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Abstract
Evaluation of impact of potential uncontrolled confounding is an important component for causal
inference based on observational studies. In this article, we introduce a general framework of
sensitivity analysis that is based on inverse probability weighting. We propose a general
methodology that allows both non-parametric and parametric analyses, which are driven by two
parameters that govern the magnitude of the variation of the multiplicative errors of the propensity
score and their correlations with the potential outcomes. We also introduce a specific parametric
model that offers a mechanistic view on how the uncontrolled confounding may bias the inference
through these parameters. Our method can be readily applied to both binary and continuous
outcomes and depends on the covariates only through the propensity score that can be estimated
by any parametric or non-parametric method. We illustrate our method with two medical data sets.

Keywords
Causal inference; Inverse probability weighting; Propensity score; Sensitivity analysis;
Uncontrolled confounding

1 Introduction
When the treatment assignment is not randomized, as in most observational studies, bias
may be introduced in causal inference when pre-treatment covariates associated with
treatment assignment and the outcome are not properly adjusted. This is particularly critical
for inference based on large data sets (i.e. electronic medical record databases) where
precision can be rather high, and thus the accuracy of the estimator is dominated by the bias.
The potential outcome model has been established as a major theoretical framework that
underlies most of the available methods for causal inference including matching covariates
(Cochran, 1953; Rubin, 1973), outcome regression, methods based on propensity scores
(Rosenbaum and Rubin, 1983b; Rubin and Thomas, 1996) and double-robust estimator
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(Bang and Robins, 2005). The key idea of the potential outcome model is that for each unit,
there is a potential outcome under each treatment and assessment of the causal effect
involves comparison of these potential outcomes (Holland, 1986). Since not all of the
potential outcomes are observed for each unit in empirical data, causal inference can also be
viewed as a missing-data problem (Rubin, 1978).

Common to many methods in observational studies is the assumption of “no uncontrolled
confounding”, which states that conditional on the pre-treatment covariates included in the
analysis, the treatment assignment and potential outcome are independent. Such an
assumption serves as the basis for the large volume of research articles on different methods
for bias correction and efficiency improvement. However, it is also of great practical interest
to examine the extent to which the inference is sensitive to violation of this assumption. It is
well known that it is not possible to test the assumption of no uncontrolled confounding
using observed data. Therefore, sensitivity analysis is an important component for proper
interpretation of the data and accurate statement of the conclusion when assessing causal
effects using observational data. The general strategy in sensitivity analysis involves
postulation of various assumptions on the nature of the associations of the uncontrolled
confounders with treatment assignment and outcomes, followed by examination of the bias
induced. Usually, these assumptions are in the format of plausible values of parameters not
identifiable from the observed data that characterize those associations. These parameters
will be referred to as non-estimable parameters in this article.

Compared with methods assuming no uncontrolled confounding, sensitivity analysis has
been relatively sparse in the literature. Rosenbaum (1995) developed a logistic model in the
randomization-based framework, where a single parameter measuring the strength of
association between the missed covariate and treatment assignment conditional on
covariates already included is linked to a minimum and a maximum p-values of the
inference. The p-values under different values of this parameter allow one to assess the
sensitivity to uncontrolled confounding. Rosenbaum and Rubin (1983a) proposed an
approach for binary outcome with one categorical covariate, where the sensitivity of the
estimate to different values of non-estimable parameters (due to unobserved covariates) in
the full likelihood function was examined. The same authors also examined the bias due to
incomplete matching (Rosenbaum and Rubin, 1985). Brumback et al. (2004) developed an
approach where the mean difference between treatment groups within each covariate stratum
is used to examine the impact of residual confounding, which uses a similar type of strategy
reported previously (Cole et al., 2005; Ko et al., 2003; Robins, 1999). Lin et al. (1998)
studied bias induced by uncontrolled confounding in the parametric regression setting. It
was shown that under certain conditions there exists a simple algebraic relationship between
the true effect and the “apparent” effect when there is uncontrolled confounding – see
Hernan and Robins (1999) for more discussions. MacLehose et al. (2005) and Kuroki and
Cai (2008) proposed linear programming methods to derive the upper and lower bounds for
the causal effect on a binary outcome. Greenland (2005) developed a general Bayes
framework to correct bias due to confounding, missing data, and classification error by
including a bias model with relevant bias parameters. Other methods include Arah et al.
(2008), Copas and Li (1997), Imbens (2003), Sturmer et al. (2007a,b).

In this article, we propose a general framework for sensitivity analysis of inference based on
inverse probability weighting (IPW) that supports both parametric and non-parametric
modeling of the probability of treatment assignment (propensity score). We also propose a
specific type of parametric model along the same line that provides a more mechanistic view
on how the uncontrolled confounding may bias the inference. The parametric model also
provides guidance on how to postulate the non-estimable parameters when the association of
uncontrolled confounders with treatment assignment is entirely unstructured. Our method
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generates upper and lower bounds for the causal effect under fixed values of two non-
estimable parameters that characterize the error in the estimated propensity score due to
uncontrolled confounding and its correlation with the potential outcome. The advantages of
our method over previously published methods include: (i) it can be used for both
continuous and binary outcomes; (ii) it involves the covariates only through the propensity
score and therefore many covariates can be included; (iii) the sensitivity analysis is driven
by only two parameters with sensible scales; (iv) the propensity score can be estimated from
any parametric or non-parametric method under the general framework; and (v) the
parametric model provides insight on the process that induces biases. In particular, property
(ii) allows our method to deal with high-dimensional propensity score model, which is
difficult to implement in previous method (e.g. Brumback et al., 2004). A limitation of our
method is that the assumption is based on potential outcomes instead of observed outcomes
(Vander Weele, 2008), which make it less intuitively appealing. Nevertheless, our method is
set up in a very general framework that can be applied to most practical applications. In
Section 2, we introduce some notations and describe our method. We illustrate our method
with two application examples in Section 3. We conclude the article with a discussion in
Section 4.

2 Method
2.1 Background

Our method is built on the potential outcome framework for two-level treatment (treated
versus control) (Holland, 1986; Rubin, 1974, 1978, 2005). Let Y1 and Y0 be the potential
outcomes when there is treatment or not, respectively. The principle idea of causal inference
based on the potential outcomes is that the causal effect is captured by some kind of contrast
between Y1 and Y0 (e.g. Y1−Y0). As in many practical problems, we only observe one of
the two potential outcomes, direct estimation of the causal effect at individual level is not
possible. Most of the causal inference problems focus on the estimation of the average
treatment effect (ATE) for a target population, that is, Δ = E(Y1)−E(Y0). In observational
studies, because of the non-randomness of treatment assignment, difference in the sample
means between the two treatment arms would be a biased estimator of ATE. One of the
approaches to eliminate the potential bias is called IPW estimation (Hirano and Imbens,
2001; Robins et al., 1994). For the IPW method, each unit has a probability of being
assigned to the treatment arm that depends on certain baseline characteristics. This
probability is also called the propensity score (Rosenbaum and Rubin, 1983b). The basic
idea of IPW is to calculate the difference in the weighted sample means between the two
arms with the weight being the inverse of the propensity score (for treated units) or one
minus the propensity score (for control units). To be specific, let Z be the treatment indicator
such that Z = 1 means treated and 0 means control. Therefore, Y=ZY1+(1−Z)Y0 is the
observed outcome. We denote by X the observed covariate vector and S = E(Z|X) the
propensity score. Under the assumption of no uncontrolled confounding (weak ignorability)
(Rubin, 2005), Yk ∐ Z|X for k = 0,1 (here ∐ means independent), the following equations
have been well established (Hirano and Imbens, 2001):

(1)

Equation (1) is the basis for the unbiased estimation of the marginal mean of the outcome
under each treatment level and the causal effect using IPW. The intuitive explanation of Eq.
(1) can be best understood through the concept of pseudo-population. For instance, each unit
with Z = 1 has a probability of S to be assigned to the treatment. Therefore, in terms of the
distribution of Y1, a pseudo-population where such a unit is duplicated 1/S times represents
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the original population from which the unit is sampled. The mean of Y1 for the two
populations then should be the same.

2.2 A general framework for sensitivity analysis
When there is uncontrolled confounding, Yk (k = 0,1) and Z are not independent conditional
on X. We assume that Yk ∐Z|(X,X*) (k = 0,1), where X* is a vector of covariates that are
either not observed or not included in the analysis. Although S is still a conditional
probability, it will not be equal to the true propensity score S*=E(Z|X,X*) with probability
1. From now on, we will call S the pseudo-propensity score to distinguish it from S*. The
basic idea of our method is to develop bounds of the causal effect (or marginal means if
those are of interest) by accounting for the error in using S to approximate S*. The bounds
will allow us to assess the sensitivity of the result to uncontrolled confounding.

We denote by ε1 = S*/S (0<ε1<∞) the multiplicative error of S with respect to S*. Here, ε1
is a measure of the quality of the pseudo-propensity score in approximating the true
propensity score. The variance of ε1 is a measure of the overall deviation of S from S* with
larger variance indicating more deviation. The relationship between S and S* can be
characterized by

(2)

where the expectation is with respect to the distribution of (X,X*) within a pseudo-
propensity score stratum with value S. To see this, note that

Equation (2) says that S* will center at S within each stratum of S. It also implies by the law
of iterated expectation and decomposition of variance that

Since S is not the true propensity score when there is uncontrolled confounding, the IPW
based on S may be biased. As an example, consider the assessment of the magnitude of bias
in estimating the mean of Y1. First, we observe that

where the fourth equality is due to the independence of Z and Y1 conditional on (X,X*).
Then we have

(3)

Here, ρ1 is the correlation coefficient between Y1 and ε1. Equation (3) represents the key
idea of our method. It says that the bias of YZ/S in estimating E(Y1) is governed by two
non-estimable quantities in addition to the variance of Y1 (also non-estimable), the
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correlation between the multiplicative error ε1 in propensity score due to uncontrolled
confounders and the potential outcome Y1, and the variance of ε1. The first quantity, in
some sense, characterizes the strength of the association between the missed confounders
and the potential outcome. It can be interpreted as a measure that captures the concordance
between the outcome value and the amount of extra weight assigned to the outcome value
due to uncontrolled confounders. The second quantity, as seen later in the parametric model,
characterizes the strength of the association between the missed confounders and the
treatment assignment. Stronger correlation and higher variation in ε1 will lead to higher bias.
Intuitively, since higher ε1 means that S severely under-estimates S*, a positive correlation
implies that higher Y1 values are over-duplicated, whereas lower Y1 values are under-
duplicated in the pseudo-population. Therefore, the IPW based on S over-estimates E(Y1).
Similarly, a negative correlation implies an under-estimate of E(Y1). On the other hand, the
variance of ε1 characterizes the quality of S and higher value of the variance indicates more
severe deviation from S* and therefore more bias in estimating E(Y1).

2.2.1 Continuous outcome—To derive the bounds for marginal means and the causal
effect, we will assume that Y1,Y0 ∈[0,1]. As in most practical problems continuous
outcomes can be monotonically transformed to the unit interval based on conservative
estimates of the range of the outcomes, this assumption has quite general applicability.

We first introduce some notations. Let , , ,

, , , and . Then

(4)

Since Y1 ∈ [0,1], it is easy to show that . Because μ0=(E(Y1)–πμ1)/(1−π), we
can replace η0 in (4) by the expression of its bounds. After some algebra, we have

(5)

where ψ= π/(1−π), b = π(μ1−η1), and  are all estimable quantities. Hence, in
consideration of Eq. (3) and the inequalities above, we have

(6)

The region defined by inequalities (6) includes two intervals, one for positive ρ1 and one for
negative ρ1 We will call the interval that corresponds to the intended sign of ρ1 the feasible
region of E(Y1). In Fig. 1, we illustrate the idea through a geometric demonstration.
Essentially, Fig. 1 shows that the feasible region for E(Y1) is determined by the positions
and shapes of three second-order polynomials. The distances between θ1 and the two shaded
regions on the X-axis represent possible magnitude of bias depending on the sign of ρ1 The
width of the interval originates from uncertainty on the relationship between E(Y1) and
Var(Y1). Note that inequalities in (6) involve non-estimable parameters (ρ1,ν1). For any
given (ρ1,ν1), one can solve the equations in (6) to obtain the lower (l1) and upper (L1) limits
of the interval. These limits set the boundaries for E(Y1) after adjusting for the error in
estimating the propensity score (ν1) and its correlation with the potential outcome (ρ1) By
examining l1 and L1 under different values of (ρ1,ν1), one can gain insight on the robustness
of the estimate of E(Y1).

Shen et al. Page 5

Biom J. Author manuscript; available in PMC 2013 September 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The same type of bounds l0 and L0 can also be derived for E(Y0) for a fixed pair of (ρ0,ν0),
where ν0 is the variance of ε0 = (1−S*)/(1−S) and ρ0 is the correlation coefficient of Y0 and
ε0.

As the correlation coefficient is a popular and sensible measure to most users, the variance
of the error term might not be sensible enough to be specified easily. Since a random
variable taking values in the unit interval with mean μ has the maximum variance of μ(1−μ)
(Var(Y) = E(Y2)−[E(Y)]2 ≤ E(Y) − [E(Y)]2 = μ(1−μ)), we have

Therefore, instead of proposing a value of ν1, we can postulate the percentage of the
maximum possible variance λ1= ν1/V1. Similarly, we can propose λ0=v0/V0, where V0 =
E(S/(1S)).

2.2.2 Binary outcome—When the outcome is binary, the right-hand side inequality in (5)
becomes

(7)

For any fixed (ρ1,ν1), the region defined by (6), if exists, is a point. Therefore, l1= L1.
Similarly, l0 = L0.

2.2.3 Bounds for average treatment effect—It is obvious that l1−L0 and L1−l0 are a
set of lower and upper bounds for the causal effect. In practice, a propensity score model is
first fitted to the data and the estimated propensity score will play the role of pseudo-
propensity score. The lower and upper limits are then derived using parameters from the
empirical distributions. It often provides sufficient insight into the robustness of the result by
setting |ρ1| = |ρ0| = ρ and λ1= λ0=λ (as long as λ1 and λ0 are compatible) so that one needs
only to assess the sensitivity of the estimates by examining various values of (ρ,λ) (note that
this condition is for simplicity purpose and one can certainly postulate the four parameters
without such a constraint). Nevertheless, one will still need to decide on the signs of ρ1 and
ρ0, which can often be chosen to work against the finding of the original analysis to examine
the robustness. We will demonstrate how this strategy works by real data examples in
Section 3. Inference can also be made on the limits. For instance, if a positive treatment
effect is found (i.e. treatment has higher outcome value), one would be interested in testing
H0:l1−L0 ≤ 0 versus H1 : l1−L0 > 0 under certain values of (ρ,λ). Rejection of the null will
increase the confidence of the finding.

2.2.4 Compatibility of λ1 and λ0—Certain values of λ1 and λ0 may not be compatible
due to their connection through the distribution of S and Var(S*|S). The following result
establishes the range of compatible λ0 for a fixed λ1. The proof is included in Appendix A.1.

Result 1: For a fixed λ1, E[I(S ≤ q1)S/(1−S)]/V0 ≤ λ0≤E[I(S ≥ q2)S/(1−S)]/V0, where q1 and
q2 satisfy E[I(S ≤ q1)(1−S)/S]= E[I(S ≥ q2)(1−S)/S]=v1=λ1V1.

Note that both bounds of λ0 are estimable from the observed data given λ1.
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2.2.5 Summary of the framework—In summary, formulae (6) and (7) allow one to
evaluate the feasible regions of the marginal means under different values of the two
parameters that characterize the potential influence of uncontrolled confounding when using
IPW. Evaluations of both potential outcomes then allow one to conduct sensitivity analysis
on causal inference. From the practical point of view, ρ might be difficult to postulate, as it
is a relative abstract quantity. However, we need to emphasize that a sensitivity analysis
should account for both known confounders and potential confounders we are not even
aware of. For the latter, it is difficult to speculate on the magnitude of non-estimable
parameters no matter what method is used. One solution is to propose different values of the
parameters that have well-recognized meaning of “high”, “medium”, and “low”, and assess
the effect on inference. In this sense, correlation coefficient is a very sensible parameter, for
which most users have a clear understanding of what is considered high or low in their
subject area. In general, the intervals 0.1–0.3, 0.3–0.5, and 0.5–1.0 are considered low,
medium, and high. On the other hand, λ is a more obtuse parameter with less sensible scale.
In the following section, we introduce a parametric model that provides a more mechanistic
view on how the uncontrolled confounding introduces bias in the inference and therefore
provides some guidance of the scale of λ. It should be noted that the parametric model by
itself also serves as a way of sensitivity analysis.

2.3 A parametric model
Consider the following probit model as the true propensity score model:

(8)

Here, Φ is the cumulative distribution function of a standard normal variable. Model (8) says
that the contribution of X and X* to Φ−1(S*) is additive. We will assume that U is a standard
normal variable and independent of X. Here, τ is a measure of the strength of association
between the uncontrolled confounders and treatment assignment after adjustment of W(X).
In Table 1, we show that the odds ratios (ORs) of being treated associated with one
interquartile range (IQR) increase in U for different values of τ. Note that because the OR
depends on the value of W (and therefore S*), we list the range of the ORs for S* between
0.1 and 0.9.

It is well known that integrating out U leads to

(9)

Equations (8) and (9) imply that when (8) is the true propensity score, the pseudo-propensity
score is still a probit model. This means although we miss U, the probit model is the correct
model for E[Z|X]. After some calculations (see Appendix A.2 for details), it can be shown
that

(10)

where Fτ(u,v) is the cumulative distribution function of a bivariate normal vector with both
variables having mean 0 and variance 1+τ2, and a covariance of τ2. Varτ(S*|S) is a
monotonically increasing function of t for fixed S. It has the limit of S(1−S) as τ goes to
infinity. Therefore, larger value of τ leads to larger variance in S* conditional on S. In other
words, the stronger the association between the missed covariates with the treatment
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assignment, the higher the conditional variance of the true propensity score within each
pseudo-propensity score stratum.

Since v1 = E(Var(S*|S)/S2) and ν0 = E(Var(S*|S)/(1−S)2), Eq. (10) means that ν1 and ν0 are
functions of τ under our parametric model. The implication is that we can get a sense of the
scale of ν1 and ν0 by examining different values of τ, a much easier and more sensible
parameter, particularly in its connection with the OR of being treated (Table 1). The readily
interpretable value of τ also provides some guidance on appropriate values of λ when the
true propensity score model is left unspecified. For example, for any fixed τ, we can
consider the following value of λ and the conditional variance of S* given S:

(11)

Therefore, λ is the maximum proportion of Varτ(S*|S) relative to the maximum conditional
variance of S* across all S. λ is more conservative than τ in the sense that Varλ(S*|S) is
always higher than Varτ(S*|S) for all S, suggesting a more severe impact of the missed
confounders on the probability of treatment assignment. Therefore, users unwilling to make
the probit assumption of the true propensity score model can select proper τ values and use
λ(τ) for the sensitivity analysis, provided that setting the common value λ(τ) for λ1 and λ2
does not violate the compatibility rule specified in Result 1.

Model (8) also allows straightforward large sample inference of the bounds that accounts for
sampling variation (see Appendix A.3 for details).

2.4 Summary for implementation
We have described a framework of sensitivity analysis for causal inference using IPW. We
have shown that the bias due to uncontrolled confounding can be understood through two
non-estimable quantities, the variance of the multiplicative error in assignment probability
and its correlation with the potential outcome. We summarize below how to implement our
method:

i. Propose a fixed value of (ρ,τ) and the signs of ρ1 and ρ0, where ρ =|ρ1|=|ρ0|. The
signs of ρ1 and ρ0 can be conservatively chosen to work against the treatment effect
found under the assumption of no uncontrolled confounders (see the examples in
Section 3).

ii. i. If the true propensity score is assumed to follow the probit model: use Eq.
(10) to calculate conditional variances Varτ(S*|^S) at each fitted pseudo-
propensity score ^S. Calculate  and  by averaging Varτ(S*|^S)/^S2 and
Varτ(S*|^S)/(1−̂S)2 over sampled units.

ii. Otherwise, use Eq. (11) to calculate λ(τ) and Varλ(S*|^S). Calculate  and
 by averaging Varλ(S*|^S)/^S2 and Varλ(S*|^S)/(1−^S)2 over sampled

units. Here, ^S is the fitted pseudo-propensity score by any parametric or
non-parametric method. Make sure that the two λ parameters are allowed
to take the same chosen value by Result 1.

iii. Use Eq. (6) or (7) to estimate  and  with all population parameters replaced by

empirical counterparts. Estimate  and  similarly. The estimated lower and upper

bounds of E(Y1)−E(Y0) are  and .
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iv. Use either the large sample theory (probit model) or bootstrap (unspecified true
propensity model) to calculate confidence intervals of the relevant bounds.

v. Repeat (i)–(iv) under alternative values of (ρ,τ) and possibly different signs of ρ1
and ρ0.

3 Applications
3.1 Computer-generated reminders to improve CD4 monitoring for HIV-positive patients in
a resource-limited setting

Clinics in resource-limited setting of Sub-Saharan Africa are typically under-resourced and
under-staffed. Computerized reminder is one possible approach to improve the quality of
care. For HIV-positive patients, CD4 measure is an important health index that needs to be
monitored regularly for proper treatment arrangement. Were et al. (2011) conducted a study
to evaluate the effect of computer-generated reminders on clinicians’ compliance with
ordering guidelines of CD4 test in western Kenya. This study was conducted in HIV clinics
affiliated with the Academic Model for Providing Access to Care (AMPATH), a
collaborative initiative between Moi University School of Medicine (Kenya) and a
consortium of universities in North America led by Indiana University. Since 2006,
AMPATH clinics have used the AMPATH Medical Record System (AMRS) to store
comprehensive electronic patient records for all enrolled patients. Patient records in the
system contain demographic information, diagnoses and problem lists, clinical observations,
medications, and diagnostic test results.

The study involved two clinics that were arbitrarily selected from three similar adult clinics
at Eldoret, Kenya that provide the same type of care to HIV-positive adult patients. For each
patient visit, a clinical summary was generated in the computer that includes selected fields
from the patient’s record for quick reference to the patient’s most recent and pertinent
information. In addition, patient-specific alert/reminder on CD4 ordering was included at the
bottom of the summary. For one randomly selected clinic (intervention) out of the two, the
clinical summary was provided to care providers in the format of a printed PDF, whereas
care providers in the other clinic (control) did not receive the printed clinical summary. In
spite of the lack of the summary, care providers in the control clinic still had access to all
information included in the summary if they wanted to check them. The summary and
reminder offered a convenient way for the care providers to examine the most relevant and
important information. The overall goal of the study was to compare the ordering rate of
CD4 test between the two clinics for those patient visits where CD4 should be ordered by
standard criteria.

The clinical summary with reminders was provided to the intervention clinic during the
whole month of February 2009. Data from both clinics in that month were analyzed.
Specifically, 207 and 309 patient visits at the intervention and the control clinics that met the
CD4 ordering criteria were included in the analysis. The crude CD4 ordering rates were
65.2% for the intervention clinic and 41.8% for the control clinic (Chi-square test
p<0.0001).

Apparently, if provider–patient encounters were different between the two clinics in ways
that affected the likelihood of CD4 ordering, the difference in the crude rate may be a biased
estimate of the true intervention effect. At the provider level, those who have worked longer
(and therefore more experienced) in the clinic might have different behaviors in ordering
CD4 test as compared with those less experienced; female and male providers could also
behave differently. At the patient level, characteristics that may have affected provider’s
decision included the most recent CD4 test date and value, the length of period the patient
had been in the AMPATH program, and the stages of AIDS by the definition of World
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Health Organization (WHO). We fit a probit model to the treatment assignment by including
the above characteristics and use the inverse propensity score weighting to estimate the CD4
ordering rates had all provider–patient encounters been or not been provided with the
summary and reminders. The rates are 64.5 and 46.0%, respectively, with a difference of
18.5% (Z-test p= 0.005, two-sided). Therefore, there is a strong evidence that the summary
with reminder improves the CD4 ordering rate after confounding adjustment.

To examine the potential impact of uncontrolled confounding, we implemented the proposed
sensitivity analysis. We consider the scenario that most likely puts the significant result in
question. Specifically, when the correlation between the multiplicative error ε1 and Y1 (CD4
ordering under intervention) is positive and that between ε0 and Y0 (CD4 ordering without
intervention) is negative, the estimators based on pseudo-propensity score over-estimate
E(Y1) and under-estimate E(Y0). Therefore, we examined different combinations of ρ = ρ1=
−ρ0 and τ for their effects on the estimate of the intervention effect. The result is shown in
Fig. 2. Figure 2(A) shows that if we assume the true propensity score also follows the probit
model, then for the estimate of the intervention effect to go below 0, ρ has to be almost as
high as 0.5 even when τ = 0.4 (or OR is beyond 2.4, Table 1). If we leave the true propensity
score model unspecified, ρ has to be higher than 0.4 for λ(0.4) = 0.0881. On the other hand,
when τ = 0.2 or the OR is 1.5–1.7, the estimate of the intervention effect is still positive
even r ρ = 0.7 for both methods. In many practical applications, these correlation
coefficients or ORs correspond to quite strong associations. To account for the sampling
variation, Fig. 2(B) shows the lower limit of the 90% confidence interval (one-sided) for the
intervention effect corresponding to t τ = 0.2. Here, the confidence interval accounts for the
sampling variation when estimating treatment effect based on different values of ρ and τ.
Clearly, the limit is above 0 when the correlation is less than 0.4. Hence, we feel the
conclusion that the reminder improves CD4 ordering rate is fairly robust to uncontrolled
confounding. Here, we chose the 90% instead of 95% confidence interval to avoid being
over-conservative as we already (i) chose parameters that will mostly offset the treatment
effect, (ii) examined the lower bound of the treatment effect (treatment effect is positive),
and (iii) estimated the lower confidence limit of the lower bound. Note that the common
values for λ1 and λ2 when assumption is made on the true propensity score model are
0.0063, 0.0245, 0.0526, and 0.0881. If we fix λ1 at these values and examine the compatible
region of λ0 using Result 1, then the regions are (0.00003,0.64), (0.0001,0.88),
(0.0003,0.91), and (0.0007,0.93). Therefore, the common values are legitimate.

3.2 Cost of abciximab in reducing mortality
Kereiakes et al. (2000) conducted an observational study at the Christ Hospital, Cincinnati,
to evaluate the impact of adjunctive pharmacotherapy with abciximab platelet glycoprotein
IIb/IIIa blockade administered during percutaneous coronary intervention (PCI) on costs and
clinical outcomes in a high-volume interventional practice. It was shown that patients
receiving abciximab (treated) had lower mortality rates than those who did not (control) and
there was no significant difference in cost. We will focus on the outcome of cost to illustrate
how our method can be used to analyze a continuous outcome.

We first did a logarithm-transformation of the cost variable, and then scaled the transformed
variable to the unit interval. There are a total of 996 patients, among whom 698 received
abciximab and 298 did not. A two-sample T-test shows that the intervention group had
significantly higher cost than the control group (0.792 versus 0.777, T-test p<0.0001, two-
sided). To account for potential confounders, we fit a probit propensity score model that
includes coronary stent deployment (Yes/No), acute myocardial infarction within seven days
prior to PCI (Yes/No), diagnosis of diabetes mellitus (Yes/No), and the left ventricular
ejection fraction (continuous). These factors univariately correlate with at least one of the
two measures: cost or abciximab usage. The inverse propensity score weighting leads to an
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estimate of the treatment effect of 0.024 (Z-test p<0.0001, two-sided), suggesting again an
increase in cost in the intervention group after adjustment.

To investigate potential uncontrolled confounding, we conducted a similar sensitivity
analysis. Since the outcome is continuous, the sensitivity analysis will generate estimates of
the lower and upper bounds. For this example, it was the lower bound of the causal effect
that is of our interest as a positive treatment effect was found. The result is shown in Fig. 3.
Clearly, the positive intervention effect is much more sensitive to uncontrolled confounding
compared with the previous example. For the estimate of the lower bound of the intervention
effect to go below 0, ρ only needs to be a bit over 0.1 when τ = 0.4 or both Varτ(S*|S)- and
Varλ(S*|S)-based analyses. Similarly, or τ = 0.2, the estimate of the lower bound of the
intervention effect goes below 0 when ρ>0.25 regardless of the method used. The lower
limit of the 90% confidence interval (one-sided) of the lower bound for τ = 0.3 (Fig. 3(B))
shows that as ρ>0.11 the confidence intervals will contain 0. Hence, the sensitivity analysis
suggests that the significant intervention effect could have been induced by mild
confounding. If we fix λ1 at 0.0063, 0.0245, 0.0526, and 0.0881, the compatible regions of
λ0 are (0.0001,0.32), (0.0009,0.48), (0.003,0.57), and (0.005,0.64). Therefore, the common
values are legitimate.

In fact, we intentionally ignored a covariate in our probit model for the pseudo-propensity
score: the number of vessels involved in the patient’s initial PCI. Univariate analysis shows
that this variable is correlated with both treatment assignment and the cost. When included
in the probit model after normalization,  (Wald test P<0.0001, two-sided). Therefore,
this variable may be a potential confounder that induces the “treatment effect”. The
sensitivity analysis shows that when τ = 0.3 a weak correlation ρ1= − ρ0>0.11 could be
responsible for the “significant” increase in cost. In fact, when we use the propensity score
obtained from the revised probit model with the number of vessels added, the intervention
effect is not significant (−0.0019, Z-test p= 0.91, two-sided).

4 Discussion
We propose a general framework and a parametric model for sensitivity analysis built on
IPW, which can be used to examine the potential impact of uncontrolled confounding for
causal inference using non-randomized data. It should be noted that the method can be
readily applied to inference of marginal means when the data are subject to non-ignorable
missingness (Little and Rubin, 1987). Our method offers a simple, intuitively appealing, and
easy-to-implement procedure, which is only based on two parameters: the variance of the
multiplicative error of the propensity score and its correlation with a potential outcome.
Although we only illustrate the proposed methods through the estimation of ATE, the
method can be readily applied to ATE on the treated (ATT). To see this, note that

Since Pr[Z= 1], E(Y0|Z = 0), and E(Y1|Z = 1) are estimable, the bounds of E(Y0) can be
directly translated to those of E(Y1−Y0|Z= 1).

We focus on uncontrolled confounding and its impact on causal inference in this article.
Therefore, our working assumption is that the pseudo-propensity score model for included
confounders is correctly specified. Our method does not address the bias induced by model-
misspecification. This is why we considered the probit model instead of the logit model in
Section 2.3. The reason is that if the true propensity score is a probit model, then the pseudo-
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propensity score is still a probit model, which eliminates model-misspecification in the
pseudo-propensity score. This leaves uncontrolled confounders the only source of bias. It is
well known that the logit model does not have this kind of property. Nevertheless, our
general framework allows one to use any method to fit the pseudo-propensity score
including the logit model. The probit model simply serves as a tool to guide the parameter
specifications. In reality, bias can be induced by both model-misspecification and
uncontrolled confounding. Therefore, an appropriate procedure should be employed to
examine both factors for the evaluation of the robustness of the conclusion.

Sensitivity analysis is a critical component in observational studies to examine the
robustness of the conclusion. For practical purposes, a key to construct such analysis is
simple and sensible parameters, the scales of which are familiar to investigators. We choose
to base our sensitivity analysis on (ρ,τ) as these two measures are of broad familiarity with
clear and sensible scales. A sensitivity analysis should account for confounders we are not
aware of. By its definition, the associations of these confounders with treatment assignment
and potential outcomes are hard to postulate based on empirical experience/data. Therefore,
the solution is to examine the impact of confounding under a range of different levels of
these associations (i.e. low and high).

The motivation to restrict a continuous variable to the [0,1] interval is to bound its variance
(from both up and below) by estimable parameters and the non-estimable target (i.e. E(Y1),
see Eq. 6). Then in Eq. (3), one can replace Var(Y1) with its upper and lower bounds. This
automatically eliminates Var(Y1) from the equation so that the users do not need to worry
about specifying Var(Y1) (non-estimable when there is uncontrolled confounding) and its
effect on the bias. Moreover, our strategy avoids the difficulty in having incompatible mean
and variance values for families of distributions where the two parameters are related.
Although general statistical theories often apply to continuous variables taking values on the
whole real line, most of the continuous measures in real life problems are finite in nature. A
simple method would be to scale the measure to the [0,1] interval by using reasonable lower
and upper bounds. In our opinion, this is a practically very feasible solution. To be
conservative, one can also choose relatively extreme bounds. Even without assumptions of
the upper and lower bounds, one can still use monotone non-linear transformations (i.e.
probit and inverse logit functions) to rescale the original variable to [0,1]. The bounds of the
mean of the potential outcome in the original scale can be obtained by the Taylor expansion
followed by plugging in the bounds of the mean and the variance of the transformed scale.
For instance, if O is the original scale and Y is the transformed scale with O = f(Y), then

Based on the shape of the second derivative of f in the interval defined by the bounds of
E(Y1), one can plug in the relevant bounds for E(Y1) and Var(Y1) to obtain bounds for
E(O1).

From the analytical standpoint, in many cases sensitivity analysis will generate some
bounds. These bounds add another level of uncertainty in addition to sampling variation.
Therefore, for a sensitivity analysis to be useful and informative, these bounds should be as
sharp as possible to accurately characterize the robustness. Although we consider
compatibility of λ1 and λ0 in our analysis, the compatibility between λ1 and ρ1 (or between
λ0 and ρ0) is more complicated and is not studied in this article. Therefore, our bounds are
likely not to be sharp. Nevertheless, we believe our method is a balance of simplicity/
sensibility and sharpness to be useful and accessible to medical researchers and scientists. A
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future direction is to investigate the simplification of the compatibility between λ1 and ρ1 to
improve the sharpness of the bounds.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Appendix A

A.1 Proof of Result 1

Therefore, λ0 = ν0/V0≤ E[I(S≥q2)S/(1−S)]/V0. Analogously, it can be shown that
λ0≥E[I(S≤q1)S/(1−S)]/V0.
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A.2 Derivation of Varτ(S*|S)

Therefore; 

A.3 Asymptotic distribution of bound estimators based on the probit model

Here, we show the derivation of the asymptotic distributions of  and . Similar reasoning

can be applied to derive the asymptotic distributions of  and  and the estimates of the
bounds for the causal effect. We will consider a continuous outcome.

Let (Xi, Zi, Yi) (i = 1,2,…,n) be the observed data for unit i. Under the probit parametric

model,  where W is a function of Xi that also
depends on a vector of parameters β. Let Gi = YiZi/Si and

. Therefore, E(Gi) = θ1 and E(Hi) = v1. Denote

ζ = (θ1,π, ϕ1 = E(YZ), δ1 = E(Y2Z),v1)T and ,
where IFi is the influence function for β under the parametric probit model;

 It is straightforward to show by the fact E(IFi) = 0 and central
limit theorem that under suitable regularity conditions

where Λ is the variance-covariance matrix of Oi.

Since  and η1 = δ1/π, the bounds determined by (6) are functions of ζ: l1 = l1(ζ) and
L1 = L1(ζ). Then a direct application of the delta method leads to the asymptotic

distributions of  and .

References
Arah OA, Chiba Y, Greenland S. Bias formulas for external adjustment and sensitivity analysis of

unmeasured confounders. Annals of Epidemiology. 2008; 18:637–646. [PubMed: 18652982]

Bang H, Robins JM. Doubly robust estimation in missing data and causal inference models.
Biometrics. 2005; 61:962–973. [PubMed: 16401269]

Brumback BA, Hernan MA, Haneuse SJ, Robins JM. Sensitivity analyses for unmeasured confounding
assuming a marginal structural model for repeated measures. Statistics in Medicine. 2004; 23:749–
767. [PubMed: 14981673]

Cochran WG. Matching in analytical studies. American Journal of Public Health and the Nations
Health. 1953; 43:684–691.

Shen et al. Page 14

Biom J. Author manuscript; available in PMC 2013 September 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Cole SR, Hernan MA, Margolick JB, Cohen MH, Robins JM. Marginal structural models for
estimating the effect of highly active antiretroviral therapy initiation on CD4 cell count. American
Journal of Epidemiology. 2005; 162:471–478. [PubMed: 16076835]

Copas JB, Li HG. Inference for non-random samples. Journal of the Royal Statistical Society, Series
B. 1997; 59:55–95.

Greenland S. Multiple-bias modelling for analysis of observational data (with discussion). Journal of
the Royal Statistical Society, Series A. 2005; 168:267–306.

Hernan MA, Robins JM. Method for conducting sensitivity analysis. Biometrics. 1999; 55:1316–1317.
[PubMed: 11315091]

Hirano K, Imbens GW. Estimation of causal effects using propensity score weighting: an application
to data on right heart catheterization. Health Services and Outcomes Research Methodology. 2001;
2:259–278.

Holland PW. Statistics and causal inference. Journal of the American Statistical Association. 1986;
81:945–960.

Imbens GW. Sensitivity to exogeneity assumptions in program evaluation. American Economic
Review. 2003; 93:126–132.

Kereiakes DJ, Obenchain RL, Barber BL, Smith A, McDonald M, Broderick TM, Runyon JP,
Shimshak TM, Schneider JF, Hattemer CR, Roth EM, Whang DD, Cocks D, Abbottsmith CW.
Abciximab provides cost-effective survival advantage in high-volume inter-ventional practice.
American Heart Journal. 2000; 140:603–610. [PubMed: 11011333]

Ko H, Hogan JW, Mayer KH. Estimating causal treatment effects from longitudinal HIV natural
history studies using marginal structural models. Biometrics. 2003; 59:152–162. [PubMed:
12762452]

Kuroki M, Cai Z. Formulating tightest bounds on causal effects in studies with unmeasured
confounders. Statistics in Medicine. 2008; 27:6597–6611. [PubMed: 18780415]

Lin DY, Psaty BM, Kronmal RA. Assessing the sensitivity of regression results to unmeasured
confounders in observational studies. Biometrics. 1998; 54:948–963. [PubMed: 9750244]

Little, RJA.; Rubin, DB. Statistical Analysis with Missing Data. Wiley; New York: 1987.

MacLehose RF, Kaufman S, Kaufman JS, Poole C. Bounding causal effects under uncontrolled
confounding using counterfactuals. Epidemiology. 2005; 16:548–555. [PubMed: 15951674]

Robins JM. Association, causation, and marginal structural models. Synthese. 1999; 121:151–179.

Robins JM, Rotnitzky A, Zhao L. Estimation of regression coefficients when some regressors are not
always observed. Journal of the American Statistical Association. 1994; 89:846–866.

Rosenbaum, PR. Observational Studies. Springer; New York: 1995.

Rosenbaum PR, Rubin DB. Assessing sensitivity to an unobserved binary covariate in an observational
study with binary outcome. Journal of the Royal Statistical Society, Series B. 1983a; 45:212–218.

Rosenbaum PR, Rubin DB. The central role of the propensity score in observational studies for causal
effects. Biometrika. 1983b; 70:41–55.

Rosenbaum PR, Rubin DB. The bias due to incomplete matching. Biometrics. 1985; 41:103–116.
[PubMed: 4005368]

Rubin DB. Matching to remove bias in observational studies. Biometrics. 1973; 29:159–183.

Rubin DB. Estimating causal effects of treatments in randomized and nonrandomized studies. Journal
of Educational Psychology. 1974; 66:688–701.

Rubin DB. Bayesian inference for causal effects: the role of randomization. Annals of Statistics. 1978;
6:34–58.

Rubin DB. Causal inference using potential outcomes: design, modeling, decisions. Journal of the
American Statistical Association. 2005; 100:322–331.

Rubin DB, Thomas N. Matching using estimated propensity scores: relating theory to practice.
Biometrics. 1996; 52:249–264. [PubMed: 8934595]

Sturmer T, Schneeweiss S, Rothman KJ, Avorn J, Glynn RJ. Performance of propensity score
calibration – a simulation study. American Journal of Epidemiology. 2007a; 165:1110–1118.
[PubMed: 17395595]

Shen et al. Page 15

Biom J. Author manuscript; available in PMC 2013 September 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Sturmer T, Schneeweiss S, Rothman KJ, Avorn J, Glynn RJ. Propensity score calibration and its
alternatives. American Journal of Epidemiology. 2007b; 165:1122–1123.

Vander Weele TJ. The sign of the bias of unmeasured confounding. Biometrics. 2008; 64:702–706.
[PubMed: 18177462]

Were MC, Shen C, Tierney WM, Mamlin JJ, Biondich PG, Li X, Kimaiyo S, Mamlin BW. Evaluation
of computer-generated reminders to improve CD4 laboratory monitoring in sub-Saharan Africa: a
prospective comparative study. Journal of the American Medical Informatics Association. 2011;
18:150–155. [PubMed: 21252053]

Shen et al. Page 16

Biom J. Author manuscript; available in PMC 2013 September 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
Illustration of the feasible regions of E(Y1) defined by formula (6). flow, f, and fup can be
viewed as three functions of E(Y1) that correspond to the three terms in (6):

, , .The
two intervals on X-axis under the gray regions correspond to the feasible regions under ρ1>0
and ρ1<0, respectively. Here, θ1= 0.4, |ρ1| = 0.5, π = 0.5, ν1 = 0.5, μ1 = 0.25, ψ= 1, η1 =
0.15, b = 0.05, and d = 0.10625.
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Figure 2.
(A) Estimates of the effect of CD4 testing reminder on CD4 test ordering under different
combinations of ρ = ρ1= −ρ0 and τ. Dashed lines are the estimates of the average treatment
effect (ATE) based on Varτ(S*|S) (Eq. 11) and solid lines are the estimates of the ATE
based on Varλ(S*|S) (Eq. 12). The four dashed lines correspond to (from top to bottom) τ =
0.1, 0.2, 0.3, and 0.4. The four solid lines correspond to (from top to bottom) λ(0.1) =
0.0063, λ(0.2) = 0.0245, λ(0.3) = 0.0526, and λ(0.4) = 0.0881. The horizontal gray line on
the top is the estimated ATE assuming no uncontrolled confounding. (B) The lower limit of
the one-sided 90% confidence interval of the intervention effect for τ = 0.2 for different
values of ρ = ρ1= −ρ0.

Shen et al. Page 18

Biom J. Author manuscript; available in PMC 2013 September 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
(A) Estimates of the lower bound of the effect of abciximab on cost under different
combinations of ρ = ρ1=−ρ0 and τ. Dashed lines are the estimates of the ATE based on
Varτ(S*|S) (Eq. 11) and solid lines are the ATE based on Varλ(S*|S) (Eq. 12). The four
dashed lines correspond to (from top to bottom) τ = 0.1, 0.2, 0.3, and 0.4. The four solid
lines correspond to (from top to bottom) λ(0.1) = 0.0063, λ(0.2) = 0.0245, λ(0.3) = 0.0526,
and λ(0.4)= 0.0881. The horizontal gray line on the top is the estimated ATE assuming no
uncontrolled confounding. (B) The lower limit of the one-sided 90% confidence interval of
the lower bound of the intervention effect for τ = 0.3 for different values of ρ = ρ1=− ρ0.
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