
NeuroImage: Clinical 2 (2013) 282–290

Contents lists available at ScienceDirect

NeuroImage: Clinical

j ourna l homepage: www.e lsev ie r .com/ locate /yn ic l
Computer-aided detection of radiation-induced cerebral microbleeds
on susceptibility-weighted MR images☆
Wei Bian a,b, Christopher P. Hess b, Susan M. Chang c, Sarah J. Nelson a,b,d,⁎, Janine M. Lupo b

a The UC Berkeley & UCSF Graduate Program in Bioengineering, University of California San Francisco, San Francisco, CA, USA
b Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
c Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
d Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
☆ This is an open-access article distributed under the t
Attribution-NonCommercial-ShareAlike License, which
distribution, and reproduction in any medium, provided
are credited.
⁎ Corresponding author at: UCSF-Mission Bay, Byers Hal

4th Street San Francisco, CA 94158-2330, United States. T
415 514 1028.

E-mail address: sarah.nelson@ucsf.edu (S.J. Nelson).

2213-1582/$ – see front matter © 2013 The Authors. Pu
http://dx.doi.org/10.1016/j.nicl.2013.01.012
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 22 September 2012
Received in revised form 26 January 2013
Accepted 29 January 2013
Available online 9 February 2013

Keywords:
Cerebral microbleeds
Susceptibility-weighted MR imaging
Computer-aided detection
Fast radial symmetry transform
Recent interest in exploring the clinical relevance of cerebral microbleeds (CMBs) has motivated the search
for a fast and accurate method to detect them. Visual inspection of CMBs on MR images is a lengthy, arduous
task that is highly prone to human error because of their small size and wide distribution throughout the
brain. Several computer-aided CMB detection algorithms have recently been proposed in the literature, but
their diagnostic accuracy, computation time, and robustness are still in need of improvement. In this study,
we developed and tested a semi-automated method for identifying CMBs on minimum intensity projected
susceptibility-weighted MR images that are routinely used in clinical practice to visually identify CMBs.
The algorithm utilized the 2D fast radial symmetry transform to initially detect putative CMBs. Falsely iden-
tified CMBs were then eliminated by examining geometric features measured after performing 3D region
growing on the potential CMB candidates. This algorithm was evaluated in 15 patients with brain tumors
who exhibited CMBs on susceptibility-weighted images due to prior external beam radiation therapy. Our
method achieved heightened sensitivity and acceptable amount of false positives compared to prior methods
without compromising computation speed. Its superior performance and simple, accelerated processing
make it easily adaptable for detecting CMBs in the clinic and expandable to a wide array of neurological
disorders.

© 2013 The Authors. Published by Elsevier Inc. All rights reserved.
1. Introduction

Cerebral microbleeds (CMBs) are small, frequently perivascular
collections of brain parenchymal hemosiderins induced by prior hem-
orrhage. OnMR T2*-weighted gradient echo (GRE)magnitude images,
CMBs appear as small, rounded, hypointense lesions of variable size
due to susceptibility-related signal loss within iron-containing hemo-
siderins that accumulate paramagnetic ferric atoms (Charidimou and
Werring, 2011; Cordonnier et al., 2007; Greenberg et al., 2009).
Since the susceptibility effect scales linearly with magnetic field
strength, the contrast of CMBs is greatly enhanced by higher field
strengths (e.g., at 3 T or 7 T) and susceptibility-weighted imaging
(SWI) (Ayaz et al., 2010; Conijn et al., 2011; Nandigam et al., 2009).
Because this heightened contrast has facilitated the detection of
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CMBs, there is a growing interest in exploring their diagnostic and
prognostic values in diseases such as cerebral amyloid angiopathy
(CAA) (Greenberg et al., 1999), stroke (Cordonnier et al., 2007;
Fiehler, 2006; Werring et al., 2005); neurodegenerative disorders
(Cordonnier and van der Flier, 2011), traumatic brain injury (TBI)
(Scheid et al., 2003), and radiation therapy-induced injury in patients
with gliomas (the most common brain tumors) (Lupo et al., 2012).
Although their putative role in neurocognitive function and implica-
tions for clinical management are still being evaluated (Charidimou
and Werring, 2011; Cordonnier et al., 2007; Greenberg et al., 2009),
there is accumulating evidence that CMBs reflect the severity of
microvascular damage in the brain due to microangiopathy (Vernooij
et al., 2008), TBI (Scheid et al., 2003), or radiation therapy (Lupo et al.,
2012).

Visual inspection of CMBs onMR images is especially difficult due to
their small size (with radii often b2 mm for radiation-induced CMBs)
andwide distribution throughout the brain. In CAA and following crani-
al radiation, the sheer large number of CMBs can render manual lesion
counting impractical or impossible. Detection is further confounded
by the presence of normal anatomical structures with heightened mag-
netic susceptibility that mimic the appearance of CMBs on T2*-sensitive
sequences, such as deoxyhemoglobin-containing intracranial veins.
served.
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Fig. 1. Schematic diagram for the proposed CMB detection algorithm and selected
optimized parameters. (S refers to the intensity of FRST map; the processing above
the dashed line belongs to the step of initial putative CMB detection, while the below
belongs to the step of false positive reduction.)
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These characteristics make the identification of CMBs a lengthy and
arduous task that is prone to human error and substantial intra-rater
and inter-rater variability (Cordonnier et al., 2009; Gregoire et al.,
2009). An automatic, computer-aided CMB detection method that can
bothminimize the burden of visual inspection and improve the accura-
cy of detection of CMBs is therefore highly desirable.

Several methods have been proposed for CMB detection (Barnes et
al., 2011; Kuijf et al., 2012; Seghier et al., 2011). Seghier et al. (2011)
implemented an intensity-based statistical classification algorithm in
which T2*-weighted magnitude images are first registered to a stan-
dard template that maps voxelwise probabilities of individual brain
structures such as gray matter, white matter, cerebral spinal fluid,
and CMBs. Gaussian mixture modeling is then applied to distinguish
CMBs from other brain structures. They identified patients with
CMBs at a sensitivity of 77% and a detection rate of 50% for total
true CMBs without giving the number of false positives. Barnes et al.
(2011) proposed a technique for intensity-based local statistical
thresholding that assumes the Gaussian distribution of background
tissue in a small region and then identifies hypointense CMBs as out-
liers. False positives were reduced by constructing a support vector
machine that incorporates shape, size and intensity as features for
each hypointense region to distinguish CMBs from mimics. They
achieved a detection sensitivity of 81.7% with 107.5 false positives
per patient. Kuijf et al. (2012) developed an algorithm for CMB detec-
tion based on the fast radial symmetry transform (FRST), which en-
hances local objects with spherical or near-spherical geometry (Loy
and Zelinsky, 2003). By using the transform, the algorithm achieved
a detection rate of 71.2% with 17.2 false positives per patient.

Despite the reported success of these computer-aided methods for
detecting CMBs, there remains a need to improve diagnostic accuracy
with simpler processing, less computation time, and greater robustness
in the presence of anatomic distortion such as brain tumors, resections,
and infarcts. In addition, all of the abovemethods are designed to detect
CMBs on T2*-weighted magnitude or SWI images without minimum
intensity projection (mIP) processing, which helps distinguish CMBs
from hypointense veins and is used in clinical practice for visual inspec-
tion of CMBs (Lupo et al., 2012), even by the groups who have devel-
oped these automated methods (Ayaz et al., 2010; de Bresser et al.,
in press). Direct adaptation of their methods for CMB detection on mIP
images may be nontrivial as the original geometric coordinates and
characteristics of CMB vary after the mIP process, rendering some of the
prerequisites associated with these features invalid for these methods.

In this study, we propose a new approach for CMB detection with
higher sensitivity and faster computation than has been previously
reported, even in the presence of anatomic disease. This approach
aims to detect CMBs on mIP SWI images, and the detection process is
divided into two main steps: 1) initial putative CMB detection using
the 2D FRST, 2) subsequent false positive reduction by characterizing
geometric features of putative CMBs through region growing. Although
the FRST has already been used to detect CMBs on T2*-weightedmagni-
tude images (Kuijf et al., 2012), the transform was performed in 3D,
which requires isotropic image acquisition, and even a perfectly spher-
ical paramagnetic object under isotropic acquisition becomes elongated
along the direction of the main magnetic field on T2*-weighted images
because the profile of its perturbation of the external field is not spher-
ical (Schenck, 1996). Also, the transformhas beenmodified and utilized
in new ways in our implementation. To illustrate the effectiveness of
the proposed approach, we applied the method to a series of patients
with CMBs induced by radiation treatment for resected gliomas.

2. Methods

2.1. CMB detection algorithm

The proposed algorithm can be divided into two primary steps:
1) identification of putative CMBs using 2D FRST; and 2) false positive
reduction of putative CMBs identified in the first step using 3D region
growing followed by geometric feature examination. A flowchart
depicting the steps for this algorithm is given in Fig. 1. Details of the
implementation will be described in the following sections.
2.1.1. Detection of putative CMBs using 2D FRST

2.1.1.1. FRST. The inherently circular morphology of CMBs on SWI
images makes lesion geometry an ideal feature for automated detec-
tion. For this purpose, a modified version of the FRST that was devel-
oped by Loy and Zelinsky (2003) was adopted in our algorithm. Our
goal in this initial step was to select a set of parameters that would
identify the greatest possible number of true microbleeds, regardless
of the number of false positives.

FRST is a gradient-based transform that begins with a computation
of the gradient of each pixel using the 3×3 Sobel operator. If a pixel p
lies on the edge of a circular disk, then the direction of its gradient
g(p) is orthogonal to the edge, pointing to (if the circular disk is
hyperintense) or away from (if the disk is hypointense) the center of
the circle. The pixel that is at a distance n pixel away from p along
the direction of g(p) is defined as a positively-affected pixel, whereas
the pixel that is at a distance n pixel away from p along the direction
opposite to that of g(p) is defined as a negatively-affected pixel. Since
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CMBs are hypointense objects onMR images, we only need to consider
negatively-affected pixels, whose coordinates are given by

p−ve pð Þ ¼ p� round
g pð Þ
‖g pð Þ‖
� �

n;

where “round” rounds each vector element to the nearest integer and
n is the radius of the circular features to be detected. Since there is no
prior knowledge about the radius of the circular object to be detected,
the transform is performed at a set of radii n∈N. At each radius, an ori-
entation projection image On and a magnitude projection image Mn

are generated as the following:

On p−ve pð Þð Þ ¼ On prev p−ve pð Þð Þ−1;
Mn p−ve pð Þð Þ ¼ Mn prev p−ve pð Þð Þ−‖g Pð Þ‖:

The initial value of each pixel in On and Mn is set to zero. For each
negatively-affected pixel, the value of that pixel p−ve in the On andMn

is decreased by 1 and ‖g(P)‖ from On_prev (previous On) and Mn_prev

(previous Mn), respectively. All edge pixels on the boundary of a
hypointense circle with a radius of n will have their negatively-
affected pixels located at the center of the circle, highlighting the
central pixel in On and Mn. To prevent corruption by noise, gradient
magnitudes smaller than the 95th percentile (background pixels on
our SWI images have gradient of zero) were ignored in our experi-
ments when computing On and Mn. This threshold was found to ade-
quately suppress background noise while maintaining reasonable
sensitivity to CMBs with low contrast.

Once the On and Mn are calculated, the radial symmetry contribu-
tion at radius n can be defined as:

Fn pð Þ ¼ Mn pð Þ
kn

Õn pð Þ�� ��
kn

 !α

where

Õn pð Þ ¼ On pð Þ if On pð Þbkn
kn otherwise:

�

kn is a scaling factor used to normalize On andMn across different radii
such that the symmetry map of objects with different size can be rep-
resented on a similar scale. The α parameter is used to characterize
radial strictness, with higher values enhancing features with radial
symmetry (i.e. dots) and attenuating features without radial symme-
try (i.e. lines). The full transform map is computed by summing the
symmetry contribution over all the radii: S=∑n∈NFn.

In the original transform proposed by Loy and Zelinsky (2003), Fn
has to be convolved with a Gaussian kernel in order to spread the in-
fluence of the p−ve as a function of the radius n. Because we are only
interested in knowing the center location of each potential CMB dur-
ing the initial detection step, this convolution is skipped in our
algorithm. In addition, instead of initializing On with zero, a small
negative value was used as the initial value for each pixel in On. This
modification increases the weight given to small radii over the
other radii and thus improves the sensitivity of the transform to
small circular objects (Riccardi, 2006). An example of a slice of mIP
SWI image and its 2D FRST map are shown in Fig. 2(a) and (b),
respectively.

2.1.1.2. Intensity screening of FRST map. Pixels that have transform
value S with absolute value larger than an empirical threshold t1 on
the FRST map are directly identified as CMB candidates without 3D
region growing. This upper bound defines hypointense regions with
relatively large radius and high contrast, consisting primarily of true
CMBs and very few false positives. To recover CMBs with smaller
radii and lower contrast, pixels with |S| falling between t1 and a
lower threshold t2 (also determined empirically) are also considered
as candidate CMBs. While a smaller absolute value for the lower
threshold t2 boosts sensitivity to true CMBs that are intended to be re-
covered, this choice for the parameter also results in a larger number
of false positive lesions. The majority of these false positive CMBs are
subsequently removed by performing the steps illustrated in Fig. 1. To
overcome the uncertainty introduced by partial volume averaging of
sub-millimeter CMBs, we also consider regions with |S|b t2 but im-
pose two additional constraints: 1) the region must contain two
connected pixels with both of their absolute values of S larger than
t3 (with t3b t2); and 2) the absolute value of the sum of the two
connected pixels is larger than t2. This step prevents the elimination
of true CMBs with less circular morphology where the peak of the
FRST is blurred into neighboring pixels. The rational for how these
threshold values were determined can be found in the Parameter
selection section.

2.1.2. False positive reduction
The number of false positives generated during the initial detec-

tion step of our algorithm is large due to the low thresholds t2 and
t3 used for the FRSTmap to intentionally maximize detection sensitiv-
ity in the first step. Stringent false positive reduction via the employ-
ment of a vessel mask, 3D region growing, and geometric feature
examination is performed to eliminate the majority of these
misidentified CMBs before final visual evaluation.

2.1.2.1. Vessel mask screening using FRST outputs. Beyond its capability
in the enhancement of the center of circular objects, we also found
empirically that FRST helped to reduce false positives on original
maps. Specifically, the orientation projection map O1 (On computed
at n=1) emphasizes vessels and the edges of brain, regions where
CMB mimics are typically found. The projection map O1 can therefore
be used to create a binary mask in which a pixel value is 1 if its O1

decreased at least by one from its initial value (denoting vessels
and the edges of brain), or 0 otherwise. The final mask is generated
after removing binary regions with an area smaller than 25 pixels
(a value that was comparable to the observed maximal CMB area).
Only smaller CMBs undergo this vessel mask screening to prevent
true large CMBs from being eliminated by the mask. Application of
this mask to the FRST maps will reduce the number of initial false
positives as shown in Fig. 2(c–e).

2.1.2.2. 3D region growing. Because all thresholds used in the initial
detection are applied to the 2D FRST map slice by slice, it is likely that
a putative CMB will be detected multiple times on different slices. The
central seed point from which to begin region growing is first deter-
mined by finding the minimum intensity of a 3D locally connected re-
gion (26-connectivity) that contains all detected pixels of a putative
CMB onmIP SWI images. 3D region growing is subsequently performed
from this center to neighboring pixels based on 26-connectivity if |In−
Is|bMID, where In, Is andMID are the intensity of the neighboring pixels,
seed point intensity, and the maximum intensity difference between
pixels, respectively. The growing stops when either |In− Is|>MID, or
the distance from the seed point exceeds a maximum grown radius
both in-plane (MP) and in the slice direction (MS).

2.1.2.3. 2D geometric feature examinations. After 3D region growing,
2D geometric features were extracted on every slice of the grown re-
gion. We chose to quantify 2D measures of area and circularity rather
than 3D measures of volume and sphericity because the latter are
distorted after mIP processing. Area is measured as the total number
of pixels that comprise a putative CMB and is utilized to remove false
positives corresponding to large objects. Circularity (C) is defined as
the ratio of the area of the CMB shape to the area of a circle having
the same perimeter (C=(4π×area)/perimeter2). Circularity mea-
sures range from 0 to 1, with circles having a value of 1 and lines a



Fig. 2. Example outputs from 2D FRST and 3D region growing. (a) A representative mIP SWI slice from a glioma patient with 4 CMBs (circles) on the displayed slice. (b) FRST map
before thresholding. (c) Vessel mask, highlighting vessels and the edge of the brain. (d) FRST map after thresholding but before applying the vessel mask in (c). (e) FRST map after
thresholding and masking (c). The bright foci are the centers of potential CMBs. Compared to the map in (d), the number of putative CMB candidates are greatly reduced by
applying the mask. (f) The final output of detected CMB candidates after false positive reduction. All 4 CMBs (circles) were detected with 3 false positives left.
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value approaching 0. This parameter removes objects that are irregu-
lar or elongated such as vessels. For each of the remaining CMBs, a
centroid is then calculated at each slice location in order to remove
false positives with slices that are shifted away from the central
axis, such as transverse vessels that have a circular cross-section on
2D slices.

2.1.3. Parameter selection

2.1.3.1. FRST. Three parameters of the FRST, kn, n, and α, were empir-
ically selected to achieve the highest possible sensitivity to CMBs. In
our experiments, the normalization factor kn was set to 5 for n=1
and 8 for n>1. These values are less than the values suggested by
Loy and Zelinsky (2003), but improve the sensitivity of the transform
to smaller CMBs. As suggested by Kuijf et al. (2012), α was set to 3,
and the set of radii n was allowed to vary from 1 to 3 pixels in
order to encompass the majority of our CMBs.

2.1.3.2. Thresholding of FRST map. In order to first select easily identifi-
able true CMBs with |S|>= t1, which have relatively large radius and
high contrast, a sufficiently high threshold should be used for t1. We
therefore reviewed FRST outputs from multiple representative CMBs
of intermediate size, and based on this review, empirically chose the
threshold to be 170. In contrast, a sufficiently low threshold should
be used for t2 and t3 to detect CMBs that have a smaller radius and
lower contrast such that pixels with |S|>= t2 but b=t1 are also con-
sidered as potential CMB candidates. To determine the values for t2
and t3, the FRST outputs from representative CMBs with extremely
low contrast or small radii were investigated, and values of 65/10
were chosen for t2/t3 to ensure that nearly all true CMBs were
included after thresholding. For any two connected pixels in the
FRST map, a potential CMB is selected only if their combined |S| is larger
than t2 and each individual |S| is greater than t3. Because the t1 value of
170was set solely to achieve heightened detection specificitywhile a t2/
t3 value of 65/10was determined tomaximize detection sensitivity, the
empirical estimation of these threshold parameters from representative
CMBs is feasible without the risk of over-training of these parameters.
2.1.3.3. Volume control in 3D region growing. The main requirement for
our region growing algorithm was the ability to sufficiently grow the
extent of the initial region so that enough elongation is achieved to
distinguish small vessels from CMBs, while preventing the generation
of false negatives adjacent to neighboring hypointense regions. The
parameters that control the extent of the grown region MP and MS,
were determined based on prior knowledge of CMB size (whose typi-
cal maximal diameter is approximately 6 pixels or 3 mm in diameter)
and the fact that only smaller CMB candidates will undergo region
growing. The values we selected for MS and MP allowed a region to
maximally traverse 3 image slices (6 mm) with a maximum diameter
of 10 pixels (5 mm), respectively, both of which have exceeded the
typical maximal size of CMBs we investigated. While an acceptable
threshold for MP and MS can be easily determined, receiver operating
characteristic (ROC) curve analysis with patients from a training set
was necessary to establish a threshold for the MID between a grown
pixel and the seed point, due to its inherently greater variability
because the standard deviation of pixel intensity within CMBs and
vessels can vary with image contrast and anatomical location. Based
on the ROC curve analysis illustrated in Fig. 3, a MID of 60 (jointly con-
sidered with C) resulted in the best overall detection performance

image of Fig.�2
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based on minimizing distance to the upper left corner and was thus
utilized in the final parameter set when validating our algorithm.

2.1.3.4. Determination of thresholds for geometric feature extraction.
Similarly to region-growing parameters MP and MS, the maximum
area on any 2D slice for a given CMB was also determined by its phys-
ical size. A conservative value of 10 pixels, which corresponds to a di-
ameter of 3.6 pixels or 1.8 mm, was selected. A centroid shift of 1
pixel (0.5 m) was allowed in either direction to account for
partial-voluming with discretization. CMB candidates with parameter
values larger than these thresholds are removed. Because true CMBs
that are less than 1 mm in diameter can appear more rectangular
than circular in shape as limited by our pixel resolution, the range
of circularity values was quite large. As a result, the threshold for cir-
cularity was determined by constructing and analyzing ROC curves
jointly for MID and C as shown in Fig. 3. When all points on both
curves were considered together, C=0.78 and MID=60 were opti-
mal cutoffs.

2.2. Validation of CMB detection algorithm in patients

2.2.1. Patient population
Fifteen patients with gliomas, who had undergone T2*-weighted

MR imaging at our research center, were retrospectively selected to
train parameters and evaluate the performance of our algorithm. To
be eligible for this study, patients had to have received fractionated
external beam radiation therapy, which damages microvasculature
in normal brain parenchyma and results in the formation of CMBs. Be-
cause CMBs are not typically observed in the initial 1~2 years follow-
ing cranial irradiation (Lupo et al., 2012), patients were only included
if radiation was completed at least 2 years prior to MR imaging. Final-
ly, patients were only included if they had at least 10 potential CMBs
on initial screening, as these cases are where automated methods are
most desired. The patients were randomly divided into two sets: a
training set that included 5 patients and a test set that included 10
Fig. 3. ROC curves constructed using the data from a training set that contains 5 pa-
tients and 116 true CMBS. The curves were used to determine cutoff thresholds for
maximal intensity difference (MID) between the seed point and the final grown
point after region growing (solid line; assuming C=0.70), and circularity in geometric
feature examination (dashed line; assuming MID=60). When points on both curves
are considered all together, C=0.78 and MID=60 are the optimal cutoffs in terms of
their shortest distance (D=0.14) to the upper left corner (Note the scales of horizontal
and vertical axes are not equal). The distance was also calculated for MID=65 with
C=0.75 and MID=65 with C=0.78, but neither combination gave a distance that
was less than 0.14. Thus, the cutoff values for MID and C were set to 60 and 0.78,
respectively.
patients. The training set was used to construct ROC curves for C
and MID to determine their optimal values, while the test set was
used to evaluate the performance of the algorithm.
2.2.2. MR Imaging
MR images were acquired on a GE 3 T whole-body system (GE

Healthcare, Waukesha, WI) with an 8-channel phased array receive
coil (Nova Medical, Wilmington, MA). High resolution T2*-weighted
imaging using a 3D flow-compensated spoiled gradient echo se-
quence was performed using TE/TR=28/56 ms, flip angle 20°,
24 cm FOV, in-plane resolution of 0.5×0.5 mm, 2 mm slice thickness
and a total slice number of 40 targeted to the area of glioma resection.
A GRAPPA-based parallel imaging acquisition was implemented with
a 2-fold acceleration factor in order to keep the total acquisition time
under 7 min.
2.2.3. Image reconstruction and preprocessing
Standard SWI post-processing techniques were applied to the

reconstructed k-space data for each coil, and then combined and in-
tensity corrected (Haacke et al., 2004; Lupo et al., 2009). The skull
and background were removed from reconstructed images by apply-
ing a brain mask created from the combined magnitude image with
FSL's brain extraction tool software (Smith, 2002). Images were
then normalized to an intensity range of 0–255 using 0 and the
98th percentile intensity of original images as the original minimum
and maximum intensity, respectively. Finally, minimum intensity
projection images through 8 mm-thick slabs (4 slices), with a
6 mm-thick (3 slices) overlap between each consecutive projection,
were generated from the intensity-normalized images and used for
CMB identification.
2.2.4. Visual assessment of true CMB burden
CMBs were counted by two raters, one subspecialty-certified neu-

roradiologist (CPH) and one trained reader (JML). CMBs were count-
ed independently by each reader, and discrepancies were resolved by
consensus review. Raters initially counted CMBs using the proposed
algorithm with parameters set for high sensitivity but low specificity.
Both raters distinguished true CMBs from false-positive CMBs and ad-
ditionally searched for true CMBs missed by the algorithm. The algo-
rithm developer (WB) was blinded to the true lesion counts as
determined by the interpreters, while both raters were blinded to
the parameter selection. Our way of counting CMBs is driven by the
finding, observed both by Kuijf et al. (2012) and by our initial experi-
ence in developing the algorithm, that an automated technique may
be able to detect extra true CMBs apart from those identified by visual
inspection alone. A gold standard of true CMBs, therefore, would be
better constructed by comprising CMBs identified not only by visual
inspection but also by automated detection.

CMBs in our gold standard were further divided into two groups
by the interpreters: definite and possible. Definite CMBs were defined
as those lesions with sufficient circular shape and hypointensity to
be considered unambiguously as CMBs and not mimics on visual anal-
ysis. Possible CMBs were characterized by one or more of following
deviations from definite CMBs: 1) less circular shape; 2) less tissue
contrast; 3) a location or appearance that made it difficult to distin-
guish with confidence as representing a mimic such as a small
“end-on” cortical vessel. Our criteria to scoring CMBs into the two cat-
egories are similar to those used in the literature (Conijn et al., 2011;
de Bresser et al., in press; Gregoire et al., 2009). In addition, regions
where CMBs are unlikely to occur, such as the ventricles and tumor
cavity, as well as areas within a 5 mm margin of the tumor cavity
(which were frequently lined by confounding post-operative blood
products) were excluded from the assessment.

image of Fig.�3


Table 1
Characteristics of true CMBs identified from 10 patients in the test set.

Number Diameter Minimum intensity

CMBs Total Mean Range Mean (mm/pixel) Mean Max

Definite 153 15.3 2–47 1.16/2.31 35.7 118
Possible 151 15.1 5–36 0.92/1.84 68.4 147
All 304 30.4 8–83 1.04/2.08 52.0 147

Table 2
CMB detection algorithm performance evaluated on the test set.

CMB True Detected Sensitivity False negative False
positive

FRST application
of FP mask

Region
growing

Definite 153 146 95.4% 0 1 6 –

Possible 151 117 77.5% 12 5 17 –

Total 304 263 86.5% 12 6 23 449
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3. Results

A total of 420 true CMBs were detected from 15 patients, of which
116 were from 5 patients in the training set and 304 were from 10 pa-
tients in the test set. Among the CMBs from the test set, 153 were
classified as “Definite” and 151 as “Possible”. The definite CMBs had a
larger average size (1.16 mm in diameter) and lower average mini-
mum intensity (35.7) than possible CMBs (0.92 mm and 68.4). The
Fig. 4. Representative examples of true CMBs detected by our algorithm. Top row: The center
(left) are highlighted on the FRST map (middle). After 3D region growing and geometric fe
because of the linear shape of its grown region (right). One true CMB (dashed circle) was
Bottom row: three possible CMBs of low image contrast were correctly identified and one fa
minimum diameter detected was 0.57 mm (1.13 pixel) and the
largest 2.46 mm (4.92 pixels). The number, diameter, and minimum
intensity of these CMBs from the test set are listed in Table 1.

Table 2 summarizes the performance of the algorithm on the test
set, which was able to correctly identify 263 of 304 total true CMBs,
resulting in a sensitivity of 86.5%. Of these correctly identified CMBs,
16.7% (all definite) were directly identified after the FRST and did
not undergo region growing and geometric feature examinations.
Separating CMBs into two categories improved the sensitivity of
definite CMBs to 95.4%, while, as expected, our algorithmwas less sen-
sitive (77.5%) to possible CMBs. Fig. 4 shows several examples of true
CMBs detected by various steps of the algorithm. Of the 41 CMBs that
were missed, 12 had low contrast with mean minimum intensity of
116.8 and a mean |S| of 56, which was out of the selection range on
the FRST maps. After applying the vessel mask to the FRST maps, 6
more true CMBs were lost because of their close proximity to vessels
or tissue boundaries. The remaining 23 missed CMBs were removed
in region growing and geometric feature examinations. A representa-
tive example of false negatives created at each of these steps is shown
in Fig. 5.

The initial detection using the FRST identified 3162 potential
CMB candidates, 90.8% of which were false positives. Only 1.0% of
these false positives were produced after initial thresholding of
the FRST maps with |S|>170 and therefore did not undergo false
positive reduction. The remaining false positives were generated
after thresholding the FRST maps with lower thresholds. If the ves-
sel mask had not been used, the number of false positives would
have been 6 times as large. After region growing, 84.4% of these
of 5 Definite CMBs (circles) and 1 false positive (arrow) from a vessel on mIP SWI image
ature examination, all true CMBs were identified and the false positive was eliminated
directly identified because its |S|>170, and thus did not undergo subsequent analysis.
lse positive was eliminated after region growing and geometric feature examination.
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Fig. 5. Typical false negatives found in our images. (a) A true possible CMB that was missed due to low contrast compared to surrounding tissue. (b) A missed true definite CMB that
was removed by the vessel mask because of its proximity to a neighboring vessel. (c) A true definite CMB that was eliminated after geometrical feature examination due to region
growing into susceptibility artifacts introduced by unsuccessful phase unwrapping during SWI processing.

Fig. 6. Typical false positives found in our experiments. (a) Four false positives (arrows) seen at the ending, cross section, or turning point of vessels. (b) Two false positives found in
the tumor cavity. (c) A false positive presented in the susceptibility artifacts in the air–tissue interface.
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false positives were eliminated with a final average of 44.9 false
CMBs identified per patient (range 23–65). The majority of these
stemmed from tortuous, terminating, or transverse vessels and
17.4% (7.8/patient) were found in ventricles, tumor cavities and
areas of susceptibility artifacts at air–tissue interfaces as demon-
strated in Fig. 6.

The efficiency and performance of our algorithm compared to
previously published methods are presented in Table 3. The computa-
tion time of the algorithmwas approximately 1 min per patient using
one core of a Linux workstation with Intel core 2 quad processors at
Table 3
Comparison of efficiency among CMB detection algorithms.

Algorithm Number of patients True CMBs Sensitivity False positives

Total Mean Total Per patient Per C

Seghier et al. 30 114 3.8 50% NAa NA NA

Barnes et al. 6 120 20 81.7% 645 107.5 5.
Kuijf et al. 18 66 3.7 71.2% 309 17.2 4.

Bian et al. 10 304 30.4 86.5% 449 44.9 1.

a The information was not provided in the publication.
b The information of computation power was not specified in the publication.
c The time used for image segmentation and registration was not included.
3.0 GHz and 8 GB of RAM. Our algorithm achieved the highest sensi-
tivity with the lowest percentage of false positives per CMB and the
fastest computation. Our results were also validated on a larger
sample size both in terms of the total number of CMBs and the aver-
age number of CMBs per patient.

4. Discussion

Development of computer-aided detection methods for CMBs is
challenging because of their small size, wide distribution, and the
Computation time

MB

3 min
(PC with 64-bit 3.2 GHz CPU, 12 GB RAM)

4 1 minb

7 1 hc

(One core of a standard workstation)
5 1 min

(One core of a Linux workstation with quad processors at 3.0 GHz, 8 GB RAM)

image of Fig.�5
image of Fig.�6
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presence of other structures that mimic their appearance. The need to
identify radiation-induced CMBs with low contrast is a further factor
that complicates their detection. Despite several previous attempts to
address this problem, it remains a topic of active research. In this
study, we have presented a semi-automated CMB detection algorithm
that has achieved superior performance with a sensitivity of 86.5%
and computation time of 1 min.

Achieving high sensitivity was the top priority in designing our
algorithm because it has more impact than specificity on the perfor-
mance that can be achieved. From a practical standpoint, visual in-
spection to remove false positive lesions is far easier than identifying
CMBs missed by the detection algorithm, as the eye can more rapidly
dismiss lesions falsely labeled as CMBs than it can search the entire
imaging volume for true CMBs. The overall performance of our algo-
rithm depended on both the size and contrast of CMBs, which is
supported by the heightened sensitivity that was observed for definite
CMBs compared to possible ones (95.4% vs. 77.5%). The newly formed
radiation-induced CMBs thatwere evaluated in this study are typically
harder to detect than CMBs caused by trauma or other mechanisms of
disease, as they are often smaller in size and have varied contrast.
Thus, we anticipate that our algorithm would be even more robust
when applied to other patient populations.

The high sensitivity of our algorithm may be explained to the
strength of our false positive reduction strategy. Screening of the FRST
map by applying a vesselmask allowed the use of amuch lower thresh-
old for the FRSTmap andmaximized sensitivity to smaller and low con-
trast CMBs during the initial detection step. This method facilitated the
detection of 96.1% of all true CMBs, which included 100% of definite
CMBs and missed a relatively small number of possible low-contrast
CMBs. If this vessel mask had not been applied, it would have been nec-
essary to use a higher threshold,whichwould have sacrificed the detec-
tion sensitivity. Although true CMBs can be masked if they are adjacent
to the structures that are included, the number of these CMBswas small
(2.0%; 1 definite and 5 possible) for our experiments.

Another significant contributor to our high sensitivity in initial
detection was the 3D region growing process. Although a potential
pitfall that is inherent for region growing is the occasional inclusion
of neighboring pixels containing nearby vessels or susceptibility arti-
facts (Fig. 5c), we only applied region growing to a subset of CMBs
with lower contrast and smaller size. Bypassing region growing for
large CMB candidates afforded reduced thresholds for geometric fea-
tures, which lead to more efficient false positive reduction. This sepa-
rate processing pipeline for large and small CMBs resulted in the
removal of only 7.6% (6 definite and 17 possible) of true CMBs during
subsequent region growing.

Our method achieved a higher sensitivity, faster computation
speed, and a reduced number of false positives compared with
other related approaches. Also the performance of our algorithm
was validated on a larger sample size in terms of total number of
CMBs and incidence per patient (Table 3), demonstrating the robust-
ness of our method. In particular there was heightened sensitivity
(86.5% vs. 71.2%) compared to the other method based on FRST
(Kuijf et al., 2012). Moreover, it should be noted that many of our
CMBs spanned a smaller number of pixels than Kuijf et al. (2012)
(average diameter: 2.08 vs. 2.28 pixels) and hence posed a greater
challenge. This improved sensitivity applied even to the possible
CMBs that had an average diameter of 1.84 pixels and after normaliza-
tion had an average minimum intensity up to 26.8% of the maximum.

Unlike previously published studies, our elevated sensitivity is
achievedwithout compromising computation speed. The fast computa-
tion of our algorithm originates from its simple design. Skull extraction
and intensity normalization are the only preprocessing steps required,
whereas other methods utilize image registration (Kuijf et al., 2012;
Seghier et al., 2011) and/or segmentation (Kuijf et al., 2012) routines
prior to applying their detection algorithms. In the initial detection
step, gradient-based FRST can quickly locate local hypointense regions
as potential CMBs. The computation time for FRST is further reduced
in our algorithm by eliminating the convolution step originally pro-
posed by Loy and Zelinsky (2003). In addition, the transform is repeat-
edly computed only at 3 radii in our experiments, while it was compute
by Kuijf et al. at 18 radii. Finally, 3D region growing is performedwithin
only a small local region for each candidate CMB, and only 3 geometrical
features (area, circularity and centroid) are quantified to sequentially
remove falsely identified CMBs, whereas the method of Barnes et al.
(2011) utilizes 14 features associated with the shape, intensity, and
size of CMBs in a support vector machine to perform the classification,
which takes up to multiple days for parameter training.

3D region growing was implemented in our algorithm in order to
reduce the number of false positives that were present after the FRST
step. This allowed geometric features of a potential CMB to be
extracted and was used in our study to eliminate 86.1% of false posi-
tives. The remaining false positives (1.5/CMB and 44.9/patient) origi-
nated mostly from vessels, susceptibility artifacts, or the surgical
cavity. Overall, our algorithm produced a smaller percentage of false
positives per true CMB than previous ones. Since radiation-induced
CMBs are often smaller and of lower contrast, there is a trade-off be-
tween producing a small number of false positives and maintaining
the high detection sensitivity achieved in our study. Kuijf et al.
(2012) used gray/white matter masks to exclude brain structures
such as ventricles and sulci, where false positives are often observed.
The disadvantage of this approach is that it requires the acquisition of
a T1-weighted image as well as the application of registration and
segmentation algorithms that prolong the total processing time. In
addition, all of our patients received intracranial tumor resection,
which produces structures that mimic CMB (see Fig. 6b). These struc-
tures can be removed quickly during the final visual inspection be-
cause of their obvious anatomical location. A strict performance
comparison of automated detection algorithms is difficult at this
point, as the size and contrast of CMBs may vary with other experi-
mental factors such as field strength and resolution (Nandigam et
al., 2009). The manual review process and patient inclusion criteria
are also all different among these studies. It is desirable in the future
to construct a standard CMB database, in which CMBs are categorized
by their disease type, MR imaging field strength, distribution or other
related factors. This will not only help objectively evaluate automated
CMB detection algorithms but also facilitate the training process for
these algorithms.

The success of our algorithm demonstrates the advantage of a using a
vesselmask to remove false positives in achieving a high sensitivitywhile
maintaining a reasonable specificity in CMB detection. While methods
that are able to create a high quality vessel mask in 3D using SWI have
been proposed in literature (Koopmans et al., 2008), we used the vessel
mask from the FRST transform in our approach because of its robustness
and simplicity in integratingwith our algorithm's pipeline. The better de-
lineation and continuity of veins onmIP SWI compared to non-projected
images facilitated both the generation of a more reliable vessel mask by
FRST and a greater extent of region growing on these structures, both of
which aided in reducing false positives. The improved false positive re-
duction can in turn be used to enhance detection sensitivity, e.g., set up
a low threshold to screen the FRST map and make the initial detection
highly sensitive. Limitations associatedwith the usage ofmIP SWI images
include susceptibility artifacts at air–tissue interfaces and magnified
background noise that is introduced during reconstruction of SWI images
that can be a potential source of false positives (Fig. 6c). Also the original
location of CMBs cannot be determined on these images because of the
projection processing, but it can easily be recovered on the original
non-projected images. The projection processing may also accidentally
project some CMBs in or close to certain dark structures that do not sur-
round them in actual anatomy, leading to decreased FRST response or
leakage in region growing, which both increase the number of false neg-
atives. Despite these limitations, using FRST on mIP SWI images is espe-
cially advantageous for the detection of radiation-induced CMBs, whose
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essentially low contrast on conventional T2*-weighted magnitude im-
ages as the result of its small size is greatly improved on mIP SWI (Lupo
et al., 2012). Furthermore, processing MR image using mIP has been
suggested as a required step for visual CMB detection, especially when
high resolution images acquired at high field strengths (e.g., 3 T or 7 T)
are used (de Bresser et al., in press). As visual inspection (e.g., further
false positive removal) of the output from automated CMB detection is
still required, it is desirable to design an algorithm that operates on the
same images that are used for subjective interpretation.

Finally, there are several limitations associated with our algorithm
itself. First, while 3D region growing is a simple and fast method to
segment putative CMBs, its capability to discriminate desired objects
from close but dissimilar background is limited, making the segmen-
tation leakage being more likely to happen for CMBs with low image
contrast. To improve the accuracy of the segmentation, more ad-
vanced and finer techniques such as active contours and let sets
may be used (Osher and Sethian, 1988), but at the expense of compu-
tation time. Second, at the very first and last image slices, the efficien-
cy of geometric examination becomes lower due to limited space for
region growing along slice selection direction. This may result in
there being a higher number of false positives on these slices than
on inner slices. Like previous published methods, training is an inev-
itable step that is required to apply our algorithm to detect CMBs
from different types of diseases, different MR field strengths, and
even different scan parameters such as TE, spatial resolution, and
slice thickness. Size and contrast variation are the principal reasons
that training is necessary, as most of parameters selected in our algo-
rithm require that the range of CMB size and intensity be considered.
However, the time used for training our algorithm is small as most of
the parameters used in the algorithm can be empirically determined
by studying a few representative CMBs as long as prior knowledge
about the size of CMBs is available. Optimal values for other parame-
ters such as MID and C can be determined empirically or formally by
constructing ROC curves on a small training dataset such as we did in
this study.

5. Conclusions

This study presented a method for semi-automated CMBs detec-
tion that uses mIP SWI, 2D FRST and 3D region growing. The FRST is
used for initial lesion detection, and false positives are removed
from putative CMBs identified in the first step using a region growing
process with geometric feature examination. Our method achieved
higher sensitivity with an acceptable number of false positives and
faster computation time when compared to previously developed
methods. Although it was evaluated for CMBs arising in the setting
of prior radiation therapy for gliomas, its superior performance is
likely to be of interest for detecting CMBs associated with other
neurologic disorders, including CAA, hypertension, and TBI.
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