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Abstract 
Multidrug resistance proteins (MRPs) are members of the C family of a group of proteins named ATP鄄  

binding cassette (ABC) transporters. These ABC transporters together form the largest branch of proteins 
within the human body. The MRP family comprises of 13 members, of which MRP1 to MRP9 are the 
major transporters indicated to cause multidrug resistance in tumor cells by extruding anticancer drugs out 
of the cell. They are mainly lipophilic anionic transporters and are reported to transport free or conjugates 
of glutathione (GSH), glucuronate, or sulphate. In addition, MRP1 to MRP3 can transport neutral organic 
drugs in free form in the presence of free GSH. Collectively, MRPs can transport drugs that differ 
structurally and mechanistically, including natural anticancer drugs, nucleoside analogs, antimetabolites, 
and tyrosine kinase inhibitors. Many of these MRPs transport physiologically important anions such as 
leukotriene C4, bilirubin glucuronide, and cyclic nucleotides. This review focuses mainly on the 
physiological functions, cellular resistance characteristics, and probable in vivo role of MRP1 to MRP9. 
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Review 

Chemotherapy is one of the major treatment 
modalities available for cancer patients. Unfortunately, 
during the course of treatment, cancer cells develop 
resistance to functionally and structurally different 
anticancer drugs by either acquired (due to host factors) 
or intrinsic (due to genetic or epigenetic) mechanisms [1,2] . 
This phenomenon of resistance to different classes of 
anticancer drugs by cancer cells is termed multidrug 
resistance (MDR). This pervasive and insidious clinical 
problem eventually leads to cancer relapse and death 
among patients. The mechanisms of MDR have been 
intensively studied, although not all mechanisms 
producing MDR have been elucidated. The detailed 
mechanisms that cancer cells utilize or develop to evade 
chemotherapy are complex and have been described in 
detail in several recent reviews [3­5] . One of the most 
important mechanisms underlying MDR is 
overexpression of adenosine triphosphate (ATP)­binding 

cassette (ABC) transporters, which efflux a wide 
spectrum of anticancer drugs against the concentration 
gradient using ATP­driven energy. 

The ABC transporter family, representing the largest 
family of transmembrane proteins, comprises 49 
transporters that are further subdivided into seven 
subfamilies, ABC­A to ­G, based on sequence 
similarities [6] . Of them the major ABC transporters 
involved in MDR development are ABC subfamily B 
member 1 [(ABCB1/P­glycoprotein (P­gp)], ABC 
subfamily G member 2 [ABCG2, also known as breast 
cancer resistance protein (BCRP)/mitoxantrone 
resistance protein (MXR)/placenta­specific ABC protein 
(ABCP)], and ABC subfamily C member 1 
(ABCC1/MRP1) [6,7] . This review will provide in­depth 
details about the MRPs involved in conferring MDR in 
cancer cells. 

The MRP subfamily, the C subset of the ABC 
transporter superfamily, is composed of thirteen 
members, and nine of these are primarily involved in 
MDR (Table 1) [8] . Based on functional characterization, 
localization, and cloning studies, these nine MRPs have 
been established as ATP­dependent efflux transporters 
for endogenous substances and xenobiotics. The other 
three members of the MRP subfamily, namely 
ABCC7/cystic fibrosis transmembrane conductance 
regulator (CFTR), ABCC8/sufonylurea receptor 1 
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MRP 
member 

Alternative 
name [188] 

MRP, multidrug resistance protein; MDR, multidrug resistance; MLP鄄  1, MRP 鄄  like protein 1; ARA, anthracycline resistance associated. The 
question mark (?) indicates that information is not available. 
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(SUR1), and ABCC9/SUR2, are not involved in 
conferring MDR. ABCC7 is a regulated chloride channel, 
whereas ABCC8 and ABCC9 are intracellular ATP 
sensors and regulate the specific K + channel permeability [9] . 
On the basis of structural topology, the nine main MRPs 
can be divided into two groups. One has a typical ABC 
transporter structure and is composed of two membrane 
spanning domains (MSD) with nucleotide binding 
domains (NBD1 and NBD2) in between (Figure 1). 
These can be referred to as 野short MRPs冶 and include 
MRP4, MRP5, MRP8, and MRP9 (ABCC4, 5, 11 and 
13, respectively). The other group, which includes 
MRP1, 2, 3, 6 and 7 (ABCC1, 2, 3, 6 and 7, 
respectively), have an additional MSD (MSD0) and are 
referred as 野long MRPs冶 [10­12] . 
MRP1/ABCC1 

MRP1 was first discovered in an anthracycline­ 
resistant cell line HL60/Adr which was the first major 
ABC transporter other than P­gp. This protein was 
shown to have a molecular weight of 190 kDa [13­16] , and 
Cole  . [10]  subsequently isolated the cDNA from a 
human lung cancer H69AR cell line. The protein was 
named multidrug resistance protein 1 (MRP1). Further 
studies showed MRP1 was present on the basolateral 
surface of the epithelial membrane and was involved in 
ATP­dependent efflux of xenobiotics across the cell 
membrane [17,18]  (Figure 1). 

MRP1 is reported to be widely expressed in various 
tissues including lung, testis, kidney, skeletal and cardiac 
muscles, placenta, and macrophages [11,19] . It has also 

been found to be predominantly localized to blood­tissue 
barriers, such as the basolateral membrane of the 
choroid plexus cells of the blood­cerebrospinal fluid 
barrier, the bronchial epithelium [20,21] , and the apical 
syncytiotrophoblast membrane of the placenta [22] . MRP1 
and P­gp share only 15% amino acid sequence identity 
and posses some distinct features. Structurally, MRP1 
differs from P­gp in that it has an extra MSD, named 
MSD 0 , with five transmembrane (TM) helices, and two 
other MSDs, each having six TM helices with two NBDs 
in between (Figure 1) [23,24] . MSD 0  does not play a role in 
trafficking to the plasma membrane or efflux activity, but 
it is required for efficient retention of MRP1 at the cell 
surface [17] . 

In spite of the modest degree of amino acid 
sequence identity with P­gp, MRP1 has a significant 
overlapping resistance profile with P­gp. The resistance 
profile, characterized with the help of transfected cell 
lines, established that MRP1 confers resistance to a 
wide range of anticancer drugs such as anthracyclines, 
vinca alkaloids, epipodophyllotoxins, camptothecins, 
methotrexate (MTX), saquinavir, and mitoxantrone (MX); 
however, distinct from P­gp, it does not confer resistance 
to taxanes, an important component of the P­gp 
resistance profile (Table 2) [25­30] . Studies with fibroblast 
cell lines from  knockout mice show a similar 
resistance pattern [31­33] , along with modest sensitization to 
taxanes and MX. So far, miniscule data are available 
regarding the involvement of MRP1 in conferring 
resistance against taxanes and MX. Some newer 
classes of targeted anticancer drugs, such as tyrosine 
kinase inhibitors (TKIs, e.g. imatinib), also succumb to 

Amino acid identity 
with MRP1 (%) [63] 

Physiological 
substrate [63] 

Tissue 
distribution [188] 

LTC4, E1S, E217茁  G, folate 
LTC4, E1S, E217茁  G 
LTC4, E217茁  G, cholylglycine 
cAMP, cGMP, LTC4, PGE2, folate, 
urate 
cAMP, cGMP, folate, 2忆鄄  deoxyuridine 
5忆鄄  monophosphate 
LTC4, S鄄  glutathionyl N鄄  
ethylmaleimide 
LTC4, E217茁  G 

DHEAS, LTC4, E217茁  G, cAMP, 
cGMP, cholylglycine, folate 
? 

Ubiquitous 
Liver, kidney, gut 
Liver, adrenals, pancreas, kidney, gut 
Prostate, lung, muscle, pancreas, 
testis, ovary, bladder, gallbladder 
Ubiquitous 

Liver, kidney 

Pancreas, testis, colon, spinal cord, 
tonsils, lung, trachea, skin 
Breast, ovary, lung, testis, kidney, 
liver, colon, and brain 
Breast, testis, brain, skeletal muscle, 
ovary 
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Figure 1. 
Each of these transporters pumps out a variety of endogenous and 

xenobiotic substrates. These transporters are mainly present either apically or basolateraly; however, the localization of MRP7 and MRP9 is still 
unknown. The substrates of MRP9, the last member to be cloned among the MRP subfamily, are still unknown and are open for discussion. 
MRP, multidrug resistance protein. 

MRP1­mediated resistance [33] . 
Though MRP1 has an overlapping resistance 

profile with P­gp, the physiological substrate profile 
differs significantly. While substrates for P­gp are neutral 
or mildly positive lipophilic compounds, membrane 
vesicle transport studies established MRP1 as a 
lipophilic anionic transporter that can transport 
glutathione conjugates, such as leukotriene C4 (LTC4) 
and dinitrophenyl­S­glutathione (DNP­SG) [34,35] . It can also 
transport glucuronate conjugates (e.g., E 2 17β G), 
dianionic bile salts, and sulfate conjugates [36­38] . A study 
using an  knockout mouse model also confirmed 
that LTC4 is indeed a physiological substrate of MRP1 
(Table 1) [38] . 

MRP1 is a basolateral transporter whose activity 
results in the movement of compounds into tissues that 
lie beneath the basement membrane [39] . Transport of 
glutathione and glucuronate conjugates by MRP1 is of 
interest because they represent phase II metabolism and 
cellular detoxification. Efflux pumps involved in cellular 
export have been referred to as GS­X pumps in the case 
of glutathione (GSH) conjugates [40] , and MRP1 has 

widespread expression and glutathione conjugate efflux 
characteristic, which indicates MRP1 as GS­X pump [41] . 
This feature of MRP1 explains the transport capacity of 
MRP1 for MTX, an organic anion, and arsenite, which 
can form complex with GSH molecules [42] . In addition, 
vinca alkaloids and anthracyclines, to which MRP1 
confers resistance, are weak organic bases and do not 
conjugate with acidic ligands in human cells. Hence, 
resistance to these compounds by MRP1 was unclear. 
However, recent studies indicate that these drugs are 
probably co­transported with GSH and that cellular 
depletion of GSH decreases MRP1­mediated resistance 
to these drugs. In addition, similar results have been 
reported in vesicular transport assays of vincristine and 
daunorubicin [4,42­46] . The detailed transport mechanism for 
GSH by MRP1 has been postulated and reviewed by 
Kruh  . [18] . 

Clinically, MRP1 levels are elevated in numerous 
cancer types, such as non­small cell lung cancer 
(NSCLC) [20,47] , breast cancer, and prostate cancer [47] , and 
they are also related to accelerated relapse in breast 
cancer [48] . MRP1 expression has been reported in several 
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E 2  17茁  G袁 LTC4袁 
paclitaxel, docetaxel, vincristine, 

epothilone鄄  B 
Bilirubin conjugates, 

LTC4, LTE4, 
GSH, MTX, SN鄄  38, 

vinca alkaloids, cisplatin 

Taurocholate, cholate, 
E 2  17茁  G, LTC4, MTX, 
teniposide, etoposide 

LTC4, E 2  17茁  G, folic acid 
biliribin, GSH conjugates, anthracyclines, 

MTX, cisplatin, vinca alkaloids 

cAMP, cGMP, GSH 
5鄄  FU, 6鄄  MP, 

MTX, PMEA, cisplatin 

LTC4, DNP鄄  SG DOX 
etoposide, teniposide, 

cisplatin 
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solid and hematological cancers. Negative correlation 
between MRP1 expression and response to  treatment 
has also been found. Such studies have been reviewed 
in detail elsewhere [11,18,49,50] . However,  there is no definite 
consensus drawn with respect to the role of MRP1 in 
acquired resistance or in prognosis. 

MRP2/ABCC2 
Mrp2, the second member of the MRP subfamily of 

ABC transporter, was first cloned from rat hepatocyte 
and was named as a hepatocellular canalicular multiple 
organic anion transporter (cMOAT) [51] . MRP2 shares 49% 
amino acid identity with MRP1 but it has a different 
expression pattern. While MRP1 is widely expressed in 
many tissues, MRP2 is mainly expressed in the apical 
(canalicular) hepatocyte plasma membrane, small 
intestine, and renal proximal tubules (Table 1) [52­54] . 
mRNA is present in the peripheral nerves, gallbladder, 
placental trophoblasts, and CD4 +  lymphocytes [22,55,56] . 

Because MRP2 handles a range of conjugates 
similar to that of MRP1, it was believed to confer 
resistance to similar anticancer drugs as well. This 
hypothesis was formulated based on an experiment in 
which an antisense  RNA construct was introduced 
into human hepatocellular carcinoma HepG2 cells, 
resulting in enhanced sensitivity to several anticancer 

drugs such as cisplatin, vincristine, doxorubicin, and the 
camptothecin derivatives CPT­11 and SN­38 [57] . Evers 
. [58]  later showed that MRP2 could transport vinblastine 

in polarized Madin Darby canine kidney epithelial 
(MDCK) cells, suggesting a potential role for MRP2 in 
vinblastine resistance. In addition,  ­transfected 
cells also conferred resistance to MTX [59] , cisplatin, 
etoposide, doxorubicin, and epirubicin [60] . The resistance 
capacity of MRP2 to cisplatin is quite interesting because 
MRP1 does not confer resistance to cisplatin (Table 2) [25,27] . 
However, this phenomenon is convincible, as cisplatin is 
well known to form toxic GSH complexes in the cells [61] . 

MRP2 and MRP1 have very similar substrate 
specificities and mediate transport of some hydrophobic 
compounds in the presence of GSH, though with 
different affinities [62] . MRP2 has a transport facility for 
organic anions including sulfate, glucuronide, and GSH 
conjugates (Table 1) [63­65] . Furthermore, MRP2 is involved 
in the biliary elimination of certain endogenous 
conjugates, such as LTC4 and conjugated bilirubins [63,65] . 
Though these conjugated metabolic complexes are 
thought to be detoxified, their accumulation may result in 
reformation of active compounds either spontaneously or 
by enzymatic hydrolysis. 

Mutations within human  result in an  inactive 
MRP2 protein in the canalicular membrane as observed 
in Dubin­Johnson syndrome (DJS), a hereditary disorder 

Anticancer drugs MRP8 

Adapted from Tiwari et al. [49] . 野+冶 indicates that the drug is a substrate for the particular ABC transporter. 野-冶 indicates that the drug is not 
a substrate for the particular ABC transporter. Other footnotes as in Table 1. 

Antimetabolites 

Antibiotics 

Platinum drug 
Taxanes 

Vinca alkaloids 

Epipodophyllotoxins 

Camptothecins 

Tyrosine kinase 
inhibitors 
Miscellaneous 

- 
- 
+ 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

MRP7 MRP6 MRP5 MRP4 MRP3 MRP2 MRP1 MRP9 

6鄄  mercaptopurine 
6鄄  thioguanine 
5鄄  fluorouracil 
Methotrexate 
Daunorubicine 
Doxorubicine 
Epirubicine 
Actinomycine D 
Mitoxantrone 
Cisplatin 
Paclitaxel 
Docetaxel 
Vincristine 
Vinblastine 
Etoposide 
Teniposide 
Irinotecan 
Topotecan 
SN鄄  38 
Imatinib 
Gefitinib 
Epothilone B 

- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
+ 
+ 
+ 
+ 
- 
- 
- 
- 
- 
- 
- 
+ 

- 
- 
- 
- 
+ 
+ 
+ 
+ 
- 
+ 
- 
- 
- 
- 
+ 
+ 
- 
- 
- 
- 
- 
- 

+ 
+ 
+ 
+ 
- 
- 
- 
- 
- 
+ 
- 
- 
- 
- 
- 
- 
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with modest elevation of serum conjugated albumin [52,66,67] . 
Eisai hyperbilirubinuria rats (EHBRs) and Groninger 
Yellow transporter rat strains are deficient in  and 
are perfect models to study human DJS [67­69] . 

MRP2 expression has been reported in several 
human tumor cell lines of lung, gastric, renal, and 
colorectal cancers [70] . Moreover, few cisplatin­ and 
doxorubicin­resistant cell lines have shown 
overexpression of  mRNA [55,71] . Recent reports by 
Korita  . [72]  suggest that efficacy of cisplatin­based 
chemotherapy in patients with hepatocellular carcinoma 
depends upon MRP2 expression level. 

MRP3/ABCC3 
The MRP3 protein localizes in the basolateral 

membrane domain of polarized cells. It was first 
identified in human and rat hepatocytes, mediating efflux 
of organic anions into sinusoidal blood. Among the 
MRPs with known coding sequences, MRP3 shares the 
highest degree of structural similarity with MRP1 (58% 
amino acid identity) [73,74] . MRP3 expression is found in 
adrenal glands, kidney, small intestine, colon, pancreas, 
and gallbladder, and with a lower expression in the 
lungs, spleen, stomach, and tonsils [55,75­77] . 

Although MRP3 has high structural similarity with 
MRP1, the affinity of MRP3 for conjugates is 
considerably lower than that of MRP1. Its drug 
resistance capabilities are also as extensive as neither 
MRP1 nor MRP2. The narrow and limited drug 
resistance profile of MRP3 to epipodophyllotoxins, 
vincristine, and MTX was reported previously in studies 
using  ­transfected cells  [74,78] . Resistance potency to 
etoposide and vincristine is quite low compared to MRP1 
(Table 2). In contrast to MRP1 and MRP2, MRP3 does 
not need GSH to transport natural products  [79] . In 
addition, Kool  . [74]  reported an unchanged level of 
GSH in  ­transfected cells. These findings may 
explain why MRP3 has limited resistance properties要 
because it has a lower affinity for amphipathic anions 
and GSH. In recent reports, significant accumulation of 
etoposide glucuronide in the liver in  mice 
was described, but neither single knockout showed this 
phenomenon, indicating an alternative pathway provided 
by Mrp2 and Mrp3 for hepatic elimination of etoposide 
glucuronide [80] . 

Elevated Mrp3 expression has been reported in 
cholestatic rat liver [69,75]  and cholestatic human liver [81] , as 
well as in patients with DJS who lack functional MRP2 in 
the liver canalicular membranes. This suggests that 
basolateral MRP3 expression in hepatocytes may allow 
efflux of organic anions from the liver into the blood upon 
blockade of bile secretion, and that MRP3 is a back­up 
system for amphipathic anions in cholestatic conditions. 
Another study revealed Mrp3 as an alternative exporter 

of bile acids and glucuronides from  cholestatic 
hepatocytes, but the pump was not involved  in the 
enterohepatic circulation of bile acids in  knockout 
mice models [82] . Membrane vesicles, prepared from  ­ 
transfected HEK293 cells, were reported to transport 
LTC4, DNP­SG, and E 2 17β G, prototypical MRP1 
substrates, with low affinity [83] . MRP3 confers resistance 
to and transport capacity for MTX [74,84] . Increased 
expression of MRP3 has been reported in human 
hepatocellular carcinomas [85] , primary ovarian cancer [86] , 
and adult acute lymphoblastic leukemia (ALL) [87] . 

MRP4/ABCC4 
MRP4, the fourth member of the MRP subfamily of 

ABC transporters [88,89] , is one of the shortest members, 
encoding 1325 amino acids. The gene was discovered in 
1996 in a T­lymphoid cell line [74] , and it is located on 
chromosome 13q32.1 [55,88,90­92] . Structurally, MRP4 is 
composed of a typical ABC transporter core consisting of 
two NBDs and two MSDs,  each MSD with six TMDs 
(Figure 1) [11,93,94] . In addition, the TM6 subunit of MRP4 
was found to be conserved among all species [11] . 

With its dual localizations in the apical (the renal 
proximal tubule cells and the luminal side of brain 
capillary endothelium) and basolateral membranes (the 
prostate tubuloacinar cells, hepatocytes, and choroid 
plexus epithelium), MRP4 differs from other MRPs that 
are either located apically or basolaterally [95] . A sequence­ 
based tag against human  transcript revealed that 

mRNA is present in all tissues except the bone 
marrow, thymus, vascular endothelium, and soft tissues [93] . 
MRP4 can pump out diverse endogenous and xenobiotic 
organic anionic compounds along with their phase II 
metabloites, thereby conferring resistance to various 
cytotoxic compounds and, in turn, protecting crucial 
tissues against them [11,93] . 

MRP4 has a wide range of substrate specificity, 
including antiviral (adefovir, tenofovir, ganciclovir), 
antibiotic (chephalosporins), cardiovascular (loop 
diuretics, thiazides, angiotensin II receptor antagonists), 
and cytotoxic drugs [MTX, 6­thioguanine (6­TG), 
6­mercaptopurine (6­MP ) , topotecan ]  [ 96­98 ] . Cancer 
cells selected with a nucleotide analog, 9­ (2­ 
phosphonylmethoxy­ethyl) adenine (PMEA), were found 
to overexpress MRP4 (Table 2) [89] . Subsequently, MRP4 
was found to confer resistance to a wide range of 
base, nucleotide, and nucleoside analogs [99­104] . Plant 
polyphenols, resveratrol, and quercetin are newer 
additions to the list of substrates for this MRP [105] . In 
addition, it was seen that with the established nucleoside 
substrates of MRP4, such as 6­TG and PMEA, only the 
monophosphate form of the nucleoside analogues and 
not the diphosphate or triphosphate forms are 
transported by the pump. This could be due to the fact that 
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nucleoside monophosphates are organic anions [103,104] . 
Uptake studies performed on MRP4­enriched 

isolated membrane vesicles and efflux experiments on 
­transfected cells have made it possible to identify 

various physiological substrates for the transporter [88] . 
Among the first substrates identified are cAMP and 
cGMP (Table 1) [101] ; however, cAMP and cGMP levels 
remain relatively unaffected on a whole cell level [92,106] . 
Still, evidence suggests that cyclic nucleotide signaling is 
highly compartmentalized and that MRP4 was 
responsible for their regulation at a microdomain level 
and not at a whole cell level [95] . The correlation of MRP4 
with cyclic nucleotides was studied in the gut epithelium, 
wherein a functional and physical coupling of MRP4 with 
a CFTR chloride channel was observed via a scaffolding 
protein. This resulted in an efflux of cAMP via the MRP4 
transporter [95] . This finding was interesting because 
mice were more susceptible to CFTR­mediated 
diarrhea [95] . In addition, because high levels of MRP4 
were found in the apical membrane of the proximal 
tubules in the nephron, MRP4 could possibly play a 
critical role of regulating the cAMP and cGMP levels in 
urine, in turn affecting the levels of water and salt 
homeostasis. However, there are no direct data to 
support this hypothesis  [106,107] . Furthermore, 
data are also not promising, with up­ and down­ 
regulation of MRP4 in rats showing no correlation with 
the excretion rates of nucleotides [108,109] . Another study 
involving MRP4 inside­out membrane vesicles showed 
that MRP4 is responsible for efflux of second messenger 
cGMP from erythrocytes [101,110­114] . However, there was no 

study to support these findings, hence the 
physiological relevance of cGMP efflux by MRP4 from 
erythrocytes is questionable [104,110,111] . Nevertheless, the 
MRP4 membrane vesicle study showed that MRP4 could 
limit base/nucleoside analog accumulation in 
erythrocytes, which could affect the ability of the 
erythrocytes to function as carriers of xenobiotics like 
6­TG and 6­MP [115] . 

Through the same MRP4 inside­out vesicle­ 
mediated uptake studies, bile salts and urates (products 
of human purine) are identified to be physiological 
substrates of MRP4 [98,116,117] . However, very low levels of 
bile salt and urate transport are observed with MRP4, 
making generation of  knockout mice necessary for 
further analysis of their transport. It was reported that 
fernesol X­activated receptor (  )­knockout mice, which 
had lower levels of the major canalicular bile salt export 
pump (BSEP/ABCB11), had increased  mRNA 
levels [118] . Later on, similar results were reported in rats 
where relatively low levels of Mrp4 protein in the liver 
was increased significantly under hepatic stress [109,119,120] . 
In addition to its role in the liver, MRP4 also significantly 
impacts various other tissues where it is expressed, such 
as vascular smooth muscle, intestine, and blood cells [119] . 

MRP4 is also known to transport leukotrienes and 
prostanoids [119] .  Apart from the up­regulation of MRP4 
through long­term exposure to nucleoside­based drugs, 
MRP4 is also reported to be up­regulated in patients with 
neuroblastoma. However, no conclusive evidence has 
been provided to link drug resistance with MRP4 activity 
to date [120­122] . 

MRP5/ABCC5 
MRP5 is encoded by a gene located on the 3q27 

chromosome and contains 1437 amino acids [123] . Similar 
to MRP4, the identification of MRP5 was mainly based 
on expression sequence tag data analysis followed by 
cDNA fragment cloning [55,90] . MRP5 is widely expressed, 
with the highest levels occurring in the heart, brain, 
lungs, and skeletal muscles [55,124,125] . Structurally, MRP5 
resembles MRP4 in that it lacks MSD 0 . The two proteins 
differ at the NH2  terminus,  where MRP5 has 95 extra 
amino acids compare to 1325 amino acid of MRP4 [123­125] . 
The function of this additional segment has still not been 
elucidated [123] . Membrane localization of MRP5 in  ­ 
transfected polarized MDCKII cells was found to be in 
the basolateral membrane [126] . However, the transporter 
was located intracellularly, with only minor expression in 
the plasma membrane, in HEK293 cells [126] . Similar to 
MRP4, MRP5 can also transport cGMP and thus reduce 
its intracellular availability. Because of its widespread 
expression, MRP5 may affect the nitric oxide/cGMP 
pathway, which could ultimately lead to irregularities in 
muscle contractions [127,128] . Indeed, expression of MRP5 in 
the heart affected the muscle tone and contractility of 
cardiomyocytes [129,130] . Due to the abundant presence of 
Mrp5 in the brain pyramidal neurones and astrocytes, 
which are the centers for cell  signaling in the brain, it 
reduces the intracellular cGMP levels, which results in 
inhibition of the Na + /H +  exchanger in rat astrocytes, 
leading to a decrease intracellular pH value  [131­133] . MRP5 
expression in the capillary endothelial cells of various 
tissues such as the heart and brain has protective and 
barrier functions [129,134] . In addition, MRP5 expression was 
reported in the basal membrane of syncytiotrophoblasts 
and around the fetus . Given that fact of its presence 
in the monocytes obtained from the  peripheral whole 
blood cells in leukemic patients , MRP5 may play a 
role in the development of resistance to cancer 
chemotherapy [135] . 

PMEA, one of the important components of the 
antiretroviral therapy, is an acyclic nucleoside prototype, 
which is a potent inhibitor of HIV reverse transcriptase. 
To investigate the mechanism of resistance to antiviral 
drugs, Robbins  . [136]  developed a PMEA­resistant cell 
line and found that resistance to PMEA was mainly  due 
to an increase in drug efflux, suggesting with a high 
possibility that a transporter was involved in this process. 
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Schuetz  . [89]  followed up this work and found ABC 
transporters, mainly MRP4, to be responsible for the 
efflux. Because MRP4 and MRP5 have structural 
similarities, Wijnholds  . [126]  investigated if they share 
similar substrates, and through an assay involving a 
radiolabeled hydrophobic PMEA precursor, they 
discovered that MRP5 serves as an active transporter of 
the drug. Subsequently, the same group demonstrated 
via similar studies that MRP5 confers resistance to 6­MP 
and 6­TG and their analogs [126] , but these results were not 
reproducible [103] . 5­Flourouracil (5­FU) is an antimetabolite 
that very closely resembles nucleosides, making it 
possible that 5­FU could be a substrate of MRP5. This 
hypothesis was later confirmed [137] , making 5­FU the only 
antimetabolite to be transported by MRP5. However, 
these results must be further validated to reduce 
controversy [126] . 

Physiologically, MRP5 is known to transport cAMP 
and cGMP, as was first demonstrated by Jedlitschky 
. [138]  who used inside­out membrane vesicles obtained 

from human erythrocytes to show that MRP5 had a 
higher affinity for cGMP than that for cAMP (Table 1) [138] . 
cGMP transport via MRP5 was blocked by inhibitors 
such as probenecid, zaprinast, trequinsin, and sildenafil, 
indicating that the transport was due to an amphiphilic 
anionic transporter [89,111,139] . This is important because 
cGMP is the main mediator of nitric oxide (NO) and 
natriuretic peptides­mediated signaling, which control 
muscle relaxation, neutrophil degranulation, and platelet 
aggregation [140] . When cGMP competes with other 
substrates of MRP5 for transport, the half­maximal 
concentration of cGMP was 1 mmol/L, which was high 
for cellular levels [103] . Hence, researchers believe MRP5 
to be an overflow pump with a very low affinity for 
cGMP, decreasing the levels of cGMP when it is overly 
synthesized [106] . Inhibitors for the pump have been 
previously reported by Jedlitschky  . [138] , but the 
results seemed controversial because other laboratories 
failed to replicate these results. 

MRP6/ABCC6 
MRP6 consists of three MSDs with five, six, and six 

TMDs, respectively, as well as two conserved NBDs. 
Due to its structural similarities with MRP1, it has been 
classified among the C subfamily of the ABC 
transporters. MRP1 and MRP6 both share almost 41% 
structural similarity [141,142] .  was first cloned in rat 
liver [69] , and later it was cloned in humans and mice [143­145] . 
Mutations within the  gene have been associated 
with genetic abnormalities of the autosomally inherited 
connective tissue disorder called pseudoxanthoma 
elasticum (PXE). To date, 90 distinct disease­causing 
mutations have been identified and reported in 31 exons 
of  [146­152] . 

PXE has been characterized by dystrophic elastic 
fibers in the skin, retina, and large blood vessels, leading 
to baggy skin, loss of vision, and calcification of blood 
vessels [146,153] . The association of MRP6 with this disorder 
was unexpected because MRP6 was found to be 
localized mainly in the liver and kidney and with low and 
even undetectable levels in other tissues [141,143,154,155] . The 
localization of MRP6 was previously quite controversial, 
as rat Mrp6 was localized on the basolateral and 
canalicular plasma membrane of hepatocytes [144] whereas 
human MRP6 was present only on the basolateral 
membrane of hepatocytes [156] . Human and mouse kidney 
proximal tubules in  ­transfected MDCKII epithelial 
cells showed a basolateral manifestation of MRP6 [145,157] . 
These findings provided new insight into the role of 
MRP6 in PXE, indicating that the disease could be a 
result of the absence of a substance that is normally 
excreted from the liver or kidney in the blood and is 
involved in tissue homeostasis [158] . Human 
transcripts were later detected in the skin, blood vessels, 
and retina with the help of reverse transcription­PCR. 
This was also confirmed via mouse immunohistochemical 
experiments wherein  transcripts were found to be 
expressed in the skin, retina, and aorta [145,146] . 

Substrate analysis studies of MRP6 showed that it is 
a lipophilic anionic pump, and that the substrates of 
MRP6 include drugs such as cyclopentapeptide 
BQ123 [144] . Studies with  ­transfected Chinese 
hamster ovary (CHO) cell lines indicated that MRP6 
functions as a drug efflux pump [159]  and that MRP6 is 
capable of conferring very low levels of cellular 
resistance to etoposide and teniposide. In addition, 
studies suggest that MRP6 confers low levels of 
resistance to anthracyclines and cisplatin [159] . 

MRP6 can transport GSH conjugates such as LTC4 
and n­ethylmaleimide­glutathione; however, it failed to pump 
out any glucuronate conjugates such as E2 17茁  G  [159,160] . 
These results indicate that MRP6 is  a lipophilic anionic 
transporter and also that mutations involved in PXE may 
lead to a loss in activity in transporting these substrates. 

MRP7/ABCC10 
Similar to MRP1, MRP2, MRP3, and MRP6, MRP7 

has three MSDs and two NBDs (Figure 1). Hopper  . [161] 
used reverse transcription­PCR to analyze 
transcript expression and reported a low level in the skin, 
testis, spleen, stomach, colon, kidney, heart, and brain [161] . 
However, another group discovered that  transcript 
expression was highest in the pancreas, followed by the 
liver, placenta, lungs, kidneys, brain, ovaries, lymph 
nodes, spleen, heart, leukocytes, and colon [162] . Kao 
. [163]  discovered a  splice variant of MRP7 that is 

truncated at its NH 2  terminus and has a 15­amino acid 
deletion between MSD2 and NBD2. MRP7 is a lipophilic 
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anion transporter  whose physiological functions are so 
far unknown.  However, one group found a potential role 
in the suppression of natural killer (NK)­mediated lysis [164] . 
To date, factors regulating MRP7 expression are 
unknown. However, MRP7 induction was found in 
doxorubicin­treated MCF7 cells [162] . 

Following the discovery of MRP7, Hopper­Borge 
. [97]  analyzed the drug resistance profile of MRP7 using 

­transfected HEK293 cells. Similar to other MRPs, 
MRP7 can also confer resistance to several natural 
product anticancer drugs. A high level of resistance was 
observed against docetaxel, a  microtubule stabilizing 
agent, whereas a moderate level of resistance was 
observed against paclitaxel [97] . In addition, MRP7 also 
confers resistance to microtubule destabilizing vinca 
alkaloids such as vincristine and vinblastine [97] . Recently, 
it was discovered that MRP7 might also be associated 
with vinorelbine resistance in NSCLC [165,166] . Resistance to 
taxanes by MRP7 is unique, as no other MRP member 
confers resistance to paclitaxel [166] . In addition, Hopper­ 
Borge  . [167]  found that MRP7 can also confer 
resistance to nucleoside­based agents such as the 
anticancer drugs (Ara­C and gemcitabine) and the 
antiviral drugs (2',3'­dideoxycytidine and PMEA)  [167] . 
Another microtubule­stabilizing agent, epothilone B, was 
also identified as a substrate for MRP7 (Table 2) in the 
same study [167] . In a separate study, ectopic expression 
of Mrp7 was observed in mouse embryo fibroblasts 
deficient in P­gp and Mrp1 [167] . The same group also 
reported that MRP7 has a broad resistance profile for 
natural product agents, conferring high levels of 
resistance to docetaxel (46­fold), paclitaxel (116­fold), 
SN­38 (65­fold), daunorubicin (7.5­fold), etoposide 
(11­fold), and vincristine (56­fold)  [167] . In addition, 
buthionine sulfoximine did not have any effect on 
MRP7­mediated resistance to docetaxel or Ara­C, 
suggesting that MRP7 transport does not involve GSH [167] . 
In an  study, mouse fibroblast cells from 
knockout mice were sensitive to several natural 
anticancer drugs such as docetaxel, paclitaxel, 
vincristine, and Ara­C, confirming the previously 
characterized resistance profile of MRP7 [97] . These cells 
also showed increased levels of drug accumulation 
relative to wild­type controls. In the same study, 
knockout mice exhibited higher lethality associated 
neutropenia and marked bone marrow toxicity upon 
treatment with paclitaxel, indicating that Mrp7 is 
indispensable for health and viability. Taken together, 
these results show that MRP7 is an endogenous 
resistance factor for taxanes, vinca alkaloid anticancer 
drugs, and nucleoside analogs [168] . In contrast, 
taccalonolides, another class of natural product 
microtubule stabilizers, do not succumb to P­gp­  or 
MRP7­mediated resistance [169] . Studies investigating 
MRP7 expression in lung, breast, and ovarian tumor 

specimens would be interesting because this protein 
confers resistance to paclitaxel and vincristine, which are 
the mainstays of treatment for these particular cancers. 

In a transport study involving membrane vesicles 
from  ­transfected HEK293 cells, E 2 17茁  G, a 
prototypical substrate of many MRPs, was identified as a 
substrate of  , with a  m  value of 57.8 滋  mol/L. As 
E2 17茁  G is a glucuronide conjugate, MRP7 might be 
involved in phase III detoxification. Chen  . [170]  found 
that MRP7 had modest activity in transporting LTC4 but 
did not transport glycocholic acid, taurocholic acid, MTX, 
folic acid, cAMP, or cGMP, which are substrates of other 
MRP family members (Table 1). They also determined 
that the biochemical features of MRP7 matched the core 
features of other MRPs capable of transporting lipophilic 
anions, though MRP7 had limited substrate selectivity [170] . 
Furthermore, they observed that the transport of E 2 17茁  G 
was competitively  inhibited by amphiphiles, such as 
LTC4, glycolithocholate 3­sulfate, and MK571, as well as 
lipophilic agents, such as cyclosporine A  [170] . This 
supports the notion that the MRP7 substrate binding 
pocket has sites for anionic and lipophilic moieties. 

MRP7 expression has been reported in salivary 
gland adenocarcinoma and NSCLC [165,171,172] . In addition, 

transcripts have been detected in the HepG2 liver 
cancer cell line and two prostate cancer cell lines 
(CWR22Rv1 and TSU­PR1) [173] , as well as in breast, 
lung, colon, prostate, ovarian, and pancreatic tumor 
specimens [162] . However, information about MRP7 
expression in tumors is still limited. 

MRP8/ABCC11 
MRP8 is a newly found member of the MRP  family. 

The  gene contains 29 exons and encodes a 
protein predicted to contain 1382 amino acids [174,175]  that is 
structurally similar to MRP4 and MRP5, with 2 MSDs, 2 
NBDs, and 12 TMDs. Sequence comparisons done 
between MRP8 and the other family members indicate 
its close resemblance with MRP5 [174,176] . Bera  . [174] 

was the first to discover  with the help of a gene 
prediction program and expressed sequence tag (EST) 
database mining. MRP8 is widely expressed within the 
human body, with the highest levels occurring in the 
liver, brain, placenta, breasts, and testes (Table 1) [174,175] . 
This widespread expression pattern is purportedly due to 
MRP8 spliceoforms [175] . MRP8 is known to play a role in 
the human central and the peripheral nervous system 
such that the expression of MRP8 is associated with the 
efflux of  dehydroepiandrosterone 3­sulfate (DHEAS), a 
neuromodulatory steroid [177] . 

The resistance profile of MRP8 was determined 
using pig kidney epithelial (LLC­PK1) cells, which 
ectopically expressed the pump. Studies done using 
inside­out membrane vesicles showed that MRP8 does 
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not share the same substrates as MRP5, despite their 
structural  similarities. Instead, MRP8 has a similar 
substrate specificity to MRP4, as both transporters can 
pump DHEAS, estrone­3­sulfate (E 1 S), folates, 
monoanionic bile acids, and GSH and glucuronate 
conjugates [96,100,101] . Nevertheless, there are some marked 
differences among the two transporters. MRP4 is strictly 
dependent upon GSH and can transport prostaglandins, 
PGE1, and PGE2 [116,178] . In contrast,  MRP8 transports 
monoanionic bile acids in the absence of GSH, and it is 
unable to transport PGE1 and PGE2 [179] . MRP8 can 
confer resistance to PMEA, 2爷,3爷­dideoxycytidine, 5­FU, 
MTX, and Ara­C (Table 2) [180] . Transport analysis using 
MRP8 membrane vesicles showed that MRP8 can 
transport a wide range of compounds, including 
nucleotide analogs; lipophilic anions such as natural and 
synthetic glutathione conjugates LTC4 and DNP­SG; 
E 2 17茁  G; monoanionic bile acids glycocholate and 
taurocholate; steroid sulfates such as DHEAS and E1 S; 
folic acid; and MTX (Table 1)  [179] . Under basal and 
stimulated conditions, expression of MRP8 resulted in 
decreased intracellular concentrations and increased 
extracellular concentration of cAMP and cGMP [177] . 

The results from various studies describing the 
substrates and expression pattern of MRP8 suggest that 
it could play a major role in maintaining the normal body 
functions. With its ability to transport monoanionic bile 
acids and its expression in the liver, MRP8 may affect 
homeostasis within hepatocytes [179] . In addition, with the 
ability to transport glucuronidated and sulfated steroids 
like E2 17茁  G, DHEAS, and E1 S, and with its expression in 
areas such as the breasts, testes, and prostate, MRP8 
could play a crucial role in determining how these 
hormone­regulated tissues would respond to sex 
steroids [179] . Clinically, MRP8 is reported to be highly 
expressed in breast cancer patients [174] . In addition, 
overexpression of MRP8 is reportedly significantly related 
to lower overall survival in acute myelogenous leukemia 
(AML) patients, implicating it as a possible biomarker [181] ; 
however, MRP8 expression in normal tissues still needs 
to be established. Indeed, more studies are required to 
establish a link between MRP8 expression and the 
possible clinical significance in MDR [181] . 

MRP9/ABCC12 
MRP9 is the last member within the MRP family to 

be cloned. There will likely be no further cloning because 
the sequence is complete, and the last member of the 
family, ABCC13, is reported to be a pseudogene [182­184] . 
MRP9 is located in close proximity to MRP8  in a 
head­to­tail orientation at chromosomal region 16q12.1 [184] . 
This locus is implicated as a potential candidate gene(s) 
for paroxysmal kinesigenic  choreoathetosis (PKC), a 
disorder involving abnormal involuntary movements  [184] 

and infantile convulsions with paroxysmal 
choreoathetosis (ICCA) [91,176] . The MRP9 sequence, which 
is similar to MRP8 sequence, shares 44% identity and 
55% sequence similarity with MRP5 sequence  [125,185] . 
MRP9 also contains 2 MSD and 12 TM helices; however, 
some researchers have suggested that it has only 
1 NBD and 8 TM helices [185] .  encodes a protein 
of 1359 amino acids that does not undergo N­ 
glycosylation [185] . According to reports, there are two 

transcripts, one 4.5 kb in length that is expressed 
in breast cancer, normal breasts, and the testis, and the 
other 1.3 kb in length that is expressed in the brain, 
skeletal muscle, and ovaries [185] . However, a recent study 
showed only full­length Mrp9 in testicular germ cells and 
mouse  sperm [186] . No report has been published about 
the substrate profile of MRP9 [185] . Using membrane 
vesicles prepared from insect Sf9 cells, no transport was 
observed for cGMP, cAMP, MTX, GSH, glycocholic acid, 
taurocholic acid, DHEAS, or E2 17茁  G [187] . 

Conclusions 
MRPs have variable tissue distributions, cellular 

localizations, and pharmacological and physiological 
functions (Table 1). The uniqueness of MRPs is that they 
confer resistance to a range of anticancer drugs that is 
broader than the range of drugs handled by P­gp, the 
first and the most widely studied ABC transporter. MRP1 
and MRP2 confer resistance to natural anticancer drugs 
such as vinca alkaloids and MTX (antifolate), which are 
hydrophobic. MRP3 confers resistance to MTX and 
epipodophylotoxins. The most intriguing feature of MRPs 
1­3 is that they provide a transport facility for 
compounds (drugs, xenobiotics, or physiological 
substrates) conjugated with GSH, glucuronide or sulfate. 
MRP4 and MRP5 confer resistance to nucleobase and 
nucleoside analogs such as PMEA, 6­MP, and 6­TG. 
MRP8 confers resistance to PMEA but not to 6­MP or 
6­TG. MRP7 confers resistance to almost every category 
of drugs, ranging from natural anticancer drugs to 
nucleoside analogs and epothilone B. Extensive studies 
performed on these transporters revealed that they are 
expressed in tumor tissues. This makes them a prime 
suspect in the development of MDR apart from P­gp and 
BCRP. However, there are still insufficient data from 
which to derive a definite conclusion about MRP 
expression and the development of clinical MDR. Further 
studies are required to confirm the role of individual MRP 
members and target them to confront MDR. 
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Abstract 
Breast cancer resistance protein (BCRP)/ATP鄄  binding cassette subfamily G member 2 (ABCG2) is an 

ATP鄄  binding cassette (ABC) transporter identified as a molecular cause of multidrug resistance (MDR) in 
diverse cancer cells. BCRP physiologically functions as a part of a self鄄  defense mechanism for the 
organism; it enhances elimination of toxic xenobiotic substances and harmful agents in the gut and biliary 
tract, as well as through the blood鄄  brain, placental, and possibly blood鄄  testis barriers. BCRP recognizes 
and transports numerous anticancer drugs including conventional chemotherapeutic and targeted small 
therapeutic molecules relatively new in clinical use. Thus, BCRP expression in cancer cells directly 
causes MDR by active efflux of anticancer drugs. Because BCRP is also known to be a stem cell marker, 
its expression in cancer cells could be a manifestation of metabolic and signaling pathways that confer 
multiple mechanisms of drug resistance, self鄄  renewal (stemness), and invasiveness (aggressiveness), and 
thereby impart a poor prognosis. Therefore, blocking BCRP鄄  mediated active efflux may provide a 
therapeutic benefit for cancers. Delineating the precise molecular mechanisms for BCRP gene expression 
may lead to identification of a novel molecular target to modulate BCRP鄄  mediated MDR. Current evidence 
suggests that BCRP gene transcription is regulated by a number of trans鄄  acting elements including 
hypoxia inducible factor 1琢  , estrogen receptor, and peroxisome proliferator鄄  activated receptor. 
Furthermore, alternative promoter usage, demethylation of the BCRP promoter, and histone modification 
are likely associated with drug鄄  induced BCRP overexpression in cancer cells. Finally, PI3K/AKT signaling 
may play a critical role in modulating BCRP function under a variety of conditions. These biological events 
seem involved in a complicated manner. Untangling the events would be an essential first step to 
developing a method to modulate BCRP function to aid patients with cancer. This review will present a 
synopsis of the impact of BCRP鄄  mediated MDR in cancer cells, and the molecular mechanisms of 
acquired MDR currently postulated in a variety of human cancers. 

Key words BCRP, ABCG2, multidrug resistance (MDR), transporter, gene expression, tyrosine kinase inhibitors, 
cancer stem cells 

Review 

Multidrug resistance (MDR) is a phenomenon in 
which cancer cells simultaneously become resistant to 

structurally unrelated chemotherapeutic agents when 
exposed to a single chemotherapeutic drug. The 
development of MDR in the course of chemotherapy has 
been considered as a major obstacle in cancer 
treatment. For the last three decades, the biological 
causes underlying MDR have been extensively studied 
and attributed to diverse molecular mechanisms. Active 
efflux mediated by drug efflux pumps has been described 
in a wide variety of cancer cells since  , which 
encodes the membrane transport protein P­glycoprotein 
(P­gp), was isolated from KB cells selected with 
vinblastine in 1986 [1] . P­gp was the first human 
ATP­binding cassette (ABC) transporter protein to be 
identified and is classified as the first  member of the B 
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