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Abstract
The synthesis of MII

2 complexes (MII = Co, Mn) with terminal hydroxo ligands has been achieved
utilizing a dinucleating ligand containing a bridging pyrazolate unit and appended
(neopentyl)aminopyridyl groups. Structurally studies on the complexes revealed that the MII–OH
units are positioned in a syn-configuration, placing the hydroxo ligands in close proximity (ca. 3 Å
apart), which may be a prerequisite for water oxidation.

Multinuclear metal complexes with terminal hydroxo or oxo ligand(s) have been proposed
to participate in a variety of different biochemical processes, including the catalytic cycle of
water oxidation in photosystem II (PSII).1 Exploring the chemistry of related synthetic
systems has provided information into the structural and mechanistic requirements necessary
for catalysis, yet most artificial systems still lack the catalytic efficiency found in
metalloproteins. One synthetic approach is to develop complexes that initially place two M–
OHn (n = 1, 2) units in close proximity.2,3 This approach is often hampered because of the
tendency for hydroxo and aquo ligands to bridge between metal ions. Nonetheless, there are
structurally characterized examples of dinuclear complexes containing discrete M–OHn
units. 4 Meyer reported that the [(bpy)2Ru-OH2]2(μ-O) complex contains a diruthenium core
with two terminal aquo ligands5 and Ménage showed that the [(trpy)2Fe-OH]2(μ-O) has two
FeIII–OH units;6 however, in these complexes the M–OHn units have an anti-configuration
in the solid state with the two OHn groups separated by over 5 Å. Success in preparing
dinuclear complexes with M–OHn unit in the syn-configuration has been achieved using
dinucleating ligands.7 For instance, Llobet and Meyer have reported complexes containing
Ru2-(H3O2),7a Zn2-(H3O2)7b,c and Ni-(H3O2)7d unit respectively, utilizing a pyrazolate
bridging group that prevents the formation hydroxo or oxo bridges. In this report we
describe the preparation of a new dinucleating ligand that supports the formation of [CoII–
OH]2 and [MnII–OH]2 complexes. The MII–OH units in these complexes adopt syn-
configurations, which are stabilized by intramolecular hydrogen bonding (H-bonding)
networks.

We have been preparing dinucleating ligands that also utilize a bridging pyrazolate group to
separate the metal centers. Using the structural concepts developed by Meyer,8 we reasoned
that ligands containing a (3,5-diaminomethylene)-pyrazolate unit would provide sufficient
spacing between the metal ions (ca 3.5-4.5 Å) to allow the binding of two terminal hydroxo
ligands. In addition, our ligands include H-bond donors within the secondary coordination
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sphere to form intramolecular H-bonding networks with the M–OH units;9,7d these types of
noncovalent interactions have previously been exploited in the isolation of mononuclear M–
OH analogues.10 Two earlier versions of this design contained urea ([H4PRbuam]5-) 11 and
carboxyamidopyridyl ([H3bppap]2-)12 groups (Fig. 1) but we were unable to prepare
dinuclear M–OH complexes. For instance, the CoII

2 complex of [H3bppap]2- had only one
terminal CoII–OH center: the binding of a second hydroxo ligand appeared to be hindered by
the coordination of the oxygen atoms of the appended carboxyamido groups.13 These results
suggested that reduction of carboxyamido groups to neopentylamino moieties would
produce 3,5-bis[bis(N-6-neopentylamino-2-pyridylmethyl)aminomethyl]-1H-pyrazole
(H5bnppap), a compound containing H-bond donors that cannot readily coordinate to the
metal ions.14,10c,d

H5bnppap was synthesized from H5bppap in nearly quantitative yield by reduction using
LiAlH4 in THF (Scheme 1). The dinuclear CoII and MnII complexes of [H4bnppap]– were
prepared according to the route outlined in Scheme 2. H5bnppap in MeOH was treated with
3 equiv of NaH under an argon atmosphere. After stirring for 30 min, the MII precursors
(either CoII(NO3)2·6H2O or MnII(OTf)2·2MeCN) were added in one portion and stirred for
an additional 30 min. The reaction mixtures were then treated with 2 equiv of H2O, followed
by the addition of NaBPh4, which resulted in the immediate formation of precipitates. The
solids were isolated via filtration and purified by recrystallization from THF/pentane.

Analytical and spectroscopic investigations indicated that the salts contained the dinuclear
metal complexes, [MII

2H4bnppap(OH)2]+ (MII = Co, Mn). The electrospray ionization mass
spectrum (ESI-MS) of [Co2

IIH4bnppap(OH)2]+ contained a large ion peak at a charge-to-
mass ratio (m/z) of 981.4, which matches the expected mass and isotopic distribution of a
(CoII–OH)2 complex (calcd, 981.5). Similarly the ESI-MS spectrum for
([Mn2

IIH4bnppap(OH)2]+ exhibited a peak at a m/z of 973.5 (calcd, 973.5). Each peak
shifted by 4 mass-units when H2 18O was used in the synthesis, indicating that the source of
the hydroxo ligands is water.¶ Effective magnetic moments (μeff) at 298 K of 8.01 and 5.23
μBM were obtained for [CoII

2H4bnppap(OH)2]+ and [MnII
2H4bnppap(OH)2]+ respectively,§

values that are close to the spin-only values for two individual high-spin MnII and CoII

centers. 15 These preliminary findings suggest weak magnetic coupling, which is
inconsistent with the presence of single atom bridge(s) between the metal centers.

The solid-state structures of the complexes were investigated using X-ray diffraction
methods to reveal dinuclear species in which each metal center has a coordinated hydroxo
ligand. In [CoII

2H4bnppap(OH)2]+ (Fig. 2A) both CoII centers have trigonal bipyramidal
coordination geometries as judged by index of trigonality parameter (τ) of 0.99 measured for
both metal ions.16 An N4O primary coordination sphere exists about each CoII ion,
consisting of pyrazolate and pyridyl nitrogen atoms defining the trigonal plane, and the
tertiary amino nitrogen and hydroxo oxygen atoms in the axial positions. The Co1–O1 and
Co2–O2 bond distances of 1.9379(2) Å and 1.9444(2) Å are similar to the Co–O(H) bond
length of 1.931(2) Å observed in [{CoII(OH)}CoIIH3bppap]+, but are significantly shorter
than those in [CoII

2H4PRbuam(μ-OH)]2- (greater than 2.1 Å) (Figure 1).10b The pyrazolate
unit bridges between the CoII centers with Co1–N4 and Co2–N10 bond distances of
2.034(2) and 2.046(2) Å, and a Co1…Co2 separation of 4.286 Å. The remaining Co–N bond
distances and angles are unexceptional with avg. Co–Ntrig and Co–Naxial bond lengths of
2.108(2) Å and 2.194(2), Å and avg. Ntrig–Co–Ntrig angle and O–Co–Naxial angles of
115.11(8)° and 176.66(8)°

¶ESI-MS data: [Co2 IIH4bnppap(18OH)2]+: m/z = 985.8 (calcd, 985.5); ([Mn2 IIH4bnppap(18OH)2]+: m/z = 977.5 (calcd, 977.5).
§Magnetic moments were determined in DMSO using the Evans’ method. The calculations were done relative to the shift in the
solvent peak.
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A striking feature of the molecular structure of [CoII
2H4bnppap(OH)2]+ is the syn-

configuration of the two Co–OH units. Their close promixity is reflected in the relatively
short O1…O2 separation of 2.971(2) Å, a distance that is indicative of H-bonds being
present between the two ligands. 17, ¶ In addition, the hydroxo ligands formed
intramolecular H-bonds with the neopentylamino groups of [H4bnppap]–. All the N–H
vectors are positioned toward the hydroxo ligands with N–H–O angles of greater than 164°.
This alignment produced O…N distances that are less than 2.8 Å, which, taken together, are
consistent with the formation of strong H-bonds. FTIR measurements are also consistent
with intramolecular H-bonds being present in [CoII

2H4bnppap(OH)2]+ with broad signals
from the amino NH groups appearing at 3235 cm-1. We were unable to observed FTIR
signals from the hydroxo ligand, presumably because they are significantly broadened
because of the H-bonds.

The molecular structure of [MnII
2H4bnppap(OH)2]+ was also determined and contains

nearly the same structural features as the cobalt analogue (Fig. 2B). Disorder in the
neopentyl groups limited the quality of the structure;‡ nevertheless, it is clear at the present
resolution that each MnII center has trigonal bipyramidal coordination geometry with τMn1 =
0.99 and τMn2 = 0.95 and a Mn1…Mn2 separation of 4.303 Å. Note that this type of
coordination also promotes the Mn1–O1 and Mn2–O2 vectors to assume a syn-configuration
(O1…O2, 3.235 Å) that is supported by an extensive intramolecular H-bonding network.

In summary, a new dinucleating ligand, [H4bnppap]– has been developed that contains four
appended amino groups connected via a pyrazolate bridge. The ligand allows for the
preparation of new dinuclear complexes of cobalt and manganese, each of which has two
M–OH units. The intramolecular H-bonding network and the rigidity of ligand framework
successfully reinforces terminal hydroxide coordination and the orientation of the hydroxo
groups. These attributes result in rare examples of discrete molecular species with terminal
metal hydroxides arranged in a syn-fashion that are in close proximity (less than 3.2 Å).
Systems of this type allow for futher investigations into the interactions between M–O(H)
groups, including exploring their reactivities.
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Fig. 1.
CoII–OH complexes of [H4PRbuam]5- and [H3bppap]2-.
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Fig. 2.
Thermal ellipsoid plots of [CoII

2H4bnppap(OH)2]+ (A) and [MnII
2H4bnppap(OH)2]+ (B).

Thermal ellipsoids are drawn at the 50% probability level. Only hydroxo and amino
hydrogen atoms are shown for clarity. Selected bond lengths (Å) and angles (°) for
[CoII

2H4bnppap(OH)2]+ and [MnII
2H4bnppap(OH)2]+: Co1–O1, 1.938(2); Co1-N4,

2.034(2); Co1–N3, 2.102(2); Co1–N2, 2.107(2); Co1–N1, 2.192(2); Co2–O2, 1.944(2);
Co2–N10, 2.046(2); Co2–N9, 2.119(2); Co2–N8, 2.104(2); Co2–N7, 2.195(2); O1–Co1–N4,
106.28(8); O1–Co1–N3, 101.94(8); N4–Co1–N3, 114.64(8); O1–Co1–N2, 100.48(2); N4–
Co1–N2, 116.10(8); N3–Co1–N2, 114.73(8); O1–Co1–N1, 176.51(8); N4–Co1–N1,
76.99(8); N3–Co1–N1, 77.50(8); N2–Co1–N1, 76.78(8); O2–Co2–N10, 106.61(8); O2–
Co2–N8, 102.23(8); N10–Co2–N8, 115.00(8); O2–Co2–N9, 100.11(8), N10–Co2–N9,
117.25(8), N8–Co2–N9, 112.95(8); O2–Co2–N9, 176.81(8); N10–Co2–N7, 76.25(8); N8–
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Co2–N7, 77.51(8); N9–Co2–N7, 77.17(8). Mn1–O1, 2.003(3); Mn1-N4, 2.128(4); Mn1–N3,
2.204(4); Mn1–N2, 2.234(4); Mn1–N1, 2.330(4); Mn2–O2, 2.006(4); Mn2–N10, 2.137(4);
Mn2–N9, 2.230(5); Mn2–N8, 2.207(5); Mn2–N7, 2.285(5); O1–Mn1–N4, 111.20(2); O1–
Mn1–N3, 101.67(2); N4–Mn1–N3, 112.52(2); O1–Mn1–N2, 100.60(1); N4–Mn1–N2,
114.75(2); N3–Mn1–N2, 114.56(2); O1–Mn1–N1, 174.00(2); N4–Mn1–N1, 74.57(2); N3–
Mn1–N1, 76.94(2); N2–Mn1–N1, 74.98(2); O2–Mn2–N10, 113.07(2); O2–Mn2–N8,
102.03(2); N10–Mn2–N8, 114.23(2); O2–Mn2–N9, 99.19(2), N10–Mn2–N9, 115.2(2), N8–
Mn2–N9, 111.3(2); O2–Mn2–N9, 172.13(2); N10–Mn2–N7, 74.46(2); N8–Mn2–N7,
75.94(2); N9–Mn2–N7, 74.84(2).
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Scheme I.
Preparative route of H5bnppap from H5bppap.
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Scheme II.
Synthetic route to [MII

2H4bnppap(OH)2]+ (M = CoII, MnII). Conditions: (a) 3 equiv NaH,
(b) 2 equiv Co(NO3)2·6H2O or Mn(OTf)2·2MeCN (c) 2 equiv of H2O (d) 1 equiv NaBPh4.
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