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Adults with attention-deficit/hyperactivity disorder (ADHD) often display executive function impairments,
particularly in inhibitory control. The antisaccade task, which measures inhibitory control, requires one to
suppress an automatic prosaccade toward a salient visual stimulus and voluntarily make an antisaccade in
the opposite direction. ADHD patients not only have longer saccadic reaction times, but also make more di-
rection errors (i.e., a prosaccade was executed toward the stimulus) during antisaccade trials. These deficits
may stem from pathology in several brain areas that are important for executive control. Using functional
MRI with a rapid event-related design, adults with combined subtype of ADHD (coexistence of attention
and hyperactivity problems), who abstained from taking stimulant medication 20 h prior to experiment
onset, and age-match controls performed pro- and antisaccade trials that were interleaved with pro- and
anti-catch trials (i.e., instruction was presented but no target appeared, requiring no response). This method
allowed us to examine brain activation patterns when participants either prepared (during instruction) or
executed (after target appearance) correct pro or antisaccades. Behaviorally, ADHD adults displayed several
antisaccade deficits, including longer and more variable reaction times and more direction errors, but saccade
metrics (i.e., duration, velocity, and amplitude) were normal. When preparing to execute an antisaccade,
ADHD adults showed less activation in frontal, supplementary, and parietal eye fields, compared to controls.
However, activation in these areas was normal in the ADHD group during the execution of a correct
antisaccade. Interestingly, unlike controls, adults with ADHD produced greater activation than controls in
dorsolateral prefrontal cortex during antisaccade execution, perhaps as part of compensatory mechanisms
to optimize antisaccade production. Overall, these data suggest that the saccade deficits observed in adults
with ADHD do not result from an inability to execute a correct antisaccade but rather the failure to properly
prepare (i.e., form the appropriate task set) for the antisaccade trial. The data support the view that the exec-
utive impairments, including inhibitory control, in ADHD adults are related to poor response preparation.

© 2012 The Authors. Published by Elsevier Inc. All rights reserved.
1. Introduction

Attention-deficit/hyperactivity disorder (ADHD) is one of the most
common psychiatric disorders of childhood. Approximately 50–60% of
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youths diagnosedwith ADHDhave symptoms that persist into adulthood
(Barkley et al., 2002), and recent epidemiological data indicate that ADHD
affects approximately 2–4% of adults (Kessler et al., 2006). ADHD is
characterized by three core symptoms — inattention, hyperactivity,
and impulsivity. These define three subtypes of ADHD: 1) inattentive;
2) hyperactive/impulsive; and 3) combined (symptoms of both inatten-
tion and hyperactivity/impulsivity), with the combined subtype being
the most common (Wolraich et al., 1996; Hurtig et al., 2007).

Adults with ADHD often have difficulty performing a wide range
of tasks that comprise a series of complex behaviors classified as
‘executive functions’ (Gallagher and Blader, 2001; Boonstra et al.,
2005; Seidman, 2006). Executive functions include filtering out
distracting stimuli, inhibiting automatic responses, working memory,
and planning to carry out goal-directed behavior. Response inhibition
served.
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deficits are particularly widespread in ADHD. Many behavioral and
brain imaging studies have assessed inhibitory control in children
with ADHD (see Doyle, 2006; Quay, 1997; Willcutt et al., 2005; for
review); however, very few studies have been conducted examining
the impact of inhibitory control deficits in adults with ADHD (see
Ossmann and Mulligan, 2003; Schneider et al., 2006; Seidman, 2006).

Here, we used interleaved pro and antisaccade tasks (described
below), combined with simultaneous eye-tracking and blood oxygen-
level dependent (BOLD) functional magnetic resonance imaging
(fMRI), to investigate specific inhibitory control deficits in adults with
ADHD and their underlying neural correlates. The antisaccade task is a
simple, yet elegant tool to measure inhibitory control because it
requires participants to first inhibit an automatic, visually-guided eye
movement toward a suddenly appearing target (a prosaccade), and in-
stead produce a voluntary saccade in the opposite direction of the target
(an antisaccade) (Hallet, 1978; Munoz and Everling, 2004). Therefore,
to properly perform an antisaccade, participants are required not only
to execute a saccade in the correct direction, but they must also suffi-
ciently prepare themselves to inhibit the unwanted prosaccade during
the instruction period (i.e., establish a task set), prior to target appear-
ance. The antisaccade task therefore enables investigation of processes
relating to response preparation and execution, and how they specifi-
cally contribute to deficits in inhibitory control.

The cortical and subcortical regions that are involved in the
suppression and/or generation of saccadic eye movements include
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Fig. 1. (A) Accumulator model of antisaccade task performance. When neural activity crosses th
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regions in the parietal and frontal cortices, basal ganglia, and superior
colliculus (SC) based on research using monkey neurophysiology
(Wurtz and Goldberg, 1989; Munoz and Everling, 2004; Leigh and
Zee, 2006; Watanabe and Munoz, 2011a). Briefly, when a target ap-
pears in the visual field, many saccade-related neurons in both the
frontal eye fields (FEF) and SC (on the contralateral side of the brain
relative to target location) discharge a burst of action potentials
(Mohler and Wurtz, 1976; Bruce and Goldberg, 1985). These same
neurons then discharge a motor burst to drive the eyes to the visual
target. During antisaccade trials, the excitability of these neurons
must be suppressed, prior to target onset, so that the visual response
does not trigger a saccade. Instead, saccade neurons in the FEF and SC
on the other side of the brain, ipsilateral to the target, need to be
activated to drive the voluntary antisaccade (Everling et al., 1999;
Everling and Munoz, 2000). Accumulator models can be used to
explain the neural contributions of the oculomotor network during
antisaccade trials (Munoz and Everling, 2004; Munoz et al., 2007).
During antisaccade trials (Fig. 1A), two processes race toward a
threshold, and a saccade is triggered once neuronal activity surpasses
this threshold. The first process is set into action by the appearance of
the target, initiating a rise in activation (contralateral to the target)
that is associated with a movement toward that target (i.e., an auto-
matic prosaccade), while the other process is initiated (on the ipsilat-
eral side of the brain) by the inversion of the target vector to initiate a
voluntary antisaccade. To perform an antisaccade correctly, processes
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Table 1
Clinical information for ADHD participants.

Patients Sex Age (years) Medication

1 M 39
2a F 23
3 M 38
4a F 19 Strattera, Doxepin
5 M 27
6 M 19 Ritalin
7 M 20 Ritalin
8 M 27
9 F 19 Concerta, Ritalin
10 M 28 Ritalin
11 M 20
12 F 32
13 M 24 Strattera
14 F 32 Ritalin

M = male; F = female.
a Patients with an additional diagnosis of depression.

65R.M. Hakvoort Schwerdtfeger et al. / NeuroImage: Clinical 2 (2013) 63–78
related to the initiation of the automatic prosaccade (Fig. 1A; dashed
gray line) must be inhibited to allow time for the voluntary
antisaccade response (Fig. 1A; solid red line) to accumulate toward
the threshold. Therefore, saccade-related neurons that specifically
code automatic prosaccades must be inhibited prior to target onset
to prevent the initiation of direction errors. Mechanisms for this
pre-target inhibition are present in several structures, including FEF
(Everling and Munoz, 2000), supplementary eye fields (SEF;
Amador et al., 2004; Schlag-Rey et al., 1997), dorsolateral prefrontal
cortex (DLPFC; Johnston and Everling, 2006), and caudate nucleus
(CN; Watanabe and Munoz, 2010a, 2011a) of the basal ganglia. The
parietal eye fields (PEF) and anterior cingulate cortex (ACC) are also
involved in antisaccade production, particularly in the transformation
of sensory signals to motor signals and error detection and/or moni-
toring, respectively (Gottlieb and Goldberg, 1999; Zhang and
Barash, 2000; Medendorp et al., 2005; Johnston et al., 2007; Nyffeler
et al., 2007).

Studies examining antisaccade control in humans have reported
differential activation of key oculomotor areas between antisaccade
and prosaccade generation (Sweeney et al., 1996; Matsuda et al.,
2004; Ettinger et al., 2008). Furthermore, recent event-related fMRI
experiments have demonstrated increased BOLD activity during the
preparatory, pre-target phase of the antisaccade task, as compared
to the prosaccade task, in FEF, SEF, DLPFC, and ACC (Connolly et al.,
2002, 2005; Ford et al., 2005; Brown et al., 2007), suggesting that
components of the oculomotor network are recruited differently
when preparing for either an antisaccade or prosaccade, with more
preparatory activity requirements during antisaccade trials.

Adults with ADHD have difficulties exerting voluntary control
over saccade generation: they not only have slower and more vari-
able saccadic reaction times (SRTs), but also make more direction
errors during antisaccade trials (i.e., a prosaccade was erroneously
executed toward the target), more anticipatory eye movements
(reaction timesb90 ms), and more express saccades (reaction times
between 90 and 140 ms) (Munoz et al., 2003; Feifel et al., 2004;
Carr et al., 2006). Yet saccade metrics (i.e., duration, peak velocity,
and amplitude) in this group are typically normal to near-normal
(Munoz et al., 2003; Feifel et al., 2004), suggesting that saccade defi-
cits in ADHD participants stem from an inability to establish the appro-
priate task set rather than the execution of the saccadic motor response
itself. This hypothesis has never been explicitly investigated and is the
aim of the current study. We predict that antisaccade deficits produced
by ADHD adults may arise from reduced activity of fronto-striatal areas
that are responsible for suppressing saccade-related neurons prior to
target onset.

2. Methods

All experiments were approved by the Research Ethics Board of
Queen's University and were conducted in accordance with the prin-
ciples of the Canadian Tri-council Policy Statement on Ethical Conduct
for Research Involving Humans.

2.1. Participants

A total of 49 adult participants (28 ADHD and 21 controls) with
normal or corrected-to-normal vision were recruited for this study
via newspaper advertisements and posters displayed in doctor's of-
fices. Twenty participants were subsequently excluded for several
reasons. Twelve participants (8 ADHD and 4 control) were excluded
because of excessive movement in the MRI scanner (>3 mm move-
ment in any of the 3 translational dimensions and/or >3 deg move-
ment in any of the 3 rotational dimensions), 6 participants (4 ADHD
and 2 control) because the eye tracking was unable to reliably detect
the pupil, one control participant because of an incidental finding, one
ADHD participant because she took stimulant medication within 20 h
of the MRI appointment, and one ADHD participant because of dental
artifacts. Approximately 1.5 times more adults with ADHD were ex-
cluded due to motion artifacts compared to controls (30% of adults
with ADHD and 19% of adult controls), which was expected, particu-
larly when ADHD participants were off medication during the scan-
ning session. The final group of participants included 14 adults
diagnosed with the combined subtype of ADHD (9 males, mean age
29.5±9.4 years) and 14 age- and gender-matched controls (mean
age 29.6 years±9.6 years). Participants with ADHD provided docu-
mentation of a recent diagnosis (within 5 years) meeting DSM-IV
criteria for ADHD, combined subtype. The documentation was provid-
ed by a licensed professional (either a psychologist or psychiatrist).
Relying on ADHD diagnoses from community practitioners only is
not ideal; however, we are confident that all participants in our
ADHD group have been given an accurate diagnosis, given that the
behavioral deficits exhibited by this group are in-line with those ob-
served in other studies (Munoz et al., 2003; Feifel et al., 2004;
Carr et al., 2006). Upon screening for neurological, developmental
and current or past psychiatric disorders, two ADHD participants,
who were included in the study, reported a current diagnosis of
depression. ADHD participants were asked to abstain from taking
stimulant medication for at least 20 h before the MRI session.
Table 1 outlines the pharmacological treatments for each participant.
Control subjects were screened (via telephone interview and a
follow-up questionnaire) for absence of neurological, developmental,
and previously diagnosed psychiatric disorders, and no family history
of ADHD. All participants gave their written and informed consent
and received free parking and $20/h as compensation for their
participation.
2.2. Paradigm

An interleaved, rapid event-related design was employed for two
reasons. First, trials were randomly interleaved to increase the diffi-
culty of the task, eliciting higher antisaccade error rates. Secondly,
trials were presented at a rapid rate to enable the presentation of dif-
ferent trial types in a reasonable time period. Two-thirds of all trials
consisted of full pro or antisaccade trials aimed at examining both
the preparatory and execution components of saccades (Fig. 1B, top
2 rows), and one-third of all trials consisted of ‘preparation’ only trials
(i.e., catch trials) that exclusively measured preparatory actions
(Fig. 1B, bottom 2 rows). Participants were asked to fixate on a central
fixation stimulus (a ‘gold coin’) that appeared for 1000 ms at the
center of the screen to start each trial. The symbol used as a fixation
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stimulus, and its color, was then changed to indicate either the instruc-
tion to make a pro or an antisaccade. The symbols used were colored
cartoon images: a green turtle indicating that a prosaccade was re-
quired or a red crab indicating that an antisaccade was required. Col-
ored cartoon symbols were chosen because the experiment was
conducted across various patient groups that included child-aged par-
ticipants, and this made the task easier for children to learn.

Following presentation of the instructional cue, which remained
present for 1300 ms, a 200 ms gap period occurred in which the par-
ticipant was presented with a black screen. The gap period was intro-
duced to enable participants to generate more ‘automatic’ saccades,
inducing shorter SRTs and more antisaccade direction errors and
express prosaccades (Munoz and Corneil, 1995; Fischer and Weber,
1997; Munoz et al., 1998). On saccade trials, a peripheral target
(gold coin) was then flashed for 100 ms to the left or right of central
fixation, at eccentricities of either 6° or 7° in separate trials. Partici-
pants were instructed to execute a prosaccade (look toward the tar-
get location) or antisaccade (look away from the target in the
opposite direction) based on the colored instruction cue. The central
fixation stimulus (gold coin) reappeared 1400 ms later, and partici-
pants were required to re-establish central fixation to initiate the
next trial. On catch trials, the instruction cue was presented and
disappeared to initiate the gap period, but the peripheral target did
not appear to signal a saccade; subjects were instead required to
maintain central fixation for 1700 ms without generating a saccade
response. Since participants did not know whether or not the periph-
eral target would appear, the instruction cue would always elicit
preparation for a pro or antisaccade. Full saccade and catch trials
were therefore both 4500 ms in length. The inter-trial interval was
jittered, using fixation periods that spanned 1 repetition time (TR)
(1.5 s; 8 times), 2 TR (3.0 s; 4 times) and 3 TR (4.5 s; 4 times) to in-
crease the statistical efficiency and power in the rapid event-related
design (Dale, 1999). Prior to commencing the task, participants
were instructed to make a correction saccade if they generated errors.

Runs consisted of 48 trials that included 8 pro-catch trials,
8 anti-catch trials, 16 prosaccade trials, and 16 antisaccade trials
(Fig. 1B). Each participant performed 5–9 runs (depending on eye
tracking success), with each run lasting 277.5 s. Each run started
with an additional fixation period of 3 s, while MR images were ac-
quired, to allow the MR signal to reach a steady-state, and ended with
a 16.5 s fixation period to allow the hemodynamic response to return
toward baseline. Trial types were pseudorandomly interleaved, and
pro and antisaccade trials were balanced for right and left presentation
in each run. Both groups did not differ in terms of the number of com-
pleted runs: the mean number of runs administered to the control
and ADHD groups was 6.5 (±1.4) and 6.1±(1.4), respectively; groups
did not differ in terms of the number of runs they completed (one-way
ANOVA: F(1, 26)=0.66, p=.42).

2.3. Visual display and eye tracking

Visual stimuli were generated and controlled using E-PRIME soft-
ware (Psychology Software Tools Inc., Pittsburgh, PA, USA) on a per-
sonal computer. Images were back-projected onto a high-contrast
rear projection screen (DA-LITE), positioned at the head end of the
MRI system, using a NEC LT265 DLP video projector (Tokyo, Japan)
with a refresh rate of 60 Hz and resolution of 1024×768. Participants
viewed the screen via a mirror attached to the head coil (described
below). Using DQW software v1.10X, the right eye was tracked
using an ISCAN ETL-400 camera (Burlington, MA, USA) that sampled
eye position at 120 Hz. To ensure synchronization, the MRI sequences
directly triggered the E-PRIME software using a trigger signal from
the scanner. An infrared fiber-optic illuminator, which was fixed to
the head coil, was used to illuminate the right eye for tracking. After
the anatomical scan, the eye tracker was calibrated using a
nine-point array that covered most of the visual field. Analysis of
the eye movement data was performed off-line using custom-made
MATLAB programs.

2.4. Imaging protocol

All imaging data were acquired using a Siemens 3 T Magnetom Trio
system (Erlangen, Germany) fitted with a 12-channel receive-only
head coil located at the Queen's University MRI facility. High-resolution
T1-weighted whole-brain structural scans were performed on each
participant using a MPRAGE sequence (TR=1760 ms, TE=2.2 ms, flip
angle=9°, 256×256 mm field-of view, and 256×256 matrix size
providing 1 mm isotropic voxels). Functional data were collected using
a T2*-weighted EPI acquisition (TR=1500 ms, TE=30 ms, flip angle=
72°, 211×211 mm field-of-view, 64×64 matrix size, 3.3 mm isotropic
voxel resolution, 185 volumes) for blood oxygenation-level dependent
(BOLD)-based imaging (Ogawa et al., 1990). Twenty-four slices were ac-
quired, positioned to include all regions of interest (ROI: FEF, SEF, PEF,
DLPFC, ACC, and CN) extending from the top of the brain to the ventral
striatum.

2.5. MRI pre-processing

All functional imaging runs were preprocessed using Brain Voyager
1.9 (Maastricht, the Netherlands). The first two volumes of each func-
tional time series were removed before any pre-preprocessing to
allow the MR signal to reach a steady state. To correct for between-
scan movements, all volumes were realigned to the first volume of
each functional run. Slice scan time correction was conducted to adjust
for time differences due to multi-slice imaging acquisition using cubic
spline interpolation based on the TR and order of slice scanning
(ascending interleaved). 3D spatial smoothing was then performed
using a 4 mm full-width at half-maximum Gaussian filter on the
volumes, and each run was filtered to remove linear drift using a
high-pass filter with the upper cut-off frequency corresponding to 3 cy-
cles over the run's length. Finally, all functional datawere superimposed
onto 3D anatomical images, resampled into 3×3×3 mm cubic voxels,
aligned to the anterior commissure–posterior commissure axis, and
transformed into Talairach space (Talairach and Tournoux, 1988).

To ensure that there were no significant between-group move-
ment differences, which may have led to apparent BOLD contrast dif-
ferences, we compared the groups' average displacement from the
mean head position in six dimensions (translation in x, y, and z, and
rotation around the x, y, and z axes) for the 14 participants selected
per group. The total absolute movement of the ADHD group was
0.104 mm, 0.096 mm, and 0.175 mm for translation in the x, y, and
z axes, respectively and 0.119 deg, 0.050 deg, and 0.082 deg for rota-
tion in the x, y, and z axes, respectively. For the control group, it was
0.074 mm, 0.088 mm, and 0.135 mm for translation in the x, y, and z
axes, respectively and 0.097 deg, 0.039 deg, and 0.065 deg for rota-
tion in the x, y, and z axes, respectively. Adults with ADHD did not sig-
nificantly differ from control participants on any translational or
rotational measure (t-test, p>.05 for all measures).

2.6. Statistics and data analyses

2.6.1. Behavioral analyses
Behavioral data were analyzed using custom-written scripts in

MATLAB 7.4 (The MathWorks Inc., Natick, MA, USA). Saccadic reac-
tion time (SRT) was measured as the first saccade away from fixation
after stimulus onset, when the velocity exceeded the mean+3× the
SD of the background velocity. The velocity had to remain above
this threshold for 5 sample points for it to be classified as a saccade.
Saccades with SRTb110 ms were considered anticipatory and thus
were excluded from analysis. This value was selected because it was
the point at which errors in prosaccade trials were no longer executed
at chance (50% correct: incorrect). Therefore, 110 ms was the earliest
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time at which detection of the visual target could influence behavior.
Express saccades, which are the shortest visually-triggered saccades,
have typically been calculated as saccades with SRTs between 90
and 135 ms (Fischer et al., 1993; Munoz et al., 1998); however, the
boundaries of this epoch change according to the participant age
and stimulus conditions (Bell et al., 2006; Peltsch et al., 2011). In
the current study, the express saccade epoch was measured between
110 and 140 ms, where 140 ms was the latency at which both groups
made more correct responses than errors during antisaccade trials
(data not shown). Prosaccade direction errors corresponded to sac-
cades executed away from the target in prosaccade trials; antisaccade
direction errors were prosaccades executed toward the target loca-
tion during antisaccade trials. ADHD participants made 12.03%
prosaccade errors and 23.08% antisaccade errors, while control partic-
ipants made 5.21% prosaccade errors and 6.25% antisaccade errors. To
ensure that direction errors were attributable to insufficient inhibito-
ry control, rather than to inattention, distraction, or guessing of the cue
location, we only examined errors that were corrected by the partici-
pants. ADHD participants corrected 69.8% of prosaccade and 75.8% of
antisaccade errors, while control participants corrected 80.3% of
prosaccade and 90.6% of antisaccade errors; group differences in
prosaccade (F(1, 26)=0.75, p=.39, d=−0.32) and antisaccade
(F(1, 26)=2.37, p=.14, d=−0.56) error correction were not signif-
icant. Direction error ratewas calculated bydividing the total number of
errors by the total number of valid trials (error+correct). Intra-subject
variability for SRT was calculated using the coefficient of variation (CV)
for correct trials (SD/mean×100).

Valid trials consisted of all trials except for those that included:
1) failure to fixate during fixation trials; 2) failure to fixate during the
instruction period of a full pro or antisaccade trial; 3) failure to execute
a saccade during the response period; 4) execution of multiple saccades
during the response period; 5) saccades executed during catch trials;
6) antisaccades executed during prosaccade trials; 7) failure to correct
an antisaccade direction error; and 8) trials in which eye-tracking was
unsuccessful. These aforementioned excluded trials were modeled sep-
arately as ‘invalid trials’ in the functional MRI analysis described below.
Importantly the proportion of valid trails that were analyzed was simi-
lar between the two groups. The range of valid trials for ADHD partici-
pants was 22–63 for anti-catch trials, 18–64 for pro-catch trials,
33–108 for correct antisaccade trials, 21–128 for correct prosaccade tri-
als, and 5–47 for antisaccade error trials. For control participants, valid
trials ranged from 22 to 64 for anti-catch trials, 31 to 64 for pro-catch
trials, 38 to 122 for correct antisaccade trials, 56 to 125 for correct
prosaccade trials, and 5 to 18 for antisaccade error trials.

Independent-measures ANOVAs were conducted to examine ‘prepa-
ratory’ differences in behavior between the control and ADHD groups for
mean SRTs, SRT coefficient of variation, mean percentage of express
saccades, andmean percentage of direction errors in anti and prosaccade
trials. Group differences on saccademeasures were not observed for left-
ward versus rightward saccades and 6° versus 7° eccentricities (p>.05);
therefore, these responses were pooled together. Furthermore, one-way
ANOVAs were also used to measure between-group differences of
saccade metrics, including pro and antisaccade duration, amplitude,
and velocity. Paired t-tests (non-directional)were conducted to compare
behaviorwithin each experimental group. The effect sizes for all compar-
isons were measured using Cohen's d.

2.6.2. fMRI analyses
In the rapid event-related design we employed, events occurred in

rapid succession so that the BOLD signal recorded at any given point in
time was the sum of the BOLD response from several preceding task
events. Consequently, the measured BOLD time-series for each voxel
was deconvolved with the canonical hemodynamic response function
(HRF) in order to estimate the underlying time-course of neural activ-
ity. The HRFwasmodeled with a 13-point time-series with a temporal
resolution of 1.54 s. The result of this process demonstrates the
responses to each individual trial, without overlap in time. Events
were modeled separately in the design matrix and pertained to trial
type, including: 1) correct anti-catch trials; 2) correct pro-catch trials;
3) correct antisaccade trials; 4) correct prosaccade trials; 5) corrected
antisaccade direction errors; and 6) invalid trials. Fixation trials were
used as an implicit baseline.

Several statistical parametric maps were computed for each
group, with the statistics reflecting the significance of the consistent
response of each voxel to each trial type, as defined above. First, to en-
sure that the saccade task recruited all of our ROIs, we looked at full
antisaccade trials and full prosaccade trials over time points 5–7
(7.7, 9.3, and 10.8 s from trial onset, Fig. 3B) that spanned the time in-
terval from the presentation of the instruction cue to the execution of
the saccade. Further, we computed contrast maps looking at both
antisaccade preparatory (anti-catch minus fixation) and prosaccade
preparatory (pro-catch minus fixation) activations (Fig. 4A), taken
from time points 5 and 6 after trial onset (Fig. 5B). This interval was
chosen as it corresponded to the peak of the hemodynamic response
curve. To examine brain areas related to the execution of a saccade,
contrasts examining antisaccade execution (full antisaccade minus
anti-catch) and prosaccade execution (full prosaccade minus
pro-catch) (Fig. 4B) were computed for the 6th and 7th time points
after trial onset (Fig. 6B). Time points for the execution contrast
were shifted by 1.5 s to include the 6th and 7th time points because
the onset of the peripheral target occurred 1.5 s (one time point)
after the appearance of the instruction cue. Finally, we computed con-
trast maps examining correct antisaccade trials (antisaccade minus
fixation) versus erroneous antisaccade trials (corrected antisaccade
direction errors minus fixation), taken from the 5th to the 7th time
point after trial onset (Fig. 7). We were unable to examine differences
in preparation or execution during erroneous saccades because there
were no saccades on catch trials; thus, we were unable to separate
catch trials into those that led to correct versus erroneous antisaccades.

We used a mixed-effects analysis based on studies conducted by
Brown et al. (2007). More precisely, group analysis was conducted
using a fixed-effects general linear model (GLM) with separate sub-
ject predictors. This method was chosen (rather than constructing a
single map for all participants using a random-effects analysis) as it
ensures that every ROI was activated by both groups. Each statistical
parametric map was Bonferroni corrected for multiple comparisons
at pb .05 and cluster-size corrected at pb .05 (using a cluster threshold
of nine contiguous voxels). Beta weight values (estimates of the BOLD
signal change) were extracted from each individual after correcting
for serial correlations, and then averaged across subjects in each
ROI, defined as all the voxels within a 7×7×7 cubic cluster centered
on the peak of activation, corrected for multiple comparisons. Beta
weight values for bilateral structures (i.e., FEF, PEF, DLPFC, and CN)
were extracted for both left and right locations and then averaged.
ROIs were identified based on previous studies examining the neural
correlates of saccades (Ford et al., 2005; Brown et al., 2007; Alvarez
et al., 2010). One-way ANOVAs were then conducted between groups
examining differences in mean beta weight values for all ROIs at each
contrast described above.

3. Results

3.1. Behavior

Sample eye position traces recorded from a control participant,
illustrating two correct antisaccades and one direction error that is
corrected, are shown in Fig. 2A. Consistent with previous studies
(Munoz et al., 2003; Feifel et al., 2004; Carr et al., 2006), adults with
ADHD were slower to initiate correct antisaccades compared to con-
trols (F (1, 26)=9.58, pb .005, d=1.20; Fig. 2B), produced more var-
iable SRTs for both prosaccades (F (1, 26)=7.39, pb .05, d=1.05;
Fig. 2C) and antisaccades (F (1, 26)=4.97, pb .05, d=0.84; Fig. 2C),
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and executed a higher percentage of direction errors on antisaccade
trials than controls (F (1, 26)=9.22, pb .005, d=1.18; Fig. 2D).
ADHD participants also made more direction errors than control par-
ticipants on prosaccade trials, although the difference did not reach
significance (F (1, 26)=3.36, p=.08, d=0.67). ADHD partic-
ipants tended to make more express saccades during prosaccade
trials than controls, although the difference did not reach significance
(F (1, 26)=2.66, p=.115, d=0.59; Fig. 2E). Both groups did not
differ in terms of correct prosaccade SRT (F (1, 26)=0.31, p=.58,
d=0.22; Fig. 2B). Furthermore, to ensure that there were not any fa-
tigue or time-on-task effects on task performance, we correlated the
number of runs with several behavioral measures of saccade per-
formance. There were no significant correlations between the
number of runs and anti SRT (r(26)=− .21, p=.28), antisaccade di-
rection errors (r(26)=.01, p=.95), pro SRT (r(26)=− .14, p=.49),
prosaccade direction errors (r(26)=− .09, p=.64), or express
prosaccades (r(26)=− .08, p=.68). Finally, group differences were
not observed for saccade metrics, including prosaccade duration
(F (1, 26)=1.79, p=.28, d=0.62), velocity (F (1, 26)=0.74, p=.40,
d=−0.44), and amplitude (F (1, 26)=0.14 p=.71, d=0.52) or
antisaccade duration (F (1, 26)=0.96, p=.34, d=0.68), velocity
(F (1, 26)=0.30, p=.59, d=−0.46), and amplitude (F (1, 26)=0.13,
p=.72, d=0.59). Overall, adults with ADHD showed several impair-
ments in saccade control — they made more direction errors during
antisaccade trials, produced longer mean antisaccade SRTs, and had
more variable SRTs. These findings suggest that the saccade deficits pro-
duced by adults with ADHD were not based on a general inability to
execute a saccade (because saccade metrics were normal), but rather
arose from an inability to ‘preset’ the oculomotor network optimally
prior to target onset (Fig. 1A), which subsequently led to higher vari-
ability in SRT and more direction errors.
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Fig. 2. (A) Sample eye traces depicting correct antisaccade trials and an erroneous
antisaccade trial (direction error) followed by a correction. (B) Mean saccadic reaction
times (SRT) on correct trials. (C) Mean intra subject coefficient of variation (CV) for
SRT. (D) Mean percentage of direction errors. (E) Mean percentage of express saccades
(110–140 ms). Error bars represent standard error of the mean (SE); *pb .05, †pb .1.
3.2. fMRI

3.2.1. The saccade network
The behavioral deficits (Fig. 2B–E) may have occurred because

ADHD participants did not recruit key areas of the oculomotor network
optimally for saccade control, including SEF, FEF, PEF, DLPFC, ACC, and
CN (Connolly et al., 2002, 2005; Ford et al., 2005; Brown et al., 2007).
Fig. 3A depicts the most relevant slices for saccade (i.e., antisaccade
plus prosaccade) generation, and Table 2 lists the Talairach locations
of peak activation for all key regions of interest. We found that both
groups recruited all pre-defined ROIs, suggesting that the observed
behavioral deficits in the ADHD group likely were attributed to critical
differences in sub-processes of pro and antisaccade control (i.e., saccade
preparation or execution).

3.2.2. Preparatory findings
We hypothesized that increased direction errors during antisaccade

trials in the ADHD group was attributed to insufficient preparation of
the oculomotor network (i.e., inhibition of saccade-related neurons
in FEF and SC before the peripheral target appeared; Everling et al.,
1998; Everling and Munoz, 2000). For instance, the ADHD group
could have made more direction errors in the antisaccade task be-
cause they were unable to prepare properly to suppress the automat-
ic prosaccade during the pre-target period. Slices of the statistical
map built from the preparation contrasts are displayed in Fig. 4A;
‘hot colored’ regions (i.e., orange/yellow) are those that produced a
higher BOLD signal change for pro-catch or anti-catch trials, com-
pared to fixation. Group comparisons of peak beta weight values at
all regions of interest are shown in Fig. 5A–B and Talairach locations
of the peak activation for each ROI are shown in Table 3. Critically,
during the preparatory phase, ADHD adults exhibited less activation
(hypoactivation) than controls in all ROIs analyzed. This was most
pronounced during antisaccade preparation where significant
group differences in SEF (F(1, 26)=7.78, pb .01, d=−1.11), FEF
(F(1, 26)=7.75, pb .01, d=−1.01), and PEF (F(1, 26)=4.30,
pb .05, d=−0.83) emerged, with the control group showing greater
activation in these areas. Finally, compared to ADHD participants,
controls displayed greater activation in CN during prosaccade prep-
aration (F(1, 26)=11.59, pb .01, d=−1.39).

3.2.3. Execution findings
Although we hypothesized that antisaccade deficits in the ADHD

group likely arise from poor preparation, it was necessary to also ex-
amine group differences in activity during saccade execution. Subse-
quent analyses explored activation patterns related only to the
response components of pro or antisaccades. Slices of the statistical
map built from the execution contrasts are depicted in Fig. 4B. ‘Hot
colored’ areas are those that produced more BOLD activation during
saccade execution than preparation. Group comparisons of peak
beta weight values for each ROI are shown in Fig. 6A–B, and Talairach
locations of the peak activation for each ROI are listed in Table 4.
Overall, there were no differences in execution-related activation
between ADHD and control participants. The only difference we
observed was in the DLPFC, where ADHD participants exhibited signifi-
cantly greater execution-related activation (hyperactivation) compared
to controls for both prosaccades (F(1, 26)=26.15, pb .001, d=1.64)
and antisaccades (F(1, 26)=15.38, pb .001, d=2.06). This enhanced
DLPFC recruitmentmay serve as a compensatorymechanism to facilitate
or enhance correct saccade execution, given the reduced activation dur-
ing the preparatory phase.

3.2.4. Correct versus incorrect antisaccade trials
Overall, the imaging data suggest that the biggest between-group

differences at the contrast level for correct pro- and antisaccade
processes occurred at the preparation level, particularly for the
antisaccade task. Next, we investigated oculomotor function during
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Table 2
Talairach coordinates (X, Y, Z) of peak activation in GLM contrast maps for the
antisaccade+prosaccade contrast (Fig. 3A).

Group and region Saccade: prosaccade plus antisaccade

X Y Z t Vol

ADHD
SEF −3 −7 55 28.52 1460
Right FEF 27 −10 52 25.97 890
Left FEF −27 −16 49 25.08 739
Right PEF 21 −64 49 29.75 1455
Left PEF −24 −61 45 33.97 2177
Right DLPFC 30 40 34 13.40 241
Left DLPFC −33 38 31 12.21 1459
ACC – – – – –

Right CN 12 11 16 13.60 32
Left CN 10 5 14 10.41 19

Control
SEF 0 −4 55 36.44 1575
Right FEF 24 −10 55 31.08 861
Left FEF −27 −10 49 36.04 1296
Right PEF 15 −70 46 42.62 1758
Left PEF −18 −67 46 49.44 2649
Right DLPFC 36 35 40 11.52 202
Left DLPFC −36 32 34 11.45 184
ACC 1 18 30 14.52 394
Right CN 11 7 12 10.49 35
Left CN −14 10 12 9.96 27

SEF, FEF, PEF, supplementary, frontal, parietal eye fields; DLPFC, dorsolateral prefrontal
cortex; ACC, anterior cingulate cortex; CN, caudate nucleus. t = t-value; Vol = volume
of cluster (voxel).
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trials in which an antisaccade direction error was produced. Based on
accumulator models (Fig. 1A), we hypothesized that the increased
antisaccade error rate produced by ADHD adults resulted from reduced
activity of fronto-striatal areas that are responsible for suppressing
saccade-related neurons, prior to target onset. Furthermore, inhibitory
deficits in ADHD have been linked to deficient ACC activation (see
Fassbender and Schweitzer, 2006 for review); therefore, we expected
to see reduced ACC activity during error trials in this group. Group com-
parisons of peak betaweight values, for activation related to correct ver-
sus antisaccade direction error trials, are shown in Fig. 7, and Talairach
locations of the peak activation for each ROI are shown in Table 5.
Between-group differences were only observed in two ROIs: controls
displayed higher activation in CN (F(1, 26)=4.10, pb .05, d=−0.81)
and DLPFC (F(1, 26)=4.57, pb .05, d=−0.85) during antisaccade
errors compared to ADHD participants. Furthermore, two-tailed
paired-samples t-tests revealed that both control and ADHD partici-
pants showed greater activation in PEF (Control: t(13)=2.30, pb .05,
d=0.51; ADHD: t(13)=2.48, pb .05, d=0.59) when performing correct
antisaccades, while greater activity in FEF (t(13)=2.94, pb .05) and
DLPFC (t(13)=2.18, pb .05, d=0.46) during correct antisaccade trials
was only observed in the ADHD group. Finally, control participants
exhibited more activation in ACC (t(13)=−2.77, pb .05, d=0.88) and
SEF (t(13)=−2.13, pb .05, d=0.75) during antisaccade error trials ver-
sus correct antisaccade trials. This enhanced activation on error trials
was absent in ADHD subjects.

3.2.5. Correlations with antisaccade performance
To examine whether differences in the magnitude of antisaccade

preparation activation across subjects correlated to antisaccade perfor-
mance, post-hoc analyses were conducted to examine the relationship
between behavior (anti SRT and percentage of direction errors) and
activation in FEF, SEF, and PEF, areas that were hypoactive in ADHD
adults during antisaccade preparation. Significant correlations were
only observed when both groups' scores were combined. During
antisaccade preparation, activity in FEF (r(26)=− .44, pb .05), SEF
(r(26)=− .47, pb .05), and PEF (r(26)=− .38, pb .05) correlated nega-
tively with antisaccade direction errors (Fig. 8A–C). Furthermore, anti
SRT correlated negatively with activity in SEF (r(26)=− .44, pb .05)
(Fig. 8D). Based on our findings that ADHD participants additionally
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recruited DLPFC during the antisaccade response epoch, we also corre-
lated antisaccade execution activationwith antisaccade direction errors
and reaction times. In general, when both groups were combined,
antisaccade response activation positively correlated with antisaccade
direction errors (Fig. 8E; r(26)=.42, pb .05) and anti SRT (Fig. 8F;
r(26)=.41, pb .05).
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Table 3
Talairach coordinates (X, Y, Z) of peak activation in GLM contrast maps for the prosaccade

Group and region Prosaccade preparation

X Y Z t

ADHD
SEF 6 2 52 11.49
Right FEF 27 −7 52 12.00
Left FEF −30 −16 49 11.44
Right PEF – – – –

Left PEF – – – –

Right DLPFC – – – –

Left DLPFC – – – –

ACC 3 14 34 6.55
Right CN – – – –

Left CN – – – –

Control
SEF −3 −4 55 17.32
Right FEF 36 −10 49 14.80
Left FEF −27 −10 49 15.61
Right PEF 27 −67 43 16.69
Left PEF −24 −64 46 21.10
Right DLPFC 33 32 40 7.51
Left DLPFC −27 38 28 5.61
ACC −3 16 41 10.94
Right CN – – – –

Left CN – – – –

SEF, FEF, PEF, supplementary, frontal, parietal eye fields; DLPFC, dorsolateral prefrontal cort
cluster (voxel).

71R.M. Hakvoort Schwerdtfeger et al. / NeuroImage: Clinical 2 (2013) 63–78
4. Discussion

We demonstrated that inhibitory control deficits in adults with
ADHD, as measured by the antisaccade task, likely arise from poor
preparation rather than difficulties with saccadic execution. We
used an interleaved pro and antisaccade task with simultaneous
fMRI and eye-tracking to examine the neural substrates of inhibitory
control in adults with ADHD. Behaviorally, ADHD adults showed im-
pairments in inhibitory control — they had longer antisaccade SRTs,
made more direction errors during antisaccade trials, and produced
more variable SRTs for both pro and antisaccade trials (Fig. 2B–E),
all of which are suggestive of poor preparation. Importantly, the
ADHD adults did not differ from controls in terms of the execution
of pro or antisaccades because group differences in saccade metrics
were not significant. These results suggest that saccade impairments
in the ADHD group likely arise from deficits in saccade preparation
(i.e., an inability to establish the appropriate task set) rather than
the execution of the saccadic motor response. The imaging data
support this conclusion: adults with ADHD produced less activity
in all ROIs (FEF, SEF, PEF, DLPFC, CN) when preparing a correct
antisaccade. Importantly, this hypoactivation was not observed in
ADHD adults during antisaccade execution. Instead, they produced
greater activation than controls in DLPFC when executing correct
antisaccades, perhaps as part of a compensatory mechanism to
cope with the challenge produced in the antisaccade task with inad-
equate preparatory set. Our data suggest that the deficits observed
in ADHD adults do not result from an inability to execute an
antisaccade but rather stem from the failure to properly prepare for
the antisaccade trial, which requires global top-down inhibition to
suppress the automatic prosaccade (Munoz and Everling, 2004).
Additionally, unlike control participants, adults with ADHD did not
produced elevated ACC activation during antisaccade error trials,
suggesting that they made more antisaccade errors because they
were not efficiently recruiting the ACC, which is a key structure in-
volved in processing and/or monitoring errors (Johnston et al.,
2007). Taken together, our results suggest that the antisaccade defi-
cits in ADHD adults stem from poor preparation for inhibiting
unwanted responses and/or a reduced ability to adjust behavior
based on previously made mistakes.
and antisaccade preparation contrasts (Fig. 4A).

Antisaccade preparation

Vol X Y Z t Vol

330 6 2 52 13.65 464
235 27 −7 52 12.44 386
149 −30 −16 49 12.17 187
– – – – – –

– – – – – –

– – – – – –

– – – – – –

14 6 14 40 9.01 12
– – – – – –

– – – – – –

799 −3 −4 55 21.15 1115
539 21 −7 55 18.61 767
580 −24 −10 49 19.73 637
677 27 −67 43 19.33 980
823 −24 −64 46 24.70 1132
41 33 35 43 11.99 187
50 −30 38 36 7.13 24
215 4 14 41 12.22 193
– 9 8 10 7.66 19
– −13 8 12 7.45 12

ex; ACC, anterior cingulate cortex; CN, caudate nucleus. t = t-value; Vol = volume of
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Table 4
Talairach coordinates (X, Y, Z) of peak activation in GLM contrast maps for the prosaccade

Group and region Prosaccade execution

X Y Z t

ADHD
SEF 3 −7 55 8.67
Right FEF 27 −13 52 7.67
Left FEF −24 −16 49 9.22
Right PEF 21 −67 49 8.85
Left PEF −18 −67 52 10.32
Right DLPFC – – – –

Left DLPFC – – – –

ACC 3 8 34 6.99
Right CN – – – –

Left CN – – – –

Control
SEF 0 −10 55 7.80
Right FEF 21 −10 55 8.45
Left FEF −30 −10 51 10.40
Right PEF 12 −73 46 12.49
Left PEF −9 −73 46 15.43
Right DLPFC – – – –

Left DLPFC – – – –

ACC – – – –

Right CN 9 5 10 6.84
Left CN – – – –

SEF, FEF, PEF, supplementary, frontal, parietal eye fields; DLPFC, dorsolateral prefrontal c
catch>saccade. t = t-value; Vol = volume of cluster (voxel).

72 R.M. Hakvoort Schwerdtfeger et al. / NeuroImage: Clinical 2 (2013) 63–78
4.1. Behavioral deficits in ADHD

We first confirmed that adults with ADHD showed antisaccade im-
pairments in the MRI environment. In particular, they had slower and
more variable SRTs andmademore direction errors, thereby replicating
several behavioral studiesmeasuring antisaccade performance inADHD
adults (Munoz et al., 2003; Feifel et al., 2004; Carr et al., 2006). Impor-
tantly, antisaccade deficits in adults with ADHD parallel those observed
in other tasksmeasuring inhibitory control (Aron et al., 2003; Ossmann
and Mulligan, 2003; Bekker et al., 2005; Lampe et al., 2007; Dibbets et
al., 2009; McLoughlin et al., 2010; Schneider et al., 2010). For example,
when required to inhibit an automatic response in a Go/NoGo task,
ADHD adults not only produced more commission errors during trials
in which no response was required, but also had longer and more vari-
able reaction times during trials in which a response was required
(Lampe et al., 2007; Dibbets et al., 2009). Given the extensive literature
on inhibitory control deficits in ADHD, studies that link these deficits to
brain function are important.

4.2. Hypoactivation of oculomotor network during preparation in ADHD

Both control and ADHD participants recruited a similar neural net-
work during the saccade task (including FEF, SEF, PEF, ACC, DLPFC,
and CN). Thus, the antisaccade impairments observed in ADHD adults
are not due to an inability to recruit key frontostriatal areas of the
oculomotor network, but instead an inability to employ these areas
optimally for specific task processes (i.e., preparation versus execu-
tion of the saccade).

Successful antisaccade performance requires that recruitment of
several cortical and sub-cortical brain regions, including DLPFC
(Guitton et al., 1985; Pierrot-Deseilligny et al., 2003), FEF, PEF, and
SEF (Connolly et al., 2002; Curtis and D'Esposito, 2003; DeSouza et
al., 2003; Ford et al., 2005; Brown et al., 2007) and the basal ganglia
(Ford and Everling, 2009; Watanabe and Munoz, 2009, 2010a,
2011a) be activated prior to the appearance of the peripheral target,
which presets the motor system to execute the appropriate action
(i.e., suppress prosaccade). Most importantly, we found that ADHD
adults had less BOLD signal than controls in SEF, FEF, PEF, CN, and
and antisaccade execution contrasts (Fig. 4B).

Antisaccade execution

Vol X Y Z t Vol

238 −3 −13 52 9.82 253
40 27 −10 55 10.27 165
167 −24 −16 49 12.35 263
117 21 −67 49 14.93 294
393 −21 −67 49 15.76 1189
– – – – – –

– – – – – –

57 0 14 31 7.39 85
– 10 8 12 8.71 65
– – – – – –

61 0 −4 55 8.10 55
79 24 −13 55 12.27 151
309 −24 −10 55 12.37 343
309 15 −70 46 18.87 342
762 −18 −70 46 19.47 892
– 24 41 34 −9.10 86
– – – – – –

– – – – – –

39 9 6 9 6.41 99
– −12 −4 19 7.23 67

ortex; ACC, anterior cingulate cortex; CN, caudate nucleus; negative t-value denotes
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DLPFC during antisaccade preparation. Failure of the ADHD adults to
activate these regions to the same degree as control subjects, particu-
larly FEF, SEF and PEF where differences were statistically significant,
likely indicates core deficits in the ability to preset frontoparietal cir-
cuits critical for optimal task performance.

Anatomical and functional imaging studies examiningbrain areas as-
sociated with inhibitory control in adults with ADHD are limited. There
are reports of volume and cortical thickness reductions in several areas
involved in inhibitory control, including frontal cortex and parietal
lobes (Seidman et al., 2006; Makris et al., 2007). The hypoactivation of
frontal and parietal areas in the ADHD group in the present study repli-
cates and extends previous imaging studies that have found abnormal
(usually less) activity in these brain regions in adults with ADHD
when performing tasks that assess executive function (Hale et al.,
2007; Cubillo et al., 2010; Karch et al., 2010; McLoughlin et al., 2010).
Furthermore, the few studies that examined the neural correlates of in-
hibitory control in ADHD adults specifically have found hypoactivation
in frontal and parietal areas (Cubillo et al., 2010; McLoughlin et al.,
2010), yet hyperactivation in these brain regions has also been reported
(Dibbets et al., 2009; Dillo et al., 2010). These conflicting results may be
attributed to task difficulty, as studies that reported hyperactivation of
frontal and parietal regions used a relatively easier task (Go/NoGo
task) that involved selective attention, which is less impaired in ADHD
patients than motor response inhibition (van Mourik et al., 2005). Al-
though dysfunctional brain activation during preparation has been ob-
served using event-related potentials (ERP; McLoughlin et al., 2010),
we are the first to report, using fMRI, that inhibitory control deficits in
adults with ADHD likely arise from hypoactivation of specific frontal
and parietal structures during task preparation, namely, the FEF, SEF,
and PEF. This result is not due to motion artifacts because: 1) both
groups did not differ in terms of total motion during the MRI session;
and 2) hypoactivity was not observed during the execution epoch.

The FEF and SEF are both involved in voluntary saccade genera-
tion. Humans with lesions to FEF have longer antisaccade reaction
times (Gaymard et al., 1999), and human fMRI (Connolly et al.,
2005) and monkey neurophysiology (Everling and Munoz, 2000)
studies found that activity in FEF correlates with antisaccade reaction
time. The SEF is involved in successful antisaccade performance; for
example, Amador et al. (2004) reported that SEF neuronal activity
predicted antisaccade success: monkeys generated greater activity
in SEF during correct antisaccade trials compared to erroneous
antisaccade trials. Interestingly, greater FEF and SEF BOLD signal asso-
ciated with antisaccades, more so than prosaccades, is among the
most consistent findings in the human functional neuroimaging liter-
ature on antisaccades (e.g., Curtis and D'Esposito, 2003; DeSouza et
al., 2003; Ford et al., 2005; McDowell et al., 2005; Raemaekers et al.,



Table 5
Talairach coordinates (X, Y, Z) of peak activation in GLM contrast maps for the correct and incorrect antisaccade generation contrasts.

Group and region Correct antisaccade Antisaccade direction error

X Y Z t Vol X Y Z t Vol

ADHD
SEF −3 −7 55 26.72 548 3 5 46 14.85 482
Right FEF 27 −10 55 26.84 1890 27 −10 52 14.88 2096
Left FEF −27 −16 49 25.03 760 −30 −11 48 12.73 449
Right PEF 21 −64 49 30.81 1651 21 −64 49 15.01 747
Left PEF −24 −61 43 31.71 2425 −24 −61 46 16.65 876
Right DLPFC 39 23 37 11.09 31 39 26 37 7.21 35
Left DLPFC −33 38 31 12.61 175 – – – – –

ACC 2 15 41 12.01 267 1 7 43 9.31 275
Right CN 12 7 13 13.60 32 12 8 12 7.12 35
Left CN −10 6 11 14.59 41 −11 6 10 7.39 48

Control
SEF 0 −4 55 34.16 1036 −3 −4 55 14.48 706
Right FEF 24 10 55 32.17 716 24 −10 48 10.00 84
Left FEF −27 −10 49 35.27 1741 −21 −7 49 12.80 407
Right PEF 15 −70 46 45.18 1898 15 −70 46 13.50 596
Left PEF −18 −67 46 50.14 2628 −18 −67 46 15.88 756
Right DLPFC 36 35 40 13.03 250 30 32 40 5.72 10
Left DLPFC −39 32 34 10.45 161 – – – – –

ACC 2 16 27 13.54 271 4 19 25 6.14 23
Right CN 11 10 12 9.01 85 9 5 10 8.20 82
Left CN −10 6 13 8.56 74 −12 −1 16 7.81 86

SEF, FEF, PEF, supplementary, frontal, parietal eye fields; DLPFC, dorsolateral prefrontal cortex; ACC, anterior cingulate cortex; CN, caudate nucleus. t = t-value; Vol = volume of
cluster (voxel).
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2006; Ettinger et al., 2008). This increased activation was observed
prior to saccade generation (Connolly et al., 2002; DeSouza et al.,
2003; Ford et al., 2005; McDowell et al., 2005). It is important to
note that human studies using fMRI report increased FEF activation
during antisaccade preparation; conversely, saccade neurons in
layer V of the FEF in monkeys are less activate during antisaccade
preparation (Everling and Munoz, 2000). Recently however, Ford et
al. (2009) showed that monkeys had increased BOLD-related activa-
tion for antisaccades, implying that the discrepancy with human FEF
activation reports may be related to methodological differences
between fMRI and extracellular single cell recording rather than dif-
ferences between species.

Consistent with the accumulator model (Fig. 1A), the data indicate
that the signal to generate a voluntary antisaccade (red solid line,
Fig. 1A) races with the signal to generate the automatic prosaccade
(gray dashed line, Fig. 1A), and that increased FEF and SEF BOLD
signal prior to antisaccade execution offsets the tendency to produce
an automatic prosaccade (i.e., direction error) toward the target. The in-
creased occurrence of direction errors in ADHD adults likely results
from compromised pre-target suppression signals in FEF and SEF,
resulting in the unwanted automatic prosaccade command to reach
threshold first. For correct antisaccade responses, the prosaccade signal
must be sufficiently suppressed to allow the antisaccade signal time to
reach threshold first. Overall, the reduced activity in FEF and SEF during
antisaccade preparation may partially account for the longer anti SRTs
and/or increased antisaccade error rate produced by ADHD adults,
which is further supported by the correlation analyses (Fig. 8A–D).

Compared to controls, adults with ADHD produced hypoactivation
in PEF during antisaccade preparation. PEF provides important visual
input to the frontal cortical oculomotor areas (Ferraina et al., 2002),
and also receives reciprocal inputs from these frontal areas (Lynch
and Tian, 2006). Therefore, the reduced activity in PEF in the ADHD
adults may have resulted from reduced activation of FEF and SEF. Fur-
thermore, Matsuda et al. (2004) reported greater activity in inferior
parietal cortex during antisaccade, compared to prosaccade trials,
and a similar region showed activity during an inhibitory period pre-
ceding antisaccade generation (Ettinger et al., 2008), suggesting that
the PEF may participate in presetting the oculomotor network for cor-
rect antisaccade generation. Evidence suggests that regions in the
area of the intraparietal sulcus (within parietal cortex) may perform
the vector inversion required to specify the correct antisaccade loca-
tion (e.g., Zhang and Barash, 2000; Medendorp et al., 2005; Nyffeler
et al., 2007). Therefore, a failure to activate the PEF optimally during
antisaccade preparation may make it more difficult for ADHD adults
to generate the voluntary saccade, resulting in more direction errors
and/or increased SRTs during antisaccade trials.

Interestingly, control participants produced greater activation in
CN during prosaccade preparation than ADHD participants. CN is in-
volved in controlling prosaccade initiation and suppression (Ford
and Everling, 2009; Watanabe and Munoz, 2010b, 2011b). For exam-
ple, Watanabe and Munoz (2011b) reported that post-stimulus
microstimulation of the monkey CN lengthened pro SRTs, while
pre-target microstimulation shortened pro SRTs, possibly by altering
excitability via different pathways through the basal ganglia. There-
fore, insufficient recruitment of the CN during prosaccade preparation
may have reduced the activation of these basal ganglia pathways,
possibly explaining the increased variability of pro SRTs in the
ADHD group. Furthermore, the CN is also involved in motivational as-
pects of prosaccade behavior (Watanabe and Hikosaka, 2005; Ding
and Hikosaka, 2006; Hikosaka, 2007; Kobayashi et al., 2007). CN ac-
tivity increased during prosaccade preparation when the expectancy
of a reward was high (Watanabe and Hikosaka, 2005); moreover, in-
jection of a dopamine antagonist into the CN greatly influenced the
reward modulation of saccade behavior by reducing SRTs following
a high-reward trial (Hikosaka, 2007). Several studies have linked
the behavioral deficits of ADHD to a dopamine deficiency (see del
Campo et al., 2011; Krause, 2008; Tripp and Wickens, 2009 for re-
view). Therefore, the increased occurrence of prosaccade direction er-
rors in the ADHD is perhaps related to poor motivation for the task,
which may be explained by reduced activation in the CN during
prosaccade preparation.

4.3. Adaptive mechanisms

Because ADHD adults exhibited normal saccade metrics, we did not
expect to see group differences in activation during the saccade execu-
tion period of pro and antisaccade trials. Group differences during exe-
cution were only observed in DLPFC. When executing a correct pro or
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antisaccade, ADHD adults exhibited greater activation in DLPFC com-
pared to controls. This may reflect some type of adaptive mechanism
to deal with the antisaccade conflict, given the deficit during the prepa-
ratory epoch. The DLPFC may provide a supplementary, albeit less effi-
cient (i.e., occurs post-target) signal to help reduce the production of
the unwanted prosaccade during antisaccade trials.

Humans with lesions to the DLPFC produce more direction errors
in the antisaccade task (Guitton et al., 1985; Pierrot-Deseilligny et
al., 2003). Several functional neuroimaging studies have reported
greater DLPFC activity during antisaccades compared to prosaccades
(e.g., DeSouza et al., 2003; Matsuda et al., 2004; Ettinger et al.,
2008) and this enhanced activation of DLPFC during antisaccade trials
occurs during preparation, prior to antisaccade generation (DeSouza
et al., 2003; Ford et al., 2005; McDowell et al., 2005; Brown et al.,
2007). Together, these data suggest that the DLPFC is critically in-
volved in suppressing reflexive saccades during the antisaccade
task. However studies that used an interleaved, rather than a block,
design did not see greater DLPFC in antisaccade trials compared to
prosaccade trials (Raemaekers et al., 2002, 2006; O'Driscoll et al.,
2005). McDowell et al. (2008) posit that in cases such as these, the
DLPFC may instead produce tonic activity during the entire task due
to the increased difficulty and more complex response selection
requirements during the interleaved design. Based on this theory,
we may not have seen differences in DLPFC activity between pro
and antisaccades because we used an interleaved design.

The observation that adults with ADHD generated greater BOLD
activity in DLPFC during saccade execution can be interpreted in
two ways. First, ADHD participants recruited DLPFC for successful
pro and antisaccade execution, perhaps as an ‘adaptive strategy’ to in-
hibit unwanted automatic saccades (i.e., direction errors during
antisaccade trials or express saccades during prosaccade trials). In
this case, their longer SRTs may reflect the additional processing
time required to recruit the DLPFC. Our correlational analysis
(Fig. 8F) supports this view as post-target activity in DLPFC correlated
positively with anti SRT. Second, brain activation for pro and
antisaccade execution was measured by subtracting activation occur-
ring during the saccade preparation epoch from the saccade response
epoch. Therefore, it is at least possible that control participants
recruited the DLPFC more so during preparation, while ADHD partici-
pants recruited the DLPFC more so during execution. As such, saccade
deficits in the ADHD group may result from a reduced suppression
signal from the DLPFC during the preparation stage, leading to a
reduced ability to inhibit prosaccades during antisaccade trials and
more express saccades during prosaccade trials. This second suggestion
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was also supported by our data in that execution-related activity in
DLPFC correlated positively with percentage of direction errors
(Fig. 8E).

4.4. Saccade error monitoring

During error trials, participants generated two saccades (a direc-
tion error and a correction saccade), while during correct trials, only
one saccade was generated. Therefore, differences in activation
between correct and error trials may have arisen not only from the
generation of the error itself, but also from differences in the motoric
response (i.e., one versus two saccades). As such, we limit this discus-
sion to findings in the ACC, an area that has been shown consistently
to be involved in monitoring antisaccade performance (Polli et al.,
2005) and signaling the likelihood and actual occurrence of
antisaccade errors (Nieuwenhuis et al., 2001; Ford et al., 2005;
Brown et al., 2006; Endrass et al., 2007). For example, Ford et al.
(2005) found greater activation in ACC for correct antisaccades as
opposed to incorrect antisaccades during antisaccade preparation;
however, greater activation during incorrect antisaccade trials was
observed during the execution period. These findings suggest that
the ACC could act as some type of ‘learning tool’ or ‘performance eval-
uation’ of error responses that effect changes in future response selec-
tion based on feedback from previous responses. We found that
controls had greater activation in ACC when generating incorrect
antisaccades versus correct antisaccades, but this was not evident in
ADHD adults (Fig. 7). This finding could not be attributed to group dif-
ferences in the percentage of corrected antisaccade errors because this
analysis only included trials in which antisaccade direction errors
were corrected. Disturbed ACC functioning in adult ADHD is supported
by a growing bodyof evidence. First, adultswith ADHDhave significant-
ly smaller ACC volumes than normal adults (Seidman et al., 2006;
Amico et al., 2011) and recently, decreased functional connectivity be-
tween the ACC and right inferior prefrontal cortex has been noted in
ADHD (Cubillo et al., 2010). Second, studies using magnetic resonance
spectroscopic imaging, reported abnormal metabolism in ACC in adults
with ADHD (Colla et al., 2008; Kronenberg et al., 2008). Finally, reduced
ACC activation during tasks that measure inhibitory control has been
reported in adults with ADHD (Bush et al., 1999; Fallgatter et al.,
2005; Cubillo et al., 2010; but see Dillo et al., 2010 for an alternative).
Overall, the reduced activation in ACC during antisaccade errors in
ADHD adults may indicate that they were not processing antisaccade
errors, which thus led to increased direction errors.

One must be careful when interpreting these findings as activations
relating to preparation versus execution during correct versus incorrect
antisaccade trials were not separated. Therefore, tomore aptly examine
the neural correlates of antisaccade errors in adults with ADHD, future
studies should use a design that can separate activity related to prepa-
ration versus execution of antisaccade errors, like that employed by
Ford et al. (2005), who used an extended pre-target period that allowed
the separation of pre- versus post-target activations during individual
trials in which an antisaccade error was generated. However, such a de-
sign may not be feasible when studying ADHD because they have diffi-
culties maintaining fixation for prolonged periods (Munoz et al., 2003).

4.5. Limitations of the study

It is important to address concerns that the behavioral and brain ac-
tivation differences in the ADHD groupmay result from the use of stim-
ulant medication or illicit drugs on the testing day. To ensure that this
did not occur, we asked each participant of their drug use using several
verbal interviews prior to and on the day of testing. Despite these
precautions, future studies should administer toxicity-screening to all
participants, ensuring that they have not taken any medication or illicit
drugs that may affect eye movements or BOLD activity. Another limita-
tion of this study concerns the lownumber of participants in each group
(n=14), which limited our analysis of the fMRI data to the use of a
fixed-effects design rather than a random-effects design. Future studies
will need to be conductedwithmore participants, allowing the findings
to be generalized to a population.

4.6. Conclusions

We have shown that antisaccade deficits in ADHD persist into
adulthood and that these impairments do not result from an inability
to execute an antisaccade but rather stem from the failure to properly
prepare for the antisaccade. This novel pathophysiological inference
that inhibitory control deficits in adults ADHD may arise from an
overall inability to ‘preset’ critical brain areas involved in inhibitory
control needs to be examined further. Studies examining preparatory
mechanisms in other tasks that assess inhibitory control or the effect
of stimulant medications on preparatory actions would be beneficial.
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