction on datasets derived from previously sequenced plas-
mid DNAs. Using pyrosequencing data of PCR fragments

derived from a mixture of 15 HIV-1 plasmid clones at various

frequencies, we used ICC to estimate sensitivity and specificity

and compared these results with several other commonly used

error correction and variant calling algorithms.

2 SAMPLE PREPARATION AND
PYROSEQUENCING

2.1 Control datasets

pNL4-3, a plasmid containing a full-lengthHIV-1 genome, served

as a control for pyrosequencing error calculations and compari-

sons. Two sets of first round PCR products were generated with

primers that targeted portions of the gag-pol genes to produce a
2.6kb amplicon and the env gp120 coding sequence for a 2.1kb

amplicon. Nested second round PCR reactions were multiplex

PCRs that generated four amplicons (gag3, pol1, env3 and env5)

from themixture of two first round products that ranged from391

to 597bp in size with primers containing the 454 sequencing adap-

ter and Multiplex Identifier (MID) adapter (Supplementary

Table S1). PCR reactions are described in supplementary data.

2.2 HIV-1 plasmid mixture

Fifteen HIV-1 plasmid clones (Rousseau et al., 2006) were mixed

to reach the final proportions (Supplementary Table S2), with
individual DNA concentrations determined using a Nanodrop

instrument (Thermo Scientific, USA). The plasmid mixture was

further quantified by limiting dilution endpoint PCR (Rodrigo

et al., 1997) with the program Quality (http://indra.mullins.

microbiol.washington.edu/quality/). An estimated maximum of

1000 (691� 310) plasmid molecules were used as templates for

PCR amplification and subsequent pyrosequencing. Primers and
nested PCR conditions were the same as for pNL4-3 mentioned

previously (and see Supplementary Data).

2.3 HIV-1 clinical sample

RNA was extracted from five plasma specimens from one HIV-1
infected individual from the Seattle Primary Infection Cohort

(Schacker et al., 1996; Stekler et al., 2012) using the QIAamp

Viral RNA Mini Kit (Qiagen, Valencia, CA) according to the

manufacturer’s protocol. A total of 560ml of plasma was ex-

tracted in each case and eluted in 80ml of elution buffer.

cDNA was synthesized using Takara BluePrint First

Strand Synthesis Kit (Clontech 6115A) according to the manu-
facturer’s protocol. cDNA was synthesized with gene specific

primers, R3337-1 (50-TTTCCYACTAAYTTYTGTATRTCAT

TGAC-30) for gag-pol and R9048 (50-AGCTSCCTTGTAA

GTCATTGGTCTTARA-30) for gp120, at final concentrations

of 400nM. Fragments of gag-pol (2.6 kb) and env (2.1 kb) were

amplified in first round reactions separately, then mixed together
and used as template for multiplex second round amplification of

a 505 bp gag and a 597bp env fragment (gag3 and env5)

(Supplementary Table S1). PCR amplifications are described in

supplementary data.
PCR products were visualized using a Qiaxcel (Qiagen, USA),

purified using Agencourt AMPure beads (Beckman Coulter,

USA) and then pyrosequenced on the 454 Life Sciences GS-

FLX Titanium platform according to the manufacturer’s

protocols.

3 ALGORITHM

3.1 Multiple sequence alignment

Sequences in a user-defined window were aligned using the
Needleman–Wunsch algorithm (Needleman and Wunsch, 1970).

First, sequences were collapsed so that only unique sequences

were presented, and unique sequences were ranked by their abun-

dance. The two most abundant unique sequences S1 and S2 were

pairwise aligned using dynamic programming (Gusfield, 1997):

V i, jð Þ ¼

P
1�k�j

sð�,S2ðkÞÞ ði ¼ 0Þ

P
1�k�i

sðS1 kð Þ,�Þ ðj ¼ 0Þ

max
Vði� 1, j� 1Þ þ sðS1 ið Þ,S2ðjÞÞ

Vði� 1, jÞ þ sðS1 ið Þ,�Þ
Vði, j� 1Þ þ sð�,S2ðjÞÞ

2
4

3
5

8>>>>>><
>>>>>>:

ð1Þ

V(i,j) is defined as the value of the optimal alignment of prefixes

S1[1..i] and S2[1..j]. s(x,y) denotes the score obtained by aligning
character x against character y. Second, the profile of the align-

ment was computed, taking into account the abundances of the

aligned unique sequences. The third most abundant unique

sequence was then aligned to the profile, which produced a

new multiple sequence alignment including the first three most

abundant unique sequences:

Vði, jÞ ¼

P
k�j

Sð�, kÞ ði ¼ 0Þ

P
k�i

sðS1ðkÞ,�Þ ðj ¼ 0Þ

max
Vði� 1, j� 1Þ þ SðS1ðiÞ, jÞ

Vði� 1, jÞ þ sðS1ðiÞ,�Þ
Vði:j� 1Þ þ Sð�, jÞ

2
4

3
5

8>>>>>><
>>>>>>:

ð2Þ

V(i,j) denotes the value of the optimal alignment of prefix
S1[1..i] with the first j columns of the profile. For a character y

and column j, let p(y,j) be the frequency that character y appears

in column j of the profile; S(x,j) denotes
P

y ½sðx, yÞ � pðy, jÞ�, the

score for aligning x with column j. The process of calculating the

profile of the newly produced multiple sequence alignment and

aligning the next most abundant unique sequence to the updated
profile was repeated until the last unique sequence was aligned.

The default scoring parameters for alignment were as follows:

match, 10; mismatch, -9; gap penalty, -15.

3.2 Computing sequence similarity and edit transcript

The similarity of two sequences, and associated optimal align-

ment and edit transcript, can be computed by dynamic program-

ming (Gusfield, 1997). An edit transcript is a string over the
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alphabet I (insertion), D (deletion), R (replacement or substitu-

tion), M (match) that describes a transformation of one string to

another. To compute the similarity of two sequences, a pairwise

scoring matrix can be calculated by Equation (1). Therefore, the

optimal edit transcript can be computed to describe the trans-

formation between two sequences and distinguish sequence dif-

ferences by insertion, deletion and substitution. Figure 1 shows

an example of a pairwise alignment of two sequences S1 and S2,
as well as the edit transcript. The differences between two se-

quences can be readily identified from their edit transcript.

Moreover, the transcripts can be used along with the aligned

sequences to distinguish indels in homopolymer and non-homo-

polymer regions, where a homopolymer is defined as two or

more adjacent nucleotides with the same state, and to identify

the pattern of carryforward errors.

4 IMPLEMENTATION

4.1 Error correction by ICC

ICC was written in the Perl scripting language and has been

tested on Linux, Mac OS X and MS Windows systems.

Starting with raw pyrosequencing reads and their quality

scores, the software pipeline performs the following steps. The

workflow of the implementation is shown in Figure 2.

(i) Read quality filtering: Raw pyrosequencing reads are fil-

tered based on ambiguous bases, length and average qual-

ity. The default parameters remove reads that are shorter

than 100bp, contain ambiguous bases or have average

quality scores525.
(ii) BLAST and retrieval by sequence window: Reads passing

(i) are mapped to a reference sequence using the BLASTN

algorithm (Altschul et al., 1990) with parameters for align-

ment as follows—match reward, 1; mismatch penalty, -1;

gap existence, 1; gap extension, 2. User-defined window

and stride size parameters retrieve windows of sequences

across the reference sequence from the BLASTN output.

(iii) Non-substitution clustering and error correction: In each

window of sequences, the similarity between each pair of

sequences is computed using dynamic programming, along

with an optimal edit transcript, which is then used for se-

quence clustering. Sequence errors are corrected through

three sequential steps of non-substitution sequence cluster-

ing specifically designed for correction of homopolymer

indels, indels and carryforward errors. A greedy scheme

is used to cluster reads from the most to the least abun-

dant. First, homopolymer indel errors are corrected by

clustering sequences only differing by homopolymer

indels. All sequences are condensed into unique sequences.

Unique sequences with their abundance are used to

perform sequence clustering. The most abundant sequence

is used to cluster other sequences. Pairwise alignments of

the most abundant sequence to all other sequences are

computed along with the edit transcripts. The sequences

with edit transcripts not containing substitutions and only

showing the pattern of homopolymer indels relative to the

most abundant sequence are clustered together with the

most abundant sequence. For the next round, the most

abundant sequence among the remaining sequences is

chosen as a cluster seed, and the whole procedure iterates

until the cluster seed reaches the first single sequence.

Errors are corrected by collapsing variation within a clus-

ter using the most abundant/consensus sequence for each

cluster. The cluster size is now the abundance of the cor-

rected sequence. Next, the sequences after homopolymer

indel correction are further corrected for indel errors using

the same strategy as homopolymer indel correction, except

that it clusters sequences only differing in indels, i.e. se-

quences with edit transcripts not containing substitutions

and only showing the pattern of indels to the most

Fig. 2. Schematic of ICC workflow

Fig. 1. Pairwise alignment and edit transcript showing sequencing error

patterns. ‘1’ homopolymer indel, ‘2’ non-homopolymer indel, ‘3’ carry-

forward error
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abundant sequence are clustered together with the most
abundant sequence. Finally, after correcting homopolymer

and non-homopolymer indels, carryforward errors are cor-
rected by clustering sequences only showing carryforward

patterns.
(iv) Variant calling and profiling: A Poisson probability model

approximates the expected distribution of mismatch error

rates to distinguish sequencing errors from authentic
minor variants (Wang et al., 2007). The nucleotide variant

frequencies at each site across the reference sequence are

calculated. Local haplotypes in each window are con-
structed by the most abundant/consensus sequence in

each cluster. The cluster size is interpreted as the haplotype
frequency in the population.

4.2 Error rate calculation

Pyrosequencing reads that served as the control for error rate

calculations were processed by read quality filtering [step (i) men-

tioned previously]. The remaining qualified reads were aligned to
the pNL4-3 reference sequence using BLASTN with the align-

ment parameters as follows—match reward, 1; mismatch pen-
alty, -1; gap existence, 1; gap extension, 2. Each type of error rate

(number of errors/total number of mapped reference bases) was

calculated by parsing the BLASTN output file, categorized by
insertion, deletion and mismatch.

5 RESULTS AND DISCUSSION

5.1 Efficiency of sequencing error correction

To characterize the frequency of pyrosequencing errors and de-
termine the efficiency of the ICC method in correcting errors, we

sequenced a control dataset of six PCR-derived amplicons from

the HIV-1 gag, pol and env genes within the pNL4-3 plasmid. We
compared these reads with the Sanger-derived sequence of the

clone. Table 1 shows the comparison of sequencing error fre-

quencies of the six amplicons before and after error correction
by ICC. These errors include both those introduced by PCR and

those introduced during pyrosequencing. Overall error frequen-

cies were reduced by 93–95%, whereas the frequencies of inser-
tion and deletion errors were reduced by 98–99%, and mismatch

errors were reduced by 48–71%, the latter due to correction of

carryforward errors because no substitution mutations were cor-

rected (see Section 5.2 later in the text).
We also applied ICC to data from an individual (PIC64236)

with HIV-1 infection. We pyrosequenced PCR-derived ampli-

cons from the viral gag and env genes found in the patient at

five different time points, and we analyzed variants by their fre-

quency. Table 2 shows the analysis of one of the amplicons

(gag3, 383bp with primers trimmed). ICC reduced the number

of variable sites by an average of 84%, and the overall trend was

as expected for early HIV infection, with a slightly higher level of

diversity early and then increasing diversity through time

(Herbeck et al., 2011).

5.2 Correction of carryforward errors

The 454 pyrosequencing is known to be particularly prone to

errors in homopolymeric regions due to carryforward and in-

complete extension errors (Margulies et al., 2005). Incomplete

extension refers to a homopolymer that is not completed due

to insufficient local nucleotide concentrations within a flow.

Carryforward errors occur when reagent flushing between the

flows is insufficient, and leftover nucleotides are introduced

near but not adjacent to homopolymers. With commonly used

parameters for alignment, including the settings we used, one

carryforward error was usually interpreted as two mismatches

when aligned to the reference sequence. Because most carryfor-

ward errors were found immediately 30 to homopolymers, we

investigated carryforward errors as a function of homopolymer

length using the same control dataset of six amplicons.

Carryforward errors increase as the length of the homopolymer

increases, with a large increase noted with homopolymers of 6 nt

in length (mean rate increased from 0.03 to 1.3% as homopoly-

mer length increased from 3 to 6) (Fig. 3). According to these

results, we conservatively corrected carryforward errors when

found in up to 5% of reads. However, users can set different

cutoff values. Because ICC does not correct mismatches, the re-

duction in mismatch errors noted above is attributable solely to

the correction of carryforward errors.

5.3 Comparison with other error correction and variant

calling algorithms

We used several other error correction and variant calling pro-

grams to process our control datasets: V-Phaser (Macalalad

Table 1. Comparison of error rates before and after ICC

Before correction After correction

Amplicon Size

(bp)

Reads passing

quality filter

Insertion

(%)

Deletion

(%)

Mismatch

(%)

Overall

(%)

Insertion

(%)

Deletion

(%)

Mismatch

(%)

Overall

(%)

Run3 gag3 383 16 987 0.2017 0.1242 0.0412 0.3671 0.0041 0.0011 0.0146 0.0198

Run3 pol1 317 22 456 0.29 0.0358 0.0305 0.3563 0.0027 0.0005 0.0097 0.0129

Run3 env3 269 21 271 0.2131 0.0299 0.0297 0.2727 0.0011 0.0001 0.0135 0.0147

Run3 env5 443 20 593 0.1915 0.1585 0.0432 0.3932 0.0032 0.003 0.0125 0.0187

Run4 gag3 383 8247 0.1602 0.055 0.0282 0.2434 0.0017 0.0008 0.0144 0.0169

Run4 pol1 317 12 001 0.1348 0.0729 0.0254 0.2331 0.0024 0.0009 0.0131 0.0164
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et al., 2012), QuRe (Prosperi and Salemi, 2012), Coral (Salmela

and Schröder, 2011), Acacia (Bragg et al., 2012) and the

PyroNoise component of AmpliconNoise v1.25 (Quince et al.,

2011). All compared algorithms were run using their default par-

ameters. To compare sensitivity and specificity across the various

algorithms, we mixed 15 HIV-1 plasmid clones of known se-

quence at frequencies ranging from 0.1 to 80% (Table 1). A

534bp amplicon in gag was PCR amplified and subjected to

pyrosequencing. After pyrosequencing, we detected 12 of the

mixture of 15 plasmid clones with one at 80% frequency and

the remaining 20% divided among the other 11 minor variants.

Three minor variants mixed in at 0.1% frequencies were not

detected, as expected, as we sequenced only 691� 310 templates.

Because the Coral, Acacia and PyroNoise algorithms do not

have methods to call variants, to fairly compare sensitivity and

specificity among different programs, we set a frequency cutoff at

0.1% according to our experimental setup of �1000 input tem-

plates, i.e. only variants at frequencies �0.1% were considered

when calculating sensitivity and specificity (Table 3). The speci-

ficity of each method was similar. However, ICC outperformed

the other programs in sensitivity with each of the 11 minor vari-

ants detected.
We also calculated the raw and corrected nucleotide frequen-

cies from pyrosequencing data using PyroNoise, Acacia, Coral,

QuRe, V-Phaser and ICC. Except for PyroNoise, we found good

correlations between raw and corrected nucleotide frequencies of

the expected variants (Fig. 4). PyroNoise and QuRe showed a

relatively high specificity, indicating that they performed well in

reducing sequencing noise, but PyroNoise had the lowest sensi-

tivity among the six methods (Table 3). Furthermore, some vari-

ants detected by PyroNoise had much lower frequencies

compared with raw and expected frequencies (Fig. 4A). Using

QuRe on the same dataset, we obtained results over only a por-

tion of the amplicon (423 bp of the full length of 479 bp), as this

program trimmed the amplicon at both ends, where high-

sequencing noise is usually detected. QuRe also used more

relaxed settings by default in calling variants by Poisson distri-

bution than ICC did. Thus, QuRe reached the highest specificity

by removing more errors; on the other hand, it also eliminated

more real rare variants, resulting in a lower sensitivity (Table 3).

These results show that ICC is able to reduce sequencing noise to

a large extent while retaining the correct frequencies of real

variants.
PyroNoise uses distances defined by flowgrams to assist in

removing pyrosequencing errors. In our studies, PyroNoise

eliminated some high-frequency variants, whereas some muta-

tions were retained no matter how low their frequency. We

found that mutations resulting in a flow cycle change were

never corrected, whereas others that maintained flow cycles

were subject to correction. Figure 5 shows an example of these

two different types of mutations. When we compared the dis-

tance between (I) and (II) with the distance between (I) and (III)

at the sequence level, there was no difference, with both having

one mismatch. But at the flowgram level, the distance between (I)

and (II) was different from that between (I) and (III). With a

mutation from (I) to (II), the flows were maintained and still

aligned. But when a mutation from (I) to (III) occurs, the

flows were changed by an insertion of one flow cycle (highlighted

in bold type); therefore, the flowgrams were no longer aligned.

We therefore defined an In-Flow-Cycle (IFC) mutation as one

Fig. 3. Carryforward error rates as a function of different homopolymer

lengths. Data were generated from six PCR-derived amplicons from the

pNL4-3 plasmid clone in two separate pyrosequencing runs.

Carryforward error rates were calculated by dividing the number of

reads that contained carryforward errors by the total number of reads

covering the homopolymer region

Table 3. Sensitivity and specificity for variant detection from different

algorithms

Program Minor variants

detected

Sensitivity Specificity

PyroNoise 5 0.4545 0.9957

Acacia 8 0.7273 0.9808

Coral 9 0.8182 0.9893

QuRe 8 0.7273 0.9976

V-Phaser 9 0.8182 0.9872

ICC 11 1 0.9827

Note: Sensitivity is reported as the fraction of the known variants found in the raw

data by each correction algorithm. Specificity is reported as the fraction of sites not

containing the known variants observed in the raw data. Variant calling required a

frequency of �0.001 with total input copy number of 691� 310.

Table 2. Called variants in HIV-1 clinical data by ICC

Days post

infection

Reads Variable sites Reduction in

variable sites (%)

Raw data After ICC

29 5508 197 31 84.26

49 8281 223 12 94.62

146 9959 258 27 89.53

257 11 028 282 68 75.89

428 9863 282 74 73.76

Note: Pyrosequencing data were derived from a PCR amplicon from the HIV-1 gag

gene from one infected individual at five time points over the first 14 months of

infection. Variable sites correspond to aligned nucleotide positions with at least two

different nucleotides.
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that does not change the number of flows, and an Out-Flow-

Cycle (OFC) mutation as one that changes the number of flows.
Although there is no difference in distance between IFC and

OFC mutations at the sequence level, there is a difference at
the flowgram level. Because of their misalignment, each cycle

after an OFC mutation increases the distance between flow-
grams. To verify this finding, we simulated flowgrams having

different frequencies of minor variants with various numbers of

IFC or OFC mutations. The results of PyroNoise correction
using the program’s default parameter settings are shown in

Table 4. Variants with frequency up to 19% were eliminated if
there was one IFC mutation between major and minor variants.

The frequency threshold of minor variants to be eliminated
decreased as the number of IFC mutations increased.

However, minor variants were not eliminated if there was a
single OFC mutation distinguishing major and minor variants

(Table 4). The results from sequencing the mixture of 15 HIV-1

plasmid clones also confirmed these findings (Fig. 4A). Thus, it is
crucial to choose proper parameters to not eliminate rare and

sometimes abundant variants when using PyroNoise to correct
sequencing errors.

5.4 Determination of minor variants

ICC does not correct mismatches, and as a result, it maximizes
the number of real rare variants retained. To distinguish mis-

match errors from authentic minor variants, we applied a

statistical analysis that assumes a Poisson distribution in the fre-

quency of these errors (Wang et al., 2007). Variants whose fre-

quency of occurrence yielded a P50.001 according to the

Poisson model were considered highly unlikely to be sequencing

errors. Pyrosequencing error rate is largely dependent on the

sequencing platform, PCR amplification and sequence context

(Gilles et al., 2011; Huse et al., 2007; Shao et al., 2013;

Vandenbroucke et al., 2011; Wang et al., 2007). Wang et al.

(2007) measured mismatch error rates using a Roche 454 GS20

sequencing platform and found that mismatches were six times

more frequent in homopolymeric regions (0.0044) than in non-

homopolymeric regions (0.0007). Therefore, they used two

Poisson distributions of errors to distinguish sequence errors

from authentic minor variants in homopolymeric and non-

homopolymeric regions, respectively. Considering that carryfor-

ward error is a major source of 454 pyrosequencing errors and

one carryforward error is usually interpreted as two mismatches

when aligned to reference sequence, we asked whether the differ-

ence in mismatch rate between the two contexts could be caused

by carryforward errors in homopolymeric regions. To test this,

we examined six amplicons on two separate pyrosequencing runs

using the 454 GS-FLX Titanium platform. We calculated differ-

ent types of errors and categorized them according to their se-

quence context (inside or outside of homopolymer regions) by

distinguishing carryforward errors from substitutions in align-

ments (Table 5). The average mismatch error rate of the six

amplicons, excluding carryforward errors, was 0.00013. The

rates of mismatch errors were equivalent in non-homopolymeric

regions (0.00013) and homopolymeric regions (0.00012) when

carryforward errors were correctly aligned to the reference.

After ICC correction of indels and carryforward errors, we there-

fore required only one distribution of mismatch error rates,

which approximated a Poisson distribution with m¼ 0.00013.

We then used this empirically observed distribution to distin-

guish sequence errors from authentic minor variants. Within

ICC, users can provide specific values according to different

sequencing platforms and PCR conditions.
In conclusion, ICC provides a complete software pipeline for

users to analyze pyrosequencing data for both library and ampli-

con applications. It is specifically designed to correct indel and

carryforward and incomplete extension errors in 454 pyrose-

quencing data and avoid the elimination of real variants

during error correction by a novel approach of non-substitution

clustering without need of a distance cutoff value. ICC can be

Fig. 4. Correlation between raw and corrected frequencies of real vari-

ants by different algorithms. (A) PyroNoise, (B) Acacia, (C) Coral, (D)

QuRe, (E) V-Phaser and (F) ICC. Pyrosequencing data were derived from

a 479bp PCR-derived amplicon of a mixture of different copies of 15

HIV-1 clones of known sequence with total input copy number of

691� 310

Table 4. Simulation of maximum frequency of minor variant to be elimi-

nated by PyroNoise

IFC mutations OFC

mutations

1 2 3 4 5 1

19% 2% 0.30% 0.04% 0 0

Note: Flowgrams were simulated based on an amplicon of 339bp. IFC mutations

represent mutations that do not change the number of flow cycles. OFC mutations

will change the number of flow cycles.

Fig. 5. The effect of different mutations on flowgrams. Flowgram data

corresponding to the sequences on the left, with nucleotides flowed in the

order of TACG. The ‘:’ indicates a new flow cycle series of the four

nucleotides. Mutated nucleotides are highlighted in bold type. Inserted

flow cycle is also highlighted in bold type
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applied in other next-generation sequencing platforms such as

Ion Torrent and Illumina. Ion Torrent has similar technology

and the same source of errors as 454 pyrosequencing. ICC is able

to analyze Ion Torrent data with the same efficiency as 454

pyrosequencing data. It can also be run on Illumina data, al-

though there is low indel error in Illumina platform. By applying

a Poisson probability model, ICC is able to distinguish sequen-

cing errors from authentic minor variants and remove sequen-

cing noise to a large extent. With the high sensitivity and

specificity achieved by ICC, it should expedite analysis of vari-

able sequence populations.
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