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Abstract
Existing study design formulas for longitudinal studies assume that the exposure is time invariant
or that it varies in a manner that is controlled by design. However, in observational studies, the
investigator does not control how exposure varies within subjects over time. Typically, a large
number of exposure patterns are observed, with differences in the number of exposed periods per
participant and with changes in the cross-sectional mean of exposure over time. This article
provides formulas for study design calculations that incorporate these features for studies with a
continuous outcome and a time-varying exposure, for cases where the effect of exposure on the
response is assumed to be constant over time. We show that incorrectly using the formulas for
time-invariant exposure can produce substantial overestimation of the required sample size. It is
shown that the exposure mean, variance and intraclass correlation are the only additional
parameters needed for exact solutions for the required sample size, if compound symmetry of
residuals can be assumed, or to a good approximation if residuals follow a damped exponential
correlation structure. The methods are applied to several examples. A publicly available
programme to perform the calculations is provided.

1 Introduction
Formulas for study design calculations, for example power and sample size, for longitudinal
studies when the interest is in the main effect of exposure have been provided.1–3 In those
papers, exposure was considered to be fixed over time, that is subjects were assumed to be
either exposed or unexposed for the entire follow-up period. In the study design setting, the
variation of exposure within a participant or group has only been considered in studies
where this variation is controlled by the investigator, such as in crossover trials4 or
multicentre clinical trials with randomisation at the patient level.5,6 However, in
observational studies, exposure is not assigned by design, and a large number of exposure
patterns may be observed, with differences in the number of exposed periods per participant
and with changes in the cross-sectional prevalence of exposure over time. For example, in a
study on the respiratory effects of exposure to cleaning products,7 women were followed
during 15 consecutive days, and the use of cleaning products (e.g. bleach), which varied
daily within participants, was recorded.
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In this article, we develop formulas for power and sample size in observational longitudinal
studies that accommodate changes in exposure over time not determined by design. In
addition, we assess the sensitivity of study design to ignoring and misspecifying the nature
of this variation and compare the efficiency of studies with a time-varying exposure to those
with a time-invariant exposure. Section 2 introduces the notation and models used. In
Section 3, formulas for power and sample size for a study with time-varying exposure are
derived. Section 4 illustrates the methods we derived applying them to a study on the
respiratory effects of exposure to cleaning products. Finally, Section 5 summarises the
results and discusses further research. A Web Appendix with proofs of the derivations is
available at http://www.hsph.harvard.edu/faculty/spiegelman/optitxs/Appendix
_paperSMMR.pdf and publicly available software to perform all calculations derived in this
article is available at http://www.hsph.harvard.edu/faculty/spiegelman/optitxs.html.

2 Notation and framework
2.1 General notation

Let Yij be the outcome of interest for the measurement taken at the j-th (j = 0, …, r) time for
the i-th (i = 1, …, N) participant, and Eij represent the exposure for the period between the
measurements of Yi,j−1 and Yij. Thus, r is the number of post-baseline measurements of the
response per participant, or, equivalently, the total number of measurements per participant
is r + 1. We consider studies that obtain repeated measures every s time units, as is the usual
design in epidemiologic studies. Let ti0 be the initial time for participant i and let V (t0) be
the variance of ti0 over all participants. When V (t0) = 0, all participants have the same time
vector, as when using time since enrollment in the study as the time variable of interest.
However, when age is the time metameter of interest, as is often the case in epidemiology,
and participants enter the study at different ages, we have V (t0) > 0.

We base our results on linear models of the form , where  is
the expectation operator, Yi is the r + 1 response vector of participant i, Xi is the ((r + 1) × q)
covariate matrix for participant i, q is the number of variables in the model, β is a q + 1
vector of unknown regression parameters, and the (r + 1) × (r + 1) residual covariance
matrix is Var (Yi|Xi) = Σ (i = 1, …, N), which will be treated as known with no practical
implications as long as the sample size is not too small. Section 2.2 describes the particular
variables included in each of the models for which we derived study design formulas. We
base our development on the generalised least squares (GLS) estimator of β, which has the

form . Since the covariate matrix Xi is not known a

priori, following Whittemore8 and Shieh,9 study design calculations use  as the variance

of , where

(2.1)

As long as Σ does not depend on the covariates, (2.1) can be fully specified by knowing the
first- and second-order moments of the covariate distribution.10 Lachin11 (chapter 3)
followed a different approach by computing the expected value of the test statistic over the
distribution of Xi.

We derive formulas for a general covariance structure, but consider two particular
covariance structures for the response: compound symmetry (CS) and damped exponential
(DEX). Under CS for the response, Σ has diagonal terms equal to σ2 where σ2 = Var (Yij|
Xij) is the residual variance of the response given the covariates, and off-diagonal terms
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equal to σ2ρ, where ρ is the correlation between two measurements from the same
participant, also known as the intraclass correlation coefficient. It is worth mentioning that a
random intercept model leads to a compound symmetry covariance. Since a common
correlation may not be realistic in some studies, we also consider DEX covariance,12 where
the [j, j′] element of Σ has the form σ2ρ|j−j′|θ, and therefore the correlation between two
measurements decays exponentially as the separation between measurements increases, with
the degree of decay fixed by the parameter θ. Thus, when θ = 0, the CS covariance structure
is obtained, and when θ = 1, the AR(1) covariance structure is given. Note that for r = 1,
DEX is equivalent to CS.

The article is mainly focused on models for a binary exposure. However, Section 3.4
discusses how the formulas can be used when the exposure is continuous. Let pej be the

prevalence of exposure at each time point,  the mean prevalence of exposure across all
periods, ΣE the covariance matrix of exposure, ρej,ej′ the correlation between exposure at the
j-th and j′-th measurements, so that

and ρej,t0 the correlation between initial time (or age at entry) and exposure at the j-th
measurement. Additionally, we define two quantities that can be computed for any form of
the covariance matrix of exposure. The first one is the intraclass correlation of exposure,

(2.2)

where 1 is a length r + 1 vector of ones and tr() indicates the trace of a matrix. The intraclass
correlation of exposure is the ratio of the average covariance over the average variance and
is an index of similarity or agreement between each subject's exposure in the different time
periods.13 Similarly, we define the first-order intraclass correlation of exposure, ρe1, as the
ratio of the average first-order covariance, that is the average of the first diagonal below the
main diagonal of ΣE, over the average variance. Mathematically, we can write it as,

(2.3)

where  is the matrix ΣE with the first row and the (r + 1)-th column removed, because

the main diagonal of the matrix  contains the first-order covariances of exposure.

The intraclass correlation of exposure can be regarded as a measure of within-subject
variation of exposure. When ρe takes its maximum, ρe = 1, there is no within-subject
variation of exposure, that is participants are either exposed or unexposed for the whole
period (time-invariant exposure). Conversely, when it takes its minimum, −1/r, the within-
subject variation of exposure is maximal.13 The upper bound for ρe is smaller than one when
the exposure prevalence is not constant over time (expression derived in Web Appendix A.
1†). For binary variables, as here, the lower bound of −1/r cannot always be reached due to
some constraints on the correlation between two binary variables, and the lower bound for
ρe is,

†http://www.hsph.harvard.edu/faculty/spiegelman/optitxs/Appendix_paperSMMR.pdf
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where int(·) indicates the integer part.14 The parameter ρe has other useful interpretations.
When the exposure prevalence is constant over time and the exposure has compound
symmetry covariance, the intraclass correlation coefficient is equal to the common
correlation (Web Appendix A.2†). The intraclass correlation of exposure can also be
regarded as a measure of imbalance in the number of exposed periods per subject, Ei·. When
Ei· is equal across subjects, then everyone is exposed for the same number of periods as, for
example, in uniform crossover studies. Then, ρe = −1/r. Conversely, when the exposure is
time invariant, the imbalance is maximal since Ei· is either zero with probability (1 − pe) or r
+ 1 with probability pe, and ρe = 1. Section 3.3 discusses intuitive ways to specify a value
for ρe.

2.2 Models and general power and sample size equations
In this article, we assume that the effect of exposure is the same at any point in time,
denoted as the constant mean difference (CMD) hypothesis.2 The design of randomised
longitudinal studies of this hypothesis has been previously considered for time-invariant
exposures.1–3 The left panels of Figure 1 illustrate the trajectories of participants whose
exposure is time invariant over follow-up, and the difference between the trajectories of the
exposed and the unexposed is constant over time. If exposure is time varying, the individual
trajectory shifts when exposure changes, as illustrated in the right panel of Figure 1(a) and
(b), where the dots indicate a possible individual trajectory and the value of E indicates the
presence or absence of exposure. The CMD hypothesis is suitable for acute and transient
exposure effects, since once the exposure is removed, the response returns to the level of the
unexposed. In Figure 1a, time plays no role and only the most recent exposure preceding the
response matters, corresponding to model,

(2.4)

Model (2.4) assumes that the within- and between-subject effects of exposure are equal,15

that is that there is no confounding by risk factors that vary between subjects. If this
assumption is unreasonable, one may want to fit the following change model,

(2.5)

This model results from applying the first difference operator

to model (2.4), so that ΔYi is the vector with elements Yi,j+1 − Yij, j 1, …, r, and Var (ΔYi) =
ΔΣΔ′. For a multivariate normal response with known Σ, fitting model (2.5) by GLS is

equivalent to fitting model (2.4) by conditional maximum likelihood.16 The parameter 
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from model (2.5) is estimated from data of changes in exposure on the response within
subject, while β1 from model (2.4) is estimated from data on exposure differences between-
and within-subjects. If there is no confounding by between-subjects determinants of

response,  1 will estimate the same parameter as , otherwise not.15 In observational
studies, model (2.5) is often preferred, since each participant serves as his or her own
control, subtracting out confounding by all between-subject (time invariant) variables. The
trade-off is that model (2.5) is less efficient than (2.4) for estimating the exposure effect,15

and this has implications for study design.

In the pattern illustrated in Figure 1(b), the response changes linearly with time for all
subjects (e.g. due to ageing) but the effect of exposure remains constant over time, that is,

(2.6)

When time (or age) and exposure are correlated, time will be a confounder of the exposure
effect, and model (2.4) cannot obtain a valid estimate of the effect of exposure. Like model
(2.4), model (2.6) assumes that there is no between-subject confounding. As above, the
within-subject effect of exposure (and time) can be estimated by fitting the model on
changes that results from applying the first difference operator to model (2.6), and assuming
that the time points are equidistant, as is often the case in practice, it leads to,

(2.7)

Again, under multivariate normality, fitting model (2.7) by GLS is algebraically equivalent
to fitting model (2.6) by conditional likelihood. When time and exposure are correlated, time
is a confounder of the effect of exposure and model (2.5) cannot be used to obtain a valid
estimate of the effect of exposure.

Let  be the estimate of the parameter of interest, which is β1 for models (2.4) and (2.6) and

 for models (2.5) and (2.7). Let  be the diagonal element of the matrix ΣB, defined in

(2.1), associated with . The Wald test statistic for  is  and the formula for
the power of a two-sided test, provided the power is not too small, is,

where α is the significance level, and zp and Φ (·) are the p-th quantile and the cumulative
density of a standard normal, respectively. The formula for sample size to achieve a pre-
specified power π is,

Note that  will depend on r, the exposure prevalence, and on parameters describing the
covariance of both the response and the exposure processes.
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3 Results
3.1 Arbitrary covariance structures for response and exposure

For both power and sample size calculations, we need to obtain expressions for  following
(2.1) and the model of choice from among (2.4)–(2.7). Recall that models (2.6) or (2.7)
should be used instead of (2.4) or (2.5) when time is expected to be associated with the
response, to control for confounding if time and exposure are correlated or otherwise to
improve efficiency. Let us call vjj′ the [j, j′]-th element of Σ−1. Then, when β1 is estimated
by model (2.4),

(3.1)

(Web Appendix B.1†). To find  corresponding to model (2.5), we define the matrix M = Δ
′ (ΔΣΔ′)−1 Δ. Let us call mjj′ the [j, j′]-th element of M. Then, for model (2.5),

(3.2)

(Web Appendix B.2†). The expression for  corresponding to the GLS estimate of β1 from
model (2.6) is derived in Web Appendix B.3.† Under model (2.6), pej ∀j, ρej,ej′ ∀j, j′, V (t0)
and ρej, t0 ∀j need to be provided. The variance formula reduces to (3.1) when the
prevalence of exposure is constant over time and either V (t0) = 0 or ρej,t0 = 0 ∀j (Web
Appendix B.3†). For model (2.7),

(3.3)

(Web Appendix B.4†). Note that the parameters V (t0) or ρej,t0 ∀j, which may be difficult to
provide a priori, are not required here. In addition, the bias from confounding due to
between-subject differences in age at entry, or any other between-subject difference, is
removed. Thus, for validity and for simplicity, when V(t0) > 0, we recommend using study
designs based on model (2.7) instead of model (2.6). This will provide a conservative study

design because the variance  corresponding to model (2.7) will be greater than that for
model (2.6), since model (2.7) is only estimating the within-subject effects.15 When the
prevalence of exposure is constant over time, (3.3) reduces to (3.2) (Web Appendix B.4†).

Figure 2 shows the variance of the coefficient of interest for models (2.4)–(2.7) for some
examples where V(t0) = 0. We can see that the coefficient of interest from the conditional
model always has greater variance than its non-conditional counterpart, the difference being
greater for small r and when there is little within-subject variation in exposure (i.e. ρe is
small). The models that include time also have greater variance than their counterparts
without time because time and exposure are correlated in the examples. However, in these
examples, this difference is smaller than the difference between using conditional likelihood
or not.
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3.2 Simplifying cases
For all models (2.4)–(2.7), the following parameters are needed for power and sample size
calculations: N or π, r, β1, and the parameters defining the residual covariance of the
response, which reduce to σ2 and ρ if CS is assumed, and these two plus θ when DEX is
assumed. These are the parameters needed in the time-invariant exposure case. When the
exposure is time varying, we additionally need to provide pej and ρej,ej′ ∀j, j′ for models
(2.4), (2.5) and (2.7); and these plus V(t0) and ρej,t0 ∀j, j′ for model (2.6). As suggested in
the previous section, the simpler formulas for model (2.7) can be used instead of those of
(2.6).

If a CS covariance of the response can be assumed, ρej,ej′ ∀j, j′ do not need to be provided
for any of the four models, but only ρe, regardless of the covariance structure of the
exposure process (Web Appendix B.5†). The simplified formulas are provided in Section
3.2.1. If the response does not have CS covariance but the exposure does, still ρej,ej′ ∀j, j′
are not required but only ρe. We discuss what to do if neither of these assumptions hold in
Section 3.2.2, where a DEX covariance of the response is assumed.

3.2.1 Compound symmetry covariance for the response and constant
prevalence of exposure—Under CS of the response and constant prevalence of

exposure equal to pe,  for model (2.4) is,

(3.4)

(Web Appendix B.6†). When the exposure prevalence is constant and ρe = 1, then (3.4)
reduces to the standard formula for a study with time-invariant exposure.1–3 The ratio of
required number of participants needed (sample size ratio, SSR) to achieve a pre-specified
power when one uses the formulas for time-invariant exposure, equivalent to assuming ρe =
1, compared to when the true value of ρe is used, is,

(3.5)

This ratio increases linearly with r, and decreases linearly with ρe. It can also be shown that
the SSR increases as ρ increases. Figure 3 shows the value of SSR for several values of r, ρ
and ρe. For model (2.5), Equation (3.2) becomes,

(3.6)

(Web Appendix B.7†). This expression goes to infinity when ρe = 1, that is exposure is time
invariant, and therefore the within-subject effect of exposure cannot be estimated. The

formulas for  corresponding to models (2.6) and (2.7) with CS response covariance are
not provided because they are complex. However, they are all implemented in our software.

3.2.2 Damped exponential covariance for the response—Figure 4 compares the
required sample size when DEX or CS covariance of the response are assumed, everything
else being equal. For a time-invariant exposure (i.e. ρe = 1), fewer participants are needed
when θ > 0 compared to θ = 0 (CS). However, with time-varying exposures (i.e. ρe < 1), this
is not necessarily the=case and we find the opposite result for small values of ρe.
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As shown in Section 3.2, if the response covariance is DEX but the exposure process
covariances is CS, pej ∀j and ρe suffice to compute power or sample size. If neither the
response nor the exposure covariance is CS, though, this is not the case. However, since ρe
can be viewed as a summary measure of all the correlations ρej,ej′, one may conjecture that

assuming ρej,ej′ = ρe ∀j, j′ would produce reasonable estimates of  even if the actual
covariance matrix of exposure does not follow a CS structure. We performed a numerical

analysis to evaluate how well assuming CS covariance for exposure approximated  when
the exposure process had an arbitrary correlation, that is when the exposure covariance was

misspecified. To compute the true and misspecified , the exposure prevalence vector and
the correlation matrix of exposure are needed. For values of r equal to 2, 5 and 10, we
generated 10 000 arbitrary prevalence vectors and correlation matrices using a process
described in Web Appendix C.† Then, the SSR comparing the use of the true and

misspecified  were computed for ρ = (0.8, 0.5, 0.2) and θ = (0.2, 0.5, 0.8, 1), and for each
model (2.4)–(2.7).

Results from this numerical analysis were similar for all models, with model (2.7) giving
slightly more extreme SSRs. The results for model (2.7) when the true prevalence at each
time point was used and for r = 5 are illustrated in Figure 5. Results were similar for the
other values of r. Using the true prevalence of exposure at each time point produced great
improvements in the approximations in comparison to using a constant prevalence equal to

 in the models that include time, that is (2.6) and (2.7), but the improvement was more
modest for models that did not include time, that is (2.4) and (2.5) (data not shown). The

approximations of the true  were very good for ρ = 0.2 or θ = 0.2, with none of the
datasets having more than a 10% difference from the true value (Figure 5). For the other
values of ρ and θ, most approximations were very good, but there were some SSRs smaller
than 0.8 or greater than 1.2 as ρ and θ increased. The scenarios with low SSRs were
characterised by having both a first-order intraclass correlation of exposure, ρe1, greater than
ρe (roughly, the difference being greater than 0.1) and a positive, non-zero ρe (roughly,
greater than 0.3). The high SSRs were found for cases where ρe1 was much smaller than ρe,
and ρe was moderate to large.

We found the worst approximations when the covariance of the response was AR(1) (i.e. θ =

1). It turns out that, when θ = 1,  can be calculated exactly for models (2.4) and (2.6) by
using the formula based on assuming a CS exposure covariance but providing ρe1, the first-
order intraclass correlation, instead of ρe, regardless of what the true exposure covariance is
(Web Appendix D†). This is why the cases with worse SSRs were also characterised by ρe1
being different from ρe. For values of θ between zero and one, neither ρe nor ρe1 suffice to

obtain exact values of  and we obtain approximations. Because  is an increasing
function of ρe for CS covariance of exposure, we recommend using conservative values for
ρe (i.e. higher values) if the first-order autocorrelations are suspected to be greater than the

rest. Similar reasoning can be applied to models (2.5) and (2.7), in which case  under
AR(1) response cannot be calculated exactly using ρe1, but the recommendation of using
conservative values for ρe still applies.

3.3 Summary and practical considerations
The exposure prevalence pej ∀j and the intraclass correlation of exposure, ρe are the only
additional parameters needed to generalise the study design formulas to the time-varying
exposure case in most circumstances. Under either CS covariance of the response or the
exposure, exact formulas are obtained with just these parameters, and for the rest of cases
these same formulas provide approximations that are quite accurate in general. When one
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has to rely on approximations, conservative values (i.e. large values) of ρe are advisable for
use in situations with large θ and with first-order autocorrelations of exposure higher than
the higher order autocorrelations. If the model includes time, better approximations can be

obtained if pej ∀j is provided instead of just providing .

The parameter ρe can take values between −1/r and one, and these two extremes describe
two familiar study designs. When ρe = 1, the exposure values of each participant are all the
same, that is, the parallel group design is obtained. When ρe = −1/r, all participants are
exposed the same number of periods, as in uniform crossover designs. In observational
studies, intermediate values between ρe = −1/r (same number of exposed periods for all
participants) and ρe = 1 (time-invariant exposure) will often be observed, and when pilot
data are not available, the investigator can assess the sensitivity of the study design over a
range of plausible values for ρe. To help the investigator assess what values of ρe are
appropriate for his or her exposure, our program can compute the distribution of Ei· once r
and  are fixed and a CS covariance of exposure is assumed. Examples of distributions of
Ei· by varying ρe are shown in Figure 6.

Depending on the prevalence vector, the parameter ρe can have lower and upper bounds that
are different than (−1/r, 1). These bounds are calculated by our program and shown to the

user after r and the prevalence vector have been fixed. For both CS and DEX responses, 
is maximised at the upper bound of ρe (Web Appendix E†). In addition, using linear

programming techniques, the programme also computes an upper bound for  once ρe is
provided (Web Appendix F†). This upper bound can be used as a conservative specification

of . However, in a numerical analysis, this bound was found to be useful (being at most
20–30% greater than the true variance and different enough to simply assuming a time-
invariant exposure) only for studies with a small number of repeated measures (r ≤ 5).

3.4 Continuous exposures
The formulas derived in Web Appendices B.1–B.4 are valid for a continuous exposure and
can be used to compute power or sample size in such cases. As opposed to the binary
exposure case, the variance of exposure is not a function of its mean, and therefore the
investigator will then need to provide the mean and the variance of exposure at each time
point. If either the response or the exposure covariance are CS, the only additional parameter
needed to compute the study design formulas is the intraclass correlation of exposure, since
the results derived in Web Appendix B.5† are also valid for a continuous exposure. For other
cases, the formulas based on ρe can still be used as approximations as in the binary exposure
case.

4 Example: Respiratory function and cleaning products/tasks
Medina-Ramon et al.7 studied the short-term respiratory effects of cleaning tasks and the use
of cleaning products on pulmonary function in a group of 31 domestic cleaning women
followed for r + 1 = 15 consecutive days. They studied a wide range of binary exposures,
including cleaning tasks and cleaning products, and found an association of respiratory
symptoms with vacuuming, and with the use of ammonia, decalcifiers, glass-cleaning sprays
or atomisers, degreasing sprays or atomisers, air freshener sprays and bleach. The estimated
mean prevalence of these exposures ranged from 0.12 to 0.84, and the estimated ρe ranged
from 0.10 to 0.59. Since a priori there is no reason to believe that the frequency of use of
cleaning products is going to change over this 15-day time period, we assumed a constant
prevalence over time for all exposures. Since the time metameter is days since entry into the
study, V(t0) = 0. Under these two conditions, as shown in Section 3.1, formulas for model
(2.6) reduce to those of model (2.4), which will be used here. The response variable was
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peak expiratory flow. When a DEX structure was fitted to the residuals, the estimated values
were ρ = 0.88 and θ = 0.12.

First, we assessed the overestimation of the required sample size when the formula for a
time-invariant exposure (ρe = 1) was used instead of the one based on (3.4) for the exposure
variables vacuuming and use of air freshener sprays, which were the exposures with smallest
and greatest ρe, respectively, among all the exposures considered in this study. This
overestimation was measured by the SSR as defined in Equation (3.5). For the vacuuming

exposure, where  and ρe = 0.13, the SSR was as large as 78, while for the air

freshener spray use, which had  and ρe = 0.59, it was 38. In Table 1, this SSR is
calculated for other values of ρ and θ. The overestimation was higher for large values of ρ
and small values of θ, but even for the air-freshener exposure with ρ = 0.5 and θ = 1,
incorrectly using the formulas for time-invariant exposure would require the recruitment of
more than twice the number of participants than needed. We also calculated SSR comparing
the required sample size obtained when the independence and CS assumptions for exposure
were used to the required sample size obtained when the estimated exposure distribution was
used (Table 1). Assuming independence underestimated by more than half the required
sample size for the air freshener exposure, and around 15% for the vacuuming exposure.
The assumption of CS covariance for the exposure performed well for all residual
covariance structures considered, with slight underestimations when the response covariance
was not CS.

5 Discussion
Formulas for sample size calculation in longitudinal studies have been provided in several
papers.1–3,6 However, since all of the existing developments were motivated by applications
to randomised studies, the case of a time-varying exposure that is not fixed by design has
never been examined. In this article, we provide methods to account for the time-varying
nature of exposure in sample size calculations, and illustrate the advantages of using them in
place of the time-invariant exposure formulas available previously. Assuming that the
exposure does not vary within a subject will always overestimate the minimum sample size
needed to satisfy a specified power constraint for fixed r. This is in agreement with the
finding that multicentre trials where treatment varies within each centre require a lower
sample size than cluster randomised trials, where treatment does not vary within a centre.5

We found in some real `pilot' data that over thirty times more participants than necessary
would be requested if time invariance of exposure was incorrectly assumed in sample size
calculations. These large differences will occur in studies with highly correlated response
residuals and a large number of repeated measures, as is common.

We based our calculations on models that, for example, do not include polynomial effects of
time or random slopes. This is in line with the usual simplifications required at the planning
stage. Consideration of additional model complexity would preclude most of the
simplifications derived in this manuscript and the resulting formulas would require
additional input parameters that would generally be difficult to provide. Studies whose
design is based upon models (2.5) and (2.7) correct for the effect of all time-invariant
confounders, measured and unmeasured, and therefore only time-varying confounders to be
considered later in the analysis could influence study design. Study design formulas for
more complicated models is an interesting topic for further research.

The influence of dropout was not covered here but is also an important factor when
performing study design calculations. This topic has been studied previously in studies with
time-invariant exposure.3,17–20 Galbraith et al.18 suggested computing N for 90% power
when 80% power is intended and Fitzmaurice et al. (p. 409) suggested inflating N by 1/(1 −
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f), where f is the anticipated fraction of lost to follow-up, although this last approach is
conservative. The performance of these approaches in longitudinal studies with time-varying
exposures remains to be investigated, and new approaches developed if these fall short.

The methods developed here are extended in another paper16 to other common scenarios of
interest in longitudinal studies, such as the case when the hypothesis of interest is that the
change in response over time varies between exposed and unexposed periods, or
equivalently, the effect of exposure varies with time.22 Longitudinal design for the optimal
balance of number of participants and number of repeated measures subject to a fixed cost
constraint or fixed power constraint, which was addressed previously for a time-invariant
exposure,23,24 could also be studied in the context of a time-varying exposure.

We provide a publicly available program to perform the calculations developed in this
article, which can be downloaded at the link provided in Section 1. A demonstration of the
programme use can be found in Web Appendix G.†
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Figure 1.
Response patterns under the constant mean difference (CMD) model.
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Figure 2.
Variance of the coefficient of interest for models (2.4)–(2.7) when both the response and the
exposure have CS covariance with parameters ρ and ρe, respectively, σ2 1, V(t0) = 0 and pej
= 0.2 + 0.05j, where j = 0, …, r. The lines indicate: ( ) model with only exposure (2.4);
( ) model with only exposure, conditional likelihood (2.5); (—) model with
exposure and time (2.6); (- - -) model with exposure and time, conditional likelihood (2.7).
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Figure 3.
SSR = Nρe=1/Nρe (Equation (3.5)) for model (2.4) under CS of the response for several
values of r, ρ and ρe. Lines indicate: (—) ρe = 0, (- - -) ρe = 0.2, (……) ρe = 0.6, (· - · - · -)
ρe = 0.8.
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Figure 4.
SSR = Nθ/Nθ=0 as a function of θ assuming CS for the exposure process, for r 5,  and
several values of ρ and ρe when model (2.4) is assumed. Lines indicate: (—) ρ = 0.2, (- - -) ρ
= 0.5, (……) ρ = 0.8.
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Figure 5.
Box-percentile plots of the ratio of required sample sizes obtained when assuming CS
covariance of exposure divided by the required sample size obtained using the true exposure
covariance in 10 000 scenarios generated to have an arbitrary exposure covariance, for r = 5,
DEX response, model (2.7) and several values of ρ and θ. At any height, the width of the
irregular `box' is proportional to the percentile of that height. Horizontal lines indicate the
5th, 25th, 50th, 75th and 95th percentiles.
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Figure 6.
Distribution of Ei· for r = 3,  and different values of ρe.
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Table 1

Ratio of required sample sizes for several assumed exposure processes divided by the required sample size
obtained using the observed exposure distribution, for the vacuuming and the air-freshener sprays exposure in
the cleaners study, r = 14. Model (2.4), DEX covariance of the response and constant exposure prevalence
over time are assumed

Parameters for variance of response, Σ, assumed to be DEX

ρ = 0.8 ρ = 0.5

Assumption for exposure process θ = 0 (CS) θ = 0.5 θ = 1 (AR(1)) θ = 0 (CS) θ = 0.5 θ = 1 (AR(1))

Air freshener sprays
a

 Time invariant 24.0 15.6 10.5 6.76 3.46 2.28

 Independence 0.42 0.42 0.41 0.45 0.49 0.53

 CS 1.00 0.98 0.95 1.00 1.00 0.97

Vacuuming
b

 Time invariant 49.7 31.2 21.3 13.2 6.04 3.74

 Independence 0.87 0.84 0.84 0.88 0.86 0.87

 CS 1.00 0.96 0.96 1.00 0.97 0.97

a
, ρe = 0.59.

b
, ρe = 0.13.
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