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Abstract
We develop an efficient estimation procedure for identifying and estimating the central subspace.
Using a new way of parameterization, we convert the problem of identifying the central subspace
to the problem of estimating a finite dimensional parameter in a semiparametric model. This
conversion allows us to derive an efficient estimator which reaches the optimal semiparametric
efficiency bound. The resulting efficient estimator can exhaustively estimate the central subspace
without imposing any distributional assumptions. Our proposed efficient estimation also provides
a possibility for making inference of parameters that uniquely identify the central subspace. We
conduct simulation studies and a real data analysis to demonstrate the finite sample performance
in comparison with several existing methods.
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1. Introduction
Consider a general model in which the univariate response variable Y is assumed to depend
on the p-dimensional covariate vector x only through a small number of linear combinations
βTx, where β is a p × d matrix with d < p. In this model, how Y depends on βTx is left
unspecified. It is not difficult to see that β is not identifiable. The quantity of general interest
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is usually the column space of β, which is termed the central subspace if d is the smallest
possible value to satisfy the model assumption [5].

This general model was proposed by Li [12] and has attracted much attention in the last two
decades. It generated the field of sufficient dimension reduction [5], in which the main
interest is to estimate the central subspace consistently. Influential works in this area
include, but are not limited to, sliced inverse regression [12], sliced average variance
estimation [6], directional regression [10], the generalization of the aforementioned methods
to nonelliptically distributed predictors [7, 9], Fourier transformation [30], cumulative
slicing estimators [29] and conditional density based minimum average variance estimation
[26], etc.

Despite the various estimation methods, it is unclear if any of these estimators are optimal in
the sense that they can exhaustively estimate the entire central subspace and have the
minimum possible asymptotic estimation variance. To the best of our knowledge, the
efficiency issue has never been discussed in the context of sufficient dimension reduction.

In this paper we study the estimation and inference in sufficient dimension reduction. We
propose a simple parameterization so that the central subspace is uniquely identified by a (p
− d)d-dimensional parameter that is not subject to any constraints. Thus we convert the
problem of identifying the central subspace into a problem of estimating a finite dimensional
parameter in a semiparametric model. This allows us to derive the estimation procedures and
perform inference using semiparametric tools. How to make inference about the central
subspace is a challenging issue. This is partially caused by the complexity of estimating a
space rather than a parameter. Our new parameterization overcomes this complexity and
permits a relatively straightforward calculation of the estimation variability.

We further construct an efficient estimator, which reaches the minimum asymptotic
estimation variance bound among all possible consistent estimators. Efficiency bounds are
of fundamental importance to the theoretical consideration. Such bounds quantify the
minimum efficiency loss that results from generalizing one restrictive model to a more
flexible one, and hence they can be important in making the decision of which model to use.
The efficiency bounds also provide a gold standard by which the asymptotic efficiency of
any particular semiparametric estimator can be measured [22]. Generally speaking, a
semiparametric efficient estimator is usually the ultimate destination when searching for
consistent estimators or trying to improve existing procedures. When an efficient estimator
is obtained, the procedure of estimation can be considered to have reached certain
optimality.

In the literature, vast and significant effort has been devoted to studying the semiparametric
efficiency bounds for consistent estimators in semiparametric models. The simplest and
most familiar examples are the ordinary and weighted least square estimators in the linear
regression setting. Efficiency issues are also considered in more complex semiparametric
problems such as regressions with missing covariates [23], skewed distribution families [18,
19], measurement error models [15, 25], partially linear models [16], the Cox model [24],
page 113, accelerated failure model [27] or other general survival models [28] and latent
variable models [17].

One typical semiparametric tool is to obtain estimators through obtaining the corresponding
influence functions. In deriving the influence function family and its efficient member, we
use the geometric technique illustrated in [2] and [24]. All our derivations are performed
without using the linearity or constant variance condition that is often assumed in the
dimension reduction literature. Our analysis is thus readily applicable when some covariates
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are discrete or categorical. In summary, we provide an efficient estimator which can
exhaustively estimate the central subspace without imposing any distributional assumptions
on the covariate x.

The rest of this paper is organized as follows. In Section 2, we propose a simple
parameterization of the central subspace and highlight the semiparametric approach to
estimating the central subspace. We also derive the efficient score function. In Section 3, we
present a class of locally efficient estimators and identify the efficient member. We illustrate
how to implement the efficient estimator to reach the optimal efficiency bound. Simulation
studies are conducted in Section 4 to demonstrate the finite sample performance and the
method is implemented in a real data example in Section 5. We finish the paper with a brief
discussion in Section 6. All the technical derivations are given in a supplementary material
[21].

2. The semiparametric formulation
2.1. Parameterization of central subspace

In the context of sufficient dimension reduction [5, 12], one often assumes

(2.1)

where  is the conditional distribution function of the response Y given
the covariates x, and β is a p × d matrix as defined previously. The goal of sufficient
dimension reduction is to estimate the column space of β, which is termed the dimension
reduction subspace. Because a dimension reduction subspace is not necessarily unique, the
primary interest is usually the central subspace SY|x, which is defined as the minimum
dimension reduction subspace if it exists and is unique [5]. The dimension of SY|x, denoted
with d, is commonly referred to as the structural dimension. Similarly to [4], we exclude a
pathological case where there exists a vector α such that αTx is a deterministic function of
βTx while α does not belong to the column space of β.

The central subspace SY|x has a well-known invariance property [5], page 106, that is, SY|x =
DSY|z, where z = DTx + b for any p × p nonsingular matrix D and any length p vector b.
This allows us to assume throughout that the covariate vector x satisfies E(x)=0 and cov(x)
= Ip. Identifying SY|x is the essential interest of sufficient dimension reduction for model
(2.1). Typically, SY|x is identified through estimating a basis matrix β ∈ Rp×d of minimal
dimension that satisfies (2.1). Although SY|x is unique, the basis matrix β is clearly not. In
fact, for any d × d full rank matrix A, βA generates the same column space as β. Thus, to
uniquely map one central subspace SY|x to one basis matrix, we need to focus on one
representative member of all the βA matrices generated by different A’s. We write

, where the upper submatrix βu has size d × d and the lower submatrix βl has size
(p − d) × d. Because β has rank d, we can assume without loss of generality that βu is

invertible. The advantage of using  is that its upper d × d submatrix is the identity

matrix, while the lower (p − d) × d matrix can be any matrix. In addition, two matrices 

and  are different if and only if the column spaces of β1 and β2 are different. Therefore,
if we consider the set of all the p × d matrices β where the upper d × d submatrix is the
identity matrix Id, it has a one-to-one mapping with the set of all the different central
subspaces. Thus, as long as we restrict our attention to the set of all such matrices, the
problem of identifying SY\x is converted to the problem of estimating βl, which contains
pt=(p − d)d free parameters. Note that pt is the dimension of the Grassmann manifold
formed by the column spaces of all different β matrices. Thus, we can view βl as a unique
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parameterization of the manifold. Here the subscript “t” stands for total. For notational

convenience in the remainder of the text, for an arbitrary p × d matrix , we
define the concatenation of the columns contained in the lower p − d rows of β as vecl(β) =
vec(βl) = (βd+1,1,…,βp,1,…,βd+1,d,…,βp,d)T, where in the notation vecl, “vec” stands for
vectorization, and “l” stands for the lower part of the original matrix. We then can write the
concatenation of the parameters in β as vecl(β). Thus, from now on, we only consider basis

matrix of SY|x that has the form  where βl is a (p − d) × d matrix. Estimating the
parameters in β is a typical semiparametric estimation problem, in which the parameter of
interest is vecl(β). Therefore we have converted the problem of estimating the central space
SY|x into a problem of semiparametric estimation.

Remark 1—The above parameterization of SY\x excludes the pathological case where one
or more of the first d covariates do not contribute to the model or contribute to the model
through a fixed linear combination. When this happens, βu will be singular. However,
because β has rank d, hence if this happens, one can always rotate the order of the covariates
(hence rotate the rows of β) to ensure that after rotation, the resulting βu has full rank.

2.2. Efficient score
In this section we derive the efficient score for estimating β under the above

parameterization. That is, we now consider model (2.1), where  and x satisfies
E(x)=0 and var(x) = Ip. The general semiparametric technique we use is originated from [2]
and is wonderfully presented in [24]. Using this approach, we obtain the main result of this
section, that we can use (2.2) to obtain an efficient estimation of β.

The likelihood of one random observation (x, Y) in (2.1) is η1(x)η2(Y,βTx), where η1 is a
probability mass function (p.m.f.) or a probability density function (p.d.f.) of x, or a mixture,
depending on whether x contains discrete variables, and η2 is the conditional p.m.f./p.d.f. of
Y on x. We view η1, η2 as infinite dimensional nuisance parameters and vecl(β) as the pt -
dimensional parameter of interest. Following the semiparametric analysis procedure, we first
derive the nuisance tangent space Λ = Λ1 ⊕ Λ2, where

Here, the notation ⊕ means the usual addition of the two spaces Λ1, Λ2, while Λ1 and Λ2
have the extra property that they are orthogonal to each other. This means the inner product
of two arbitrary functions from Λ1 and Λ2, respectively, calculated as the covariance
between them, is zero. We then obtain its orthogonal complement

The detailed derivation of Λ and Λ⊥ is given in Appendix A.2 of [20]. The form of Λ⊥

permits many possibilities for constructing estimating equations. For example, for arbitrary
functions gi and αi, the linear combination
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will provide a consistent semiparametric estimator since it is a valid element in Λ⊥. This
form is exploited extensively in [20] to establish links between the semiparametric approach
and various inverse regression methods. Among all elements in Λ⊥, the most interesting one
is the efficient score, defined as the orthogonal projection of the score vector Sβ onto Λ⊥.
We write the efficient score as Seff = Π(Sβ|Λ⊥). Because the efficient score can be
normalized to the efficient influence function, it enables us to construct an efficient
estimator of vecl(β) which reaches the optimal semiparametric efficiency bound in the sense
of [2]. In the supplementary document [21], we derive the efficient score function to be

(2.2)

Hypothetically, the efficient estimator can be obtained through implementing

However, Seff is not readily implementable because it contains the unknown quantities E(x|
xTβ) and ∂ log η2(Y, βTx)/∂(xTβ). For this reason, we first discuss a simpler alternative in the
following section.

3. Locally efficient and efficient estimators
3.1. Locally efficient estimators

We now discuss how to construct a locally efficient estimator. This is an estimator that
contains some subjectively chosen components. If the components are “well” chosen, the
resulting estimator is efficient. Otherwise, it is not efficient, but still consistent. The efficient
estimator defined in (2.2) requires one to estimate η2, the conditional p.d.f. of Y on βTx, and
its first derivative with respect to βTx. Although this is feasible, as we will describe in detail
in Section 3.2, it certainly is not a trivial task as it involves several nonparametric
estimations. Because of this, a compromise is to consider an estimator that depends on a
posited model of η2. Specifically, we would choose some favorite form for η2, denoted

, and utilize it in place of η2 to construct an estimating equation. If the posited

model is correct (i.e.,  = η2), then we would have the optimal efficiency using the

corresponding . However, even if the posited model is incorrect (i.e., ), we would

still have consistency using the corresponding . A valid choice of  that indeed
guarantees such property is

When ,  hence  = Seff. The construction of

a locally efficient estimator is often useful in practice due to its relative simplicity.  is

almost readily applicable except that the two expectations  and

 need to be estimated nonparametrically. One can use the familiar
kernel or local polynomial estimators. In Theorem 1, we show that under mild conditions,
with the two expectations estimated via the Nadaraya-Watson kernel estimators, the local
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efficiency property indeed holds and estimating the two expectations does not cause any
difference from knowing them in terms of its first order asymptotic property.

We first present the regularity conditions needed for the theoretical development.

(A1) (The posited conditional density )—Denote u = βTx. The posited conditional

density  (Y,u) of Y given u is bounded away from 0 and infinity on its support y. The

second derivative of log  (Y, u) with respect to u is continuous, positive definite and
bounded. In addition, there is an open set Ω ∈ Rpt which contains the true parameter vecl(β),
such that the third derivative of η2(Y,βTx) satisfies

for all vecl(β) ∈ Ω and 1 ≤ j,k,l pt, where  satisfies and βj is the
jth component of vecl(β).

(A2) (The nonparametric estimation)—  and 
are estimated via the Nadaraya-Watson kernel estimator. For simplicity, a common
bandwidth h is used which satisfies nh8 → 0 and nh2d → ∞ as n → ∞.

(B1) (The true conditional density η2)—The true conditional density η2(Y, u) of Y
given u is bounded away from 0 and infinity on its support Y. The first and second
derivatives of log η2 satisfy

and

is positive definite and bounded. In addition, there is an open set Ω ∈ Rpt which contains the
true parameter vecl(β), such that the third derivative of η2(Y,βTx) satisfies

for all vecl(β) ∈ Ω and 1 ≤ j,k,l ≤ pt, where Mjkl(Y,x) satisfies  and βj is the
jth component of vecl(β).

(B2) (The bandwidths)—The bandwidths satisfy , , and  and

, 

(C1) (The density functions of covariates)—Let u = βTx. The density functions of u
and x are bounded away from 0 and infinity on their support U and χ where U = {u = βTx : x
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∈ χ} and χ is a compact support set of x. Their second derivatives are finite on their
supports.

(C2) (The smoothness)—The regression functions E(x|u) has a bounded and continuous
derivative on U.

(C3) (The kernel function)—The univariate kernel function K() is a bounded symmetric
probability density function, has a bounded derivative and compact support [−1,1], and

satisfies . The d-dimensional kernel function is a product of d univariate

kernel functions, that is, , and 
for u = (u1,…,ud)T and any bandwidth h.

Theorem 1—Under conditions (A1)–(A2) and (C1)–(C3), the estimator obtained from the
estimating equation

is locally efficient. Specifically, the estimator is consistent if , and is efficient if

. In addition, using the estimated  results in the same estimation variance for

vecl(β) as using the true . Specifically, the estimate  satisfies

when , where

In Theorem 1 and thereafter, we use  to denote vvT for any matrix or vector v, and use 
to denote the nonparametrically estimated expectation.

We describe how to implement the locally efficient estimator in several specific cases. For
example, when Y is continuous, we can propose a simple conditional normal model for η2
and hence obtain the locally efficient estimator based on summing terms of the form

(3.1)

evaluated at different observations. Here  is computed using the model  When Y
is binary, a common model to posit for η2 is a logistic model. The summation of the terms of
form (3.1) evaluated at different observations also provides a locally efficient estimator.
When Y is a counting response variable, the Poisson model is a popular choice for η2. This
choice also yields an identical locally efficient estimator formed by the sum of (3.1). The
benefits of these locally efficient estimators are two-fold. The first benefit lies in the
robustness property, in that they guarantee the consistency of the resulting estimators
regardless of the proposed model. The second benefit is their computational simplicity
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gained through avoiding estimating the conditional density η2 and its derivative. In addition,
if, by luck, the posited model happens to be correct, then the estimator is efficient.

Remark 2—We have restricted the posited model  to be a completely known model in

order to illustrate the local efficiency concept. In fact, one can also posit a model  that
contains an additional unknown parameter vector, say γ. As long as γ can be estimated at the
root-n rate, the resulting estimator with the estimator  plugged in is also referred to as a

locally efficient estimator. In addition, if model  contains the true η2, say

 and γ0 is estimated consistently by  at the root-n rate, then the

resulting estimator  with  plugged in is efficient.

Remark 3—Even if efficiency is not sought after and consistency is the sole purpose, at
least one nonparametric operation, such as one that relates to estimating E(x|βTx), is needed.
Thus, to completely avoid nonparametric procedures, the only option is to impose additional
assumptions. The most popular linearity condition in the literature assumes E(x|
βTx)=β(βTβ)−1βTx. Since Theorem 1 allows an arbitrary η∗, the most obvious choice in

practice is probably the exponential link functions. For example, if we choose  to be the
normal link function when d = 1, then the locally efficient estimator degenerates to a simple
form, where

If we are even bolder and decide to replace  with Y, which is still valid given that the
first term alone already guarantees consistency under the linearity condition, then we obtain
the ordinary least square estimator [13]. Further connections to other existing methods are
elaborated in [20].

3.2. The efficient estimator
Now we pursue the truly efficient estimator that reaches the semiparametric efficiency
bound. This is important because in terms of reaching the optimal efficiency, relying on a

posited model  to be true or to contain the true η2 is not a satisfying practice. Intuitively, it
is easy to imagine that in constructing the locally efficient estimator, if we posit a larger

model , the chance of it containing the true model η2 becomes larger, hence the chance of
reaching the optimal efficiency also increases. Thus, if we can propose the “largest” possible

model for , we will guarantee to have  containing η2. If we can also estimate the

parameters in  “correctly,” we will then guarantee the efficiency. This “largest” model
with a “correctly” estimated parameter turns out to be what the nonparametric estimation is
able to provide. This amounts to estimating E(x|βTx), η2 and its first derivative
nonparametrically in (2.2).

We first discuss how to estimate η2 and its first derivative, based on (Yi,βTxi), i = 1,…,n.
This is a problem of estimating conditional density and its derivative. We use the idea of the
“double-kernel” local linear smoothing method studied in [8]. Consider Kb(Y − y)=
b−1K{(Y − y)/b} with y running through all possible values, where K(·) is a symmetric
density function, and b > 0 is a bandwidth. Then E{Kb(Y−y)|βTx} converges to η2(y,βTx) as
b tends to 0. This observation motivates us to estimate η2 and its first derivative, evaluated
at (y,βTx) through minimizing the following weighted least squares:
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where hy is a bandwidth, and  is a multivariate kernel function. The minimizers  and 

are the estimators of η2 and ∂η2/∂ (βTx). Let the resulting estimators be  and .

It remains to estimate E(x|βTx). Using the Nadaraya-Watson kernel estimator, we have

where hx is a bandwidth, and  is a multivariate kernel function. The algorithm for
obtaining the efficient estimator is the following:

• Step 1. Obtain an initial root-n consistent estimator of β, denoted as  through, for
example, a simple locally efficient estimation procedure from Section 3.1.

• Step 2. Perform nonparametric estimation of  and its first derivative

. Write the resulting estimators as  and 

• Step 3. Perform nonparametric estimation of E(x|βTx). Write the resulting estimator

as .

• Step 4. Plug ,  and  into Seff and solve the estimating
equation

to obtain the efficient estimator .

In performing the various nonparametric estimations in steps 2 and 3, as well as in obtaining
the locally efficient estimator in Section 3.1, bandwidths need to be selected. Because the
final estimator is very insensitive to the bandwidths, as indicated by conditions (A2), (B2)
and Theorems 1, 2, where a range of different bandwidths all lead to the same asymptotic
property of the final estimator, we suggest that one should select the corresponding
bandwidths by taking the sample size n to its suitable power to satisfy (B2), and then
multiply a constant to scale it, instead of performing a full-scale cross validation procedure.
For example, when d = 1, we let h = n−1/5, hx= n−1/5, hy= n−1/6, b = n−1/7, and when d = 2,
we let h = n−1/6, hx= n−1/6, hy= n−1/7, b = n−1/8, each multiplied by the standard deviation of

the regressors calculated at the current  value.

The estimator from the above algorithm, , with its upper d × d submatrix being Id, reaches
the optimal semiparametric efficiency bound. We present this result in Theorem 2.

Theorem 2—Under conditions (B1)–(B2) and (C1)–(C3), the estimator obtained from the
estimating equation
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is efficient. Specifically, when n → ∞, the estimator of vecl(β) satisfies

in distribution.

Remark 4—It is discovered that for certain p.d.f. η2, such as when the inverse mean
function E(x|Y) degenerates, some inverse, regression-based methods, such as SIR, would
fail to exhaustively recover SY|x. However, this is not the case for the efficient estimator
proposed here. That is, our proposed efficient estimator, similar to dMAVE [26], has the
exhaustiveness property [11]. In fact, as it is listed in the regularity conditions, as long as the
asymptotic covariance matrix is not singular and is bounded away from infinity, our method
is always able to produce the efficient estimator.

Remark 5—It can be easily verified that the above efficient asymptotic variance-
covariance matrix can be explicitly written out as

where xl is the vector formed by the lower p − d components of x. Thus, the asymptotic

variance of vecl  is nonsingular as long as both  and

 are nonsingular. The nonsingularity of the first matrix is a standard
requirement on the information matrix of the true model η2 and is usually satisfied. On the

other hand,  is always guaranteed to be nonsingular. This is
because if it is singular, then there exists a unit vector α with the first d components zero,
such that αTx is a deterministic function of βTx. This violates our assumption that αTx
cannot be a deterministic function of βTx unless α lies within the column space of β.

4. Simulation study
In this section we conduct simulations to evaluate the finite sample performance of our
efficient and locally efficient estimators and compare them with several existing methods.

We consider the following three examples:

1. We generate Y from a normal population with mean function xTβ and variance 1.

2. We generate Y from a normal population with mean function sin(2xTβ) + 2exp(2 +
xTβ) and variance function log{2 + (xTβ)2}.

3. We generate Y from a normal population with mean function 2(xTβ1)2 and variance
function 2 exp(xTβ2).
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In the simulated examples 1 and 2, we set β= (1.3, −1.3,1.0, −0.5,0.5, −0.5)T and generate x
= (X1,…,X6)T as follows. We generate X1, X2, e1 and e2 independently from a standard
normal distribution, and form X3= 0.2X1 + 0.2(X2 + 2)2 + 0.2e1, X4= 0.1 + 0.1(X1 + X2) +
0.3(X1 + 1.5)2 + 0.2e2. We generate X5 and X6 independently from Bernoulli distributions
with success probability exp(X1)/{1 + exp(X1)} and exp(X2)/{1 + exp(X2)}, respectively.

Example 3 follows the setup of Example 4.2 in [26]. In this example, we set β1= (1, 2/3, 2/3,
0, −1/3,2/3)T and β2= (0.8, 0.8, −0.3, 0.3,0, 0)T. We form the covariates x by setting X1= U1
− U2, X2= U2 − U3 − U4, X3= U3+ U4, X4= 2U4, X5= U5+ 0.5U6 and X6= U6, where U1 is
generated from a Bernoulli distribution with probability 0.5 to be 1 or −1, U2 is also

generated from Bernoulli distribution, with probability 0.7 to be  and probability 0.3 to

be  . The remaining four components of u are generated from a uniform distribution
between  and . The six components of u = (U1,…,U6)T are independent, marginally
having zero mean and unit variance. We construct x through u in this way to allow the
components of x to be correlated.

For the purpose of comparison, we implement six estimators: “Oracle,” “Eff,” “Local,”
“dMAVE,” “SIR” and “DR.” The names of the estimators suggest the nature of these
estimators, while we briefly explain them in the following:

Oracle: the oracle estimate which correctly specifies η2 in (2.2), but we estimate E(x|
βTx) through kernel regressions. We remark here that the oracle estimator is not a
realistic estimator because η2 is usually unknown. We include the oracle estimator here
to provide a benchmark since this is the best performance one could hope for.

Eff: the efficient estimator which estimates E(x|βTx), η2 and η2 through nonpara-metric
regressions. See Section 3.2 for a description about this efficient estimator.

Local: the locally efficient estimate which mis-specifies the model η2, and estimates E(·|
βTx) through nonparametric regression. This is an implementation of (3.1).

dMAVE: the conditional density based minimum average variance estimation proposed
by [26].

SIR: the sliced inverse regression [12] which estimates β as the first d principal

eigenvectors of , where .

DR: the directional regression [10] which estimates β as the first d principal

eigenvectors of the kernel matrix , where

, and  is an independent copy of (x, Y).

We repeat each experiment 1000 times with sample size n = 500. The results are
summarized in Table 1 for example 1, Table 2 for example 2 and Table 3 for example 3.
Because the estimators we propose here use a different parameterization of the central
subspace SY|x from the existing methods such as SIR, DR or dMAVE, we transform the
results from all the estimation procedures to the original β used to generate the data for a fair
and intuitive comparison.

From the results in Table 1, we can see that Oracle, Eff, Local, dMAVE provide estimators
with small bias, while SIR and DR have substantial bias in some of the elements in β. For
example, the average of the second estimated component of β obtained by DR is −0.2217, in
contrast to the true value −1.3. This is because the covariate x does not satisfy the linearity
or the constant variance condition, and hence violates the requirement of SIR and DR.
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Although Local and dMAVE both appear consistent, they have much larger variance in
some components than Eff. For example, in estimating β1, the asymptotic variance of
dMAVE is 0.1932, whereas that of Eff is as small as 0.1264. This is not surprising since Eff
is asymptotically efficient. In fact, for this very simple setting, the estimation variance of Eff
is almost as good as Oracle, which indicates that the asymptotic efficiency already exhibits
for n = 500.

We also provide the average of the estimated standard error using the results in Theorem 2
and the 95% coverage in Table 1. The numbers show a close approximation of the sample
and estimated standard error and 95% coverage is reasonable close to the nominal value.

Similar phenomena are observed for the simulated example 2 from Table 2, where SIR and
DR are biased, Local and dMAVE are consistent but have larger variability than Eff and
Oracle. In this more complex model where the mean function is highly nonlinear and the
error is heteroscedastic, we lose the proximity between the oracle performance and the Eff
performance. This is probably because n = 500 is still too small for this model. The
inference results in Table 2, however, are still satisfactory, indicating that although we
cannot achieve the theoretical optimality, inference is still sufficiently reliable.

What we observe in Table 3, for the simulated example 3, tells a completely different story.
For this case with d = 2, both the linearity and the constant variance condition are violated.
In addition, x contains categorical variables. dMAVE, SIR and DR all fail to provide good
estimators in terms of estimation bias. Local and Eff remain to be consistent, although like
in the simulated example 2, we can no longer hope to see the optimality as the estimation
standard error is much larger than the Oracle estimator. Inference results presented in Table
3 still show satisfactory 95% coverage values, while the average estimated estimation
standard error can deviate away from the sample standard error. This is caused by some
numerical instability of a small proportion of the simulation repetitions. In fact, if we replace
the average with the median estimated standard error, the results are closer.

5. An application
We use the proposed efficient estimator to analyze a dataset concerning the employees’
salary in the Fifth National Bank of Springfield [1]. The aim of the study is to understand
how an employee’s salary associates with his/her social characteristics. We regard an
employee’s annual salary as the response variable Y, and several social characteristics as the
associated covariates. These covariates are, specifically, current job level (X1); number of
years working at the bank (X2); age (X3); number of years working at other banks (X4);
gender (X5); whether the job is computer related (X6). After removing an obvious outlier,
the dataset contains 207 observations.

We calculated the Pearson correlation coefficients and found the current job level (X1) has
the largest correlation with his/her annual salary (Y) [corr(X1, Y) = 0.614]. This implies that
the current job level is possibly an important factor and thus we fix the coefficient of X1 to
be 1 in our subsequent analysis. We applied SIR, DR, dMAVE and Eff methods to estimate
the remaining coefficients. In Figure 1 we present the scatter plots of Y versus a single linear

combination , where x = (X1,…, X6)T and  denote the estimate obtained from the four
estimation procedures. The scatter plots exhibit similar monotone patterns in that the annual

salary increases with the value of . Except for DR, the data cloud of all other three
proposals looks very compact. To quantify this visual difference, we fit a cubic model by

regressing Y on 1, ,  and  . The adjusted r2 values are also reported in
Figure 1. The r2 value of DR is much smaller than that of the other estimators, which
suggests worse performance of DR. This is not a surprise because DR requires the most
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stringent conditions on the covariate vector x, which are violated here because of the
categorical covariates. The r2 values of all other estimators including Eff are satisfactory,
indicating that SY|x is possibly one dimensional. We would also like to point out that
because the r2 value factors in the goodness-of-fit of the cubic model, hence it only provides
a reference.

Table 4 contains the estimated coefficients  ’s, the standard errors and p-values obtained
through Eff. It can be seen that in addition to the current job level (X1), working experience
at the current bank (X2), age (X3) and whether or not the job is computer related (X6) are
also important factors on salary. While it is not difficult to understand the importance of
most of these factors, we believe the age effect is probably caused by its high correlation
with the working experience [corr(X2, X3) = 0.676].

6. Discussion
We have derived both locally efficient and efficient estimators which exhaust the entire
central subspace without imposing any distributional assumptions. We point out here that if
the linearity condition holds, the efficiency bound does not change. However, the linearity
condition will enable a simplification of the computation because we can simply plug E(x|
βTx)=β(βTβ)−1βTx into the estimation equation instead of estimating it nonparametrically.
However, the constant variance condition does not seem to contribute to the efficiency
bound or to the computational simplicity. It is therefore a redundant condition in the
efficient estimation of the central subspace.

In this paper we did not discuss how to determine d, the structural dimension of SY|x when
an efficient estimation procedure is used, although we agree that this is an important issue in
the area of dimension reduction. In the real-data example, we infer the structural dimension
through the adjusted r2 values. This seems a reasonable choice, but the turnout may depend
on how to recover the underlying model structure. How to prescribe a rigorous data-driven
procedure is needed in future works.

Various model extensions have been considered in the dimensional reduction literature. For
example, in partial dimension reduction problems [3], it is assumed that F(Y|x)=F(Y|βTx1,
x2). Here, x1 is a covariate sub-vector of x that the dimension reduction procedure focuses
on, while x2 is a covariate sub-vector that is known to directly enter the model based on
scientific understanding or convention. We can see that the semiparametric analysis and the
efficient estimation results derived here can be adapted to these models, through changing
βTx to (βTx1,x2) in all the corresponding functions and expectations while everything else
remains unchanged. Another extension is the group-wise dimension reduction [14], where

the model  is considered. The semiparametric analysis in such
models requires separate investigation, and it will be interesting to study the efficient
estimation.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.

The scatter plot of Y versus , with  obtained from SIR, DR, dMAVE and Eff,
respectively. The fitted cubic regression curves (−) and the adjusted r2 values are shown.
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