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Introduction. Iron deficiency anemia and thalassemia are the most common causes of microcytic anemia. Powerful statistical
computer programming enables sensitive discriminant analyses to aid in the diagnosis. We aimed at investigating the performance
of the multiple discriminant analysis (MDA) to the differential diagnosis of microcytic anemia. Methods. The training group
was composed of 200 𝛽-thalassemia carriers, 65 𝛼-thalassemia carriers, 170 iron deficiency anemia (IDA), and 45 mixed cases
of thalassemia and acute phase response or iron deficiency. A set of potential predictor parameters that could detect differences
among groups were selected: Red Blood Cells (RBC), hemoglobin (Hb), mean cell volume (MCV), mean cell hemoglobin (MCH),
and RBC distribution width (RDW). The functions obtained with MDA analysis were applied to a set of 628 consecutive patients
with microcytic anemia. Results. For classifying patients into two groups (genetic anemia and acquired anemia), only one function
was needed; 87.9% 𝛽-thalassemia carriers, and 83.3% 𝛼-thalassemia carriers, and 72.1% in themixed group were correctly classified.
Conclusion. Linear discriminant functions based on hemogram data can aid in differentiating between IDA and thalassemia, so
samples can be efficiently selected for further analysis to confirm the presence of genetic anemia.

1. Introduction

Iron deficiency anemia (IDA) and𝛽-thalassemia are themost
common causes of microcytic anemia.

The differentiation between IDA and microcytosis due
to genetic cause has important clinical implications. As all
chronic diseases, prevention is important in the overall man-
agement of the disease: an appropriate screening, detection of
patients, and counsel of couples at risk are themost important
procedures for the reduction of morbidity and mortality of
the patients [1].

The presumptive identification of hemoglobin disorders
must rely on inexpensive methods of detection, to allow an
efficient use of the resources: a good method for screening
can help, allowing selection of samples for further analysis to
confirm the disease.

Definitive methods for diagnosis of thalassemia trait
include quantitative analysis of HbA

2
and DNA studies for

specific deletions and mutations. Increased HbA
2
is con-

sidered to be confirmatory for 𝛽-thalassemia trait. Low or
normal values and no evidence of iron deficiency suggest
𝛼-thalassemia; definitive diagnosis requires molecular meth-
ods to detect gene deletions.While being accurate, these tests
are too expensive for initial mass screening [2].

The availability of computer, robotic systems, and pow-
erful statistical software has expanded the accessibility
of sophisticated statistical analysis. These include analyses
employing multiple predictor variables (multivariate analy-
sis) to predict an outcome variable [3].

MDA begins with subjects in two or more groups and
then uses the discriminant procedure to identify a linear
combination of quantitative predictor variables that best
characterize the differences among the groups. The discrim-
inant function sums the products of variables multiplied by
coefficients.The procedure estimates the coefficients for each
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variable, and the resulting function can be used to classify
new patients.

MDA can be used to develop more sensitive and accurate
diagnostic methods for thalassemia detection using the data
of the hemogram. We applied stepwise MDA to determinate
which red cells derived parameters that are best in differenti-
ating the heritable genetic anemia and the iron deficient state.

The aim of the present study was to investigate the
performance of MDA to the differential diagnosis of genetic
and acquiredmicrocytic anemia, so samples can be efficiently
selected for further analysis to confirm the presumptive
diagnosis of thalassemia.

2. Materials and Methods

2.1. Criteria for Selecting the Groups of Patients. The study
was conducted according to the hospital ethic’s guidelines
after being approved by the Committee of Ethics and Good
Practice of the hospital.

Only adults were included in the present study, and none
of them received a transfusion nor had an acute bleeding in
the previous month.The samples were obtained in the course
of routine analysis, collected in EDTA anticoagulant tubes
(Vacutainer Becton-Dickinson, Rutherford, NJ, USA), and
run in the analyzers of the LH 1500 Beckman Coulter robotic
system (Beckman Coulter Inc., Miami, FL, USA) within 6
hours of collection.

A total of 480 patients were included in the training
set, classified into four different disorders: IDA, 𝛼- and
𝛽-thalassemia, and a group of thalassemia carriers with other
diseases at the moment of the analysis (mixed group).

The IDA group consisted of 170 patients (35.4%), with
Hb < 120 g/L, MCV < 80 fL, serum Iron < 7.5 𝜇mol/L, trans-
ferrin saturation < 20%, and serum ferritin < 50𝜇g/L [4].

Two hundred 𝛽-thalassemia carriers (41.6%) and 65
𝛼-thalassemia carriers (13.5%), all of them with a previous
diagnosis of the disease, were recruited.

A mixed group (9.5%) included 45 thalassemia carriers
with acute phase response (APR), iron deficiency, or preg-
nancy at the moment of the analysis.

Thalassemia screening is routinely performed in our
laboratory by means of the measure of their Red Blood Cell
parameters. Samples with erythrocytosis (RBC > 5.5⋅1012/L)
andmicrocytosis (MCV < 80 fL) are selected for HbA

2
quan-

tification (HPLC HA 8160, Menarini Diagnostics, Firenze,
Italy). Increased HbA

2
(>3.5%) is considered to be confirma-

tory for 𝛽-thalassemia trait.
Low HbA

2
(<2.5%) or a value within the reference range

(2.5%–3.5%) is feature of 𝛼-thalassemia, and these samples
are referred for molecular analysis to detect the associated
deletions.

Molecular analysis is performed if genetic counsel is
required. Molecular characterization of mutations is per-
formed with allele specific oligonucleotide-polymerase chain
reaction PCR-ASO techniques [5, 6].

A second group of consecutive patients with microcytic
anemia (𝑛 = 628), extracted from the laboratory workload
during the months of January and February 2013, was used as
a validation set.

This group consisted of 505 (80.4%) IDA patients, 63
(10.0%) 𝛽-thalassemia, 16 (2.6%) 𝛼-thalassemia, and 44
(7.0%) a mixed group of hemoglobinopathies or thalassemia
carriers with APR, IDA, or pregnancy at the moment of the
analysis: 4 𝛼-thalassemia and IDA, 3 𝛼-thalassemia and APR;
1 pregnant 𝛼-thalassemia carrier, 7 𝛽-thalassemia and IDA, 5
𝛽-thalassemia andAPR; 5 pregnant𝛽-thalassemia carriers, 10
Hb S, and 4 Hb Lepore; 1 Hb E; 1 Hb C and IDA; 1 Hb S and
APR; and 2 pregnant HbS.

2.2. Statistical Analysis. A set of potential predictor param-
eters that could detect differences among the mentioned
microcytic anemias were selected: Red Blood Cells (RBC),
hemoglobin (Hb), mean cell volume (MCV), mean cell
hemoglobin (MCH), and red cells distributionwidth (RDW).

The outcome of interest was the type of microcytic
anemia. It was considered in two different ways: classification
type I (IDA, 𝛼-thalassemia,𝛽-thalassemia, andmixed clinical
situations) and classification type II (genetic anemia and IDA
acquired anemia).

In the training group, as initial step, an exploratory
data analysis of the collected hemogram parameters was
performed across the type of disease, using means and
standard deviations. To assess mean differences in the men-
tioned predictor parameters across the different types of
disorders according to the classification type I, Kruskall-
Wallis nonparametric test for independent samples was used;
Wilcoxon nonparametric test was used when classification
type II was regarded.

Multivariate discriminant analysis (MDA)was conducted
in order to distinguish differences among groups of diseases
and to determine how to allocate new observations into the
established groups. To this end, the above-mentioned param-
eters were considered as independent variables whereas the
type of disease was the outcome. As the first step, Wilk’s
Lambda statistic was used to test whether the discriminant
model was significant. Moreover, the number of discrim-
inant functions, the corresponding standardized discrim-
inant coefficients, and canonical correlations for each of
studied parameters—the ones which maximized the distance
between the groups—were also obtained. Correlations higher
than 0.40 were considered significant [3].

Thereafter, a classification functional equation was con-
structed. A case was predicted as being member of the group
in which the value of its classification function was the
largest. The predicted diagnoses were then compared with
the actual diagnoses in each of the original patients. Correct
classification was defined as the division between concordant
cases (when predicted and actual diagnoses were the same)
and the entire sample size. This was performed by means of
cross-validation. A scatterplot of the discriminant functions
in the training set was depicted.

The validation set of 628 subjects was employed to
evaluate the performance of the classification determined by
the established functions in the training group.

All these statistical analyses where performed for the two
mentioned classification types I and II, using the 𝑅 statistical
software 2.14 release. A 𝑃 value <0.05 was deemed to be
statistically significant.
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3. Results

There were significant differences for the disease group
distribution in both data sets (𝑃 < 0.001).

Table 1 reports mean and standard deviations by disease
groups. All analyzed blood markers showed significant mean
differences among disease groups. Patients with IDA had the
lowest values of RBC and Hb and the highest values of MCV.

Table 2 shows the standardized canonical coefficients
obtained from the linear discriminant analysis.

MDA analysis for classifying patients into four groups
(classification type I) illustrated that two canonical discrim-
inant functions 1 and 2 cumulatively accounted for 99.85%
of the total variance (𝑃 < 0.001 for both functions). In the
first function, RBC was negatively correlated with the first
function.The rest of variables (Hb, MCV, andMCH) showed
negative and significant standardized loadings for the second
function.

When classifying patients into two groups (genetic
anemia and acquired iron deficiency anemia, classification
type II), only one function was needed. In this case, RBC was
positively correlated to the discriminant function.

Figure 1 shows the linear discriminant plot for the classifi-
cation type I and the boxplot according the function obtained
for the classification type II. In the discriminant plot, there is
a significant overlap in the classes corresponding to diseases
targeted as 𝛼- and 𝛽-thalassemia and the mixed group of
thalassemia carriers, whereas patients with IDA are mostly
separated from the others (𝑃 < 0.001). When classifying
diseases as acquired or genetic anemia, again there is a clear
separation between both blood disorders.

Once linear discriminant functions were calculated
according to the results showed in Table 2, we computed the
correct classification rates in the validation set for the entire
samples and stratified by disease group.

Tables 3 and 4 display the obtained results. As one can
observe in the validation set, when classification type I is
applied, 70.3% of IDA disorders were correctly classified, and
also 𝛼-thalassemia had a high rate of correct classification
(68.8%); on the other hand only one-third of 𝛽-thalassemia
was recognised, with 39.7% classified as 𝛼-thalassemia; also
one-third of the mixed group of genetic anemia was included
in the IDA group.

When trying to classify diseases into two groups (genetic
anemia versus IDA, classification type II), the overall rate
surpassed the 85% rate (87.9% 𝛽-thalassemia carriers and
83.3% 𝛼-thalassemia carriers).

Nineteen % of the patients with genetic anemia
were misclassified. Out of these patients, 5 (20.8%) were
𝛽-thalassemia carriers and 4 (16.7%) 𝛼-thalassemia, and
15 (62.5%) were mixed group (5 𝛽-thalassemia and IDA, 5
𝛼-thalassemia and IDA, 1 pregnant 𝛼-thalassemia, 2 Hb S,
and 2 pregnant HbS).

4. Discussion

The screening of thalassemia carriers in endemic areas
remains a daily challenge for laboratory professionals.
Although thalassemia is most frequent in the Mediterranean
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Figure 1: Linear discrimination plot for the studied classification
type I (a) and boxplot for the classification type II in the training set
(b). Black symbols in the linear discriminant plot indicate centroid
groups. Dashed line in the boxplot reflects the cut-off value for the
required discriminant function.

basin and Far East countries, due tomigration of populations,
there is virtually no country in the world now in which tha-
lassemia does not affect some percentage of the inhabitants
[7].

On the basis of classical hematological parameters, sub-
jects with IDA are inappropriately discriminated from sub-
jects with anemia due to thalassemia or chronic disease.
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Table 1: Hematological and biochemical data for the study patients comprised 170 with iron deficiency anemia (IDA), 200 𝛽-thalassemia
carriers, 65 𝛼-thalassemia carriers, and 45 mixed clinical situations (hemoglobinopathy and other disease, iron deficiency, or pregnancy).
Values are reported as mean (standard deviation).

Mixeda 𝛽-thalassemiab IDAc 𝛼-thalassemiad 𝑃 value

RBC, 1012/L 5.70 5.79 4.72 5.40
<0.001

(0.57)c,d (0.54)c,d (0.48)all (0.55)all

Hb, g/L 116 119 105 123
<0.001

(13.2)d (11.2)d (11.0)c,d (14.0)all

MCV, fL 64.6 64.6 73.7 70.5
<0.001

(4.08)c,d (3.39)c,d (4.63)all (2.96)all

MCH, pg 20.4 20.6 22.3 22.7
<0.001

(1.48)c,d (1.11)c,d (1.86)a,b (1.08)a,b

RDW, % 16.9 16.1 18.2 15.9
<0.001

(1.84)c (1.06)c (3.03)all (1.51)c

RBC: Red Blood Cells; Hb: hemoglobin; MCV: mean cell volume; MCH: mean cell hemoglobin; RDW: RBC distribution width.
Superscript letters (a,b,c,d,all) indicate significant differences between groups.
𝑃 < 0.001 was for the studied blood markers for the mean differences between acquired (IDA) and genetic anemia.

Table 2: Standardized canonical coefficients obtained from the linear discriminant analysis.

Classification type I Classification type II
First function Second function First function

Standardized
coefficient

Relative
importance

Standardized
coefficient

Relative
importance

Standardized
coefficient

Relative
importance

RBC 0.902 −0.532∗ 5.481 0.154 1.778 0.537∗

Hb −1.362 −0.332 −5.723 −0.410∗ −2.225 0.284
MCV 1.607 0.609 0.481 −0.636∗ 1.814 −0.361∗

MCH −0.257 0.292 2.408 −0.788∗ 0.152 −0.529∗

RDW 0.461 0.267 0.064 0.268 0.441 0.237
Proportion of trace (%) 91.26 8.59 100
RBC: Red Blood Cells; Hb: hemoglobin; MCV: mean cell volume; MCH: mean cell hemoglobin; RDW: RBC distribution width.
First function: first linear discrimination function. Second function: second discrimination function. Classification type I: disease groups categorized into four
diseases: mixed, 𝛽-thalassemia, 𝛼-thalassemia, and IDA. Classification type II: targeted diseases as genetic anemia (mixed, 𝛽- and 𝛼-thalassemia) and acquired
anemia.
Standardized coefficient: standardized coefficient obtained from the linear discriminant analysis of each blood marker for the considered functions.
Relative importance: correlations of each variable with each discriminant functions.
∗A correlation higher than 0.40 is considered significant.
Proportion of trace (%): proportion of variability of the outcome explained by the considered independent variables.

Some indices have been defined to quickly discriminate both
diseases based on the red cell parameters obtained from
automated blood cell analyzers and are used as a preliminary
screening, with matter of great interest in geographic areas
where nutritional deficiencies and thalassemia are present
with high prevalence [8].

There has been a clear revival of interest in the detection
of thalassemia demonstrated by the increasing number of
publications reporting new indices in recent years [9–12].

These cell counter-based formulae have been used in the
differential diagnosis of microcytic anemia and 𝛽-thalasse-
mia detection, but when applied to the detection of 𝛼-
thalassemia, or in case of thalassemia and concomitant iron
deficiency, these formulae perform much less accurately.

Another approach to assist in classification of anemia has
been the use of computer based expert system subset of arti-
ficial intelligence; mimicking the human expert the system

applies decision trees, logic rules, or statistical best fit analysis
to reach conclusions [13–16].

MDA approach fits fine with the realistic situation a
mixed population. An advantage is the simplicity of applica-
tion; once calculated, the formulae can be incorporated into a
programmable calculator or computer spreadsheet, allowing
insertion of the hemogram data of certain patients to obtain
the provisional classification.

Eldibany et al. [17] applied MDA and identified MCH,
RBC count, MCV, and RDW, the best set of indices for
differentiating 4 diagnoses.The study demonstrated that a set
of linear discriminant functions based on routine hemogram
data can effectively differentiate between 𝛼-thalassemia,
𝛽-thalassemia, and IDA, with a high degree of accuracy.

As Eldibany et al. proposed, we started the classification
type I (Table 2)with two functions and four outcomes, but the
results obtained were poorer than those expected, mainly in
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Table 3: Distribution of predicted versus actual disease classification in the validation set applying the classification type I. Number of patients
(column %).

Predicted diagnosis Actual diagnosis IDA 𝛼-thalassemia Total
Mixed 𝛽-thalassemia

Mixed 6 (13.7) 17 (27) 13 (2.6) 2 (12.5) 38
𝛽-thalassemia 3 (6.8) 19 (30.1) 3 (0.6) 0 25
IDA 13 (29.5) 2 (3.2) 355 (70.3) 3 (18.7) 373
𝛼-thalassemia 22 (50) 25 (39.7) 134 (26.5) 11 (68.8) 192
Total 44 63 505 16
IDA: iron deficiency anemia.

Table 4: Distribution of predicted versus actual disease classifica-
tion in the validation set applying the classification type II. Number
of patients (column %).

Predicted diagnosis
Actual diagnosis

Acquired anemia
(𝑛 = 505)

Genetic anemia
(𝑛 = 123)

Acquired anemia,
IDA (𝑛 = 436) 412 (81.6) 24 (19.5)

Genetic anemia (𝑛 = 192) 93 (18.4) 99 (80.5)
IDA: iron deficiency anemia.

case of 𝛽-thalassemia (30% correctly identified). The correct
classification for 𝛼-thalassemia in both studies was around
70%, a high rate that could be taken into account in endemic
areas. In themixed group 29.5%were misclassified as IDA, so
71.5% was recognized as genetic anemia.

Nevertheless, the HbA
2
analysis is the gold standard in

the diagnosis of thalassemia.The increase ofHbA
2
is themost

relevant diagnostic characteristic of 𝛽-thalassemia carriers
and is low or within reference range in 𝛼-thalassemia patients
[18].

We tried to improve the diagnostic performances and
the predictor parameters selected, RBC, Hb, MCV, MCH,
and RDW, which were used in one function with only two
outcomes: acquired anemia (IDA) and genetic anemia.

The results improved, and 80.5% with genetic anemia
were detected, 87.9% 𝛽-thalassemia carriers, 83.3% 𝛼-tha-
lassemia carriers, and 72.1% in the mixed group were cor-
rectly classified, so we propose a diagnostic based on MDA
and HbA

2
analyses.

The samples classified in the latter group by MDA
are selected for HbA

2
measurement; based on the values

obtained and the presence or not of Hb variants, molecular
analysis can be performed, but the results obtained in the
mixed group suggest that the mixed thalassemia and iron
deficiency status remain themost difficult to detect, and 19.5%
of the patients with genetic anemia weremisclassified as IDA.

It is difficult to talk about thalassemia globally since the
social situation and the health systems are diverse anywhere
in the world. In the developing countries, where these
diseases are endemic, represent a problem of public health,
but, in the developed countries with the general budgetary
reductions, the presumptive identification of hemoglobin

disorders must rely on inexpensive methods of detection, to
allow an efficient use of the resources: a good system for
screening can help, allowing efficiently selecting samples for
further analysis to confirm the disease.

5. Conclusions

The above-described system is aimed at screening for tha-
lassemia in samples for which full blood count parameters
have been technically and clinically validated prior to the
interpretive process. Its main aim is to focus attention and
efforts on those samples requiring further investigation for a
complete diagnosis.

In an era where demands on laboratories are ever increas-
ing and funding and staffing levels are generally below the
desired level, the implementation of a system which reduces
staff time and improves result turnaround times is greatly
desired. The implementation of a system such as the one we
have describedwill introduce a safe and cost-effectivemethod
to minimize the amount of time specialized biomedical
scientist spent on analysing results in which no abnormalities
are present.

A drawback of this study is the fact that only heterozygous
carries were included; the reason was the low prevalence
of hemoglobinopathies in our area; perhaps other authors
may consider the new approach and would try to verify our
findings in areas of high prevalence of these diseases.
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