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Abstract
Lim and Leek (2012) presented a formalization of information along object contours, which they
argued was an alternative to the approach taken in our article (Feldman & Singh, 2005). Here, we
summarize the 2 approaches, showing that—notwithstanding Lim and Leek's (2012) critical
rhetoric—their approach is substantially identical to ours, except for the technical details of the
formalism. Following the logic of our article point by point, Lim and Leek (a) defined
probabilistic expectations about the geometry of smooth contours (which they based on
differential contour geometry, while we used a discrete approximation—the only essential
difference in their approach), (b) assumed that information along the contour was proportional to
the negative logarithm of probability, following standard information theory, and then (c)
extended this formulation to closed contours. We analyze what they described as errors in our
approach, all of which rest on mathematical misunderstandings or bizarre misreadings of our
article. We also show that their extension to 3-dimensional surfaces and their “modified minima
rule” contain fatal deficiencies.
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In Feldman and Singh (2005), we presented a formal answer to a question first posed by
Attneave (1954): Which portions of a visual contour convey the most information? This
problem lies at the foundation of the psychological representation of visual shape, as it
depends on the way the brain encodes the geometry of the bounding contours of objects. But
aside from an important contribution by Resnikoff (1985), this problem had not received a
coherent mathematical answer in the decades since Attneave's article.1 In recent years,
however, an increasingly sophisticated understanding of the probabilistic representation of
visual properties has made an effective approach to this problem possible. In our 2005
article, we proposed a framework for contour information based on a set of very simple
ideas, which boil down the following three points.

1. We define probabilistic expectations about the geometry of smooth contours, based
on the assumption that smooth contours are most likely to continue to be straight at
each point, with a decreasing likelihood of larger turning angles (see Figure 1). We
expressed this idea mathematically by assuming that the turning angle α follows a
von Mises density (similar to a normal or Gaussian density2), p(α) ∝ exp(β cos α).

Correspondence concerning this article should be addressed to Manish Singh, Department of Psychology and Center for Cognitive
Science, Rutgers University—New Brunswick, 152 Frelinghuysen Road, Piscataway, NJ 08854. manish@ruccs.rutgers.edu.
1See the Appendix of our original article for a critique of Resnikoff's (1985) approach.
2The von Mises is the counterpart of the Gaussian or normal density suitable for angular measurements (Mardia & Jupp, 2000). β is a
parameteracting like the reciprocal of the variance of a normal distribution. The two functions have provably analogous properties
and, in any case, are nearly identical over the range under consideration.
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(We also considered several weaker or more general assumptions; see discussion
below.) That is, we assumed that contours tend to continue to be straight with some
random deviation about this direction.

2. Following the principles of standard information theory, we assume that the
information at each contour point corresponds to the surprisal of its turning angle α,
defined as −log p(α). In other words, the shape information at each contour point
depends on how “surprising” the geometry at the point is, given our probabilistic
expectations p(α) about how the contour will continue. This leads directly to
Attneave's (1954) claim that information content increases with the curvature of the
bounding contour.

3. Information along closed contours (e.g., object boundaries) can be understood by
modifying the distribution of the turning angles p(α) based on the constraint that
the contour must eventually close. This yields the mathematical result that points of
negative curvature (concavities) convey more information than do points of
positive curvature (convexities) because they are more “surprising.” This extends
Attneave's (1954) original claim and is consistent with the psychological finding
that convexities and concavities play different roles in shape perception (e.g.,
Barenholtz & Feldman, 2003; Cohen & Singh, 2007; de Winter & Wagemans,
2008a, 2008b; Hoffman & Richards, 1984; Hoffman & Singh, 1997; Koenderink &
Van Doorn, 1982; Panis, de Winter, Vandekerckhove, & Wagemans, 2008) and
that changes to shapes are easier to detect at concavities than at convexities (e.g.,
Barenholtz, Cohen, Feldman, & Singh, 2003; Bertamini & Farrant, 2005; Cohen,
Barenholtz, Singh, & Feldman, 2005; Vandekerckhove, Panis, & Wagemans,
2008).

This approach is mathematically coherent and consistent with standard information theory,
and moreover, it can easily be extended in several ways. One that we mentioned in the
original article is that information along an extended contour C can be understood by
integrating suprisal along that contour, yielding a natural measure of contour complexity
−ΣC log p(α). Another is that information can be extended to include the contribution of
higher derivatives of the contour—for example, changes in curvature—merely by placing
analogous probabilistic assumptions on those derivatives, such as the assumption that the
change in the turning angle (like the turning angle itself) is most likely to be zero. This
corresponds to an expectation of cocircularity, that is, a tendency to continue contour
curvature, which is supported by empirical evidence in the context of contour integration
(e.g., Feldman, 1997; Pizlo, Salach-Goyska, & Rosenfeld, 1997) and the visual extrapolation
of contours behind occluders (Singh & Fulvio, 2005, 2007).

Lim and Leek's (2012) Approach
Lim and Leek (2012) presented what they describe as an alternative approach to formalizing
contour information, and identified what they describe as errors in our development of the
formalism. Notwithstanding their critical rhetoric, their approach echoed our framework 1–
3, point by point. The only substantive difference, detailed below, was that their formulation
started from probabilistic assumptions about the curvature κ of a smooth contour (a
differential property, defined in the limit as arc length goes to zero), while ours began with
probabilistic assumptions about the turning angle (a discrete quantity, measurable in the
image). Specifically, they assumed a probability density function over curvature, p(κ)—
analogous to our density over turning angle p(α). From there on, their development
proceeded in a manner exactly parallel to ours:

1′. Assume contour curvature has distribution p(κ) that peaks at zero curvature (i.e.,
“straight”) and decreases with increasing curvature magnitude.
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2′. Assume that information depends on the corresponding surprisal, −log p(κ).

3′. Show that the above formulation can be modified for the case of closed contours by
modifying the distribution p(κ) to reflect the constraint that the contour must eventually
close.

Lim and Leek (2012) then extended this formulation to three dimensions (see below).
Regardless of arguments about the benefits of their continuous formulation versus our
discrete one, it is important to recognize that beyond this technical distinction (curvature vs.
turning angle), their approach was essentially conceptually identical to ours—hardly the
“novel approach” their article promises.

Discrete Versus Continuous Foundations
Contour curvature is a differential property of smooth curves, technically the derivative of
the tangent direction with respect to arc length (and therefore determined by the second
derivative of the curve). As such, it is defined as a limiting value as one considers the
abstract smooth curve in a neighborhood of diminishing size—in effect, it quantifies how
rapidly the curve is bending in an infinitesimal neighborhood. By contrast, the turning angle
α measures how much the curve has actually “turned” in a given nonzero interval. Basing a
theory of shape information on a differential property may be appealing to a mathematician
concerned primarily with differential geometry, but we choose to base our approach on
discrete quantities that are actually measurable in the image because this ties our work to
problems faced by the biological visual system, which can only measure contours with finite
resolution. This also allowed us to connect our analysis to the extensive psychophysical and
physiological literature on contour integration, which has been an active area of research at
least since the early 1970s (e.g., Elder & Goldberg, 2002; Field, Hayes, & Hess, 1993;
Geisler, Perry, Super, & Gallogly, 2001; Geisler & Perry, 2009; Lamote & Wagemans,
1999; Smits & Vos, 1987; Uttal, 1973).

In the literature on contour integration, researchers have examined how the visual system
groups discrete local elements (e.g., dots, oriented edges, or Gabor patches) into
representations of extended contours. Among other things, this literature has documented the
geometric relations—most importantly, the turning angles between neighboring discrete
elements—that support the percept of an extended contour. (Indeed, by definition, one
cannot actually study empirical properties of contour curvature without going via a discrete
approximation such as turning angle.) These psychophysical findings have led to the
important idea of an “association field” (Field et al., 1993; Geisler et al., 2001), have been
linked to the statistics of natural images (Elder & Goldberg, 2002; Geisler & Perry, 2009;
Geisler et al., 2001), and have informed physiological findings about long-range horizontal
connections between orientation-sensitive units in the primary visual cortex (e.g., Bosking,
Zhang, & Fitzpatrick, 1997). Performance on contour integration tasks has also allowed
researchers to estimate the distribution of the turning angles that the visual system implicitly
expects. Specifically, the Gaussian or von Mises distribution of the turning angle has been
documented in a number of studies (Feldman, 1996, 1997, 2001). Hence, our assumption of
such a distribution, unlike Lim and Leek's (2012) adoption of a distribution over curvature
itself, was not simply a mathematical abstraction but a scientifically documented premise.

Moreover, as Lim and Leek (2012) eventually acknowledged, unlike turning angle,
curvature is not scale invariant. This means that any information theoretic treatment would,
likewise, have information varying with the scale, or overall size, of the object. Lim and
Leek only mentioned this late in their development and asserted that it can be patched, but
their solution is ad hoc—repairing a problem that stems from the foundation of the theory—
and without empirical support.
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Technical Discrepancies
In previous articles on turning angle, Feldman (1996, 1997, 2001) found psychophysical
evidence for a Gaussian or von Mises density for the turning angle α, which is corroborated
by physiological work on the tuning properties of orientation-selective neurons in the
primary visual cortex (Swindale, 1998). But in Feldman and Singh (2005), we noted that
certain key claims about contour information do not depend on the specific form of the
distribution but, instead, were guaranteed as long as the distribution p(α) peaked at zero (in
the open-contour case) and decreased monotonically with increasing turning angle. Indeed,
as we stated in the original article, the fact that contour information rises with turning angle
stems directly from the assumption of decreasing probability with larger turning angles, via
the very basic relation that surprisal is simply −log p(α), an assumption that Lim and Leek
(2012) explicitly adopted. Indeed this basic observation—that information along contours
depends on probabilistic expectations about how curves continue—was the principal
contribution of our article, and this seems to have been embraced wholeheartedly by Lim
and Leek (2012).

Lim and Leek (2012) did dispute our more specific claim that there is a bound on
information as a function of curvature regardless of distributional form, which stems from a
much more technical argument. Our claim was that the probability of more extreme turning
angles is bound by a limit that diminishes with the increasing turning angle because of what
is called the Chebyshev bound. The Chebyshev bound shows that the tail area of any
probability distribution must diminish as one goes further out in the tails, regardless of the
form of the distribution. What this means in our context is that the probabilities of turning
angles fall under a bound that decreases monotonically as they get more extreme. Lim and
Leek (2012) described our derivation as mathematically flawed, but their argument stems
from a puzzling confusion between the terms “probability” and “probability density.”
Probability density is a quantity associated with a continuous random variable, such as the
turning angle, which must be integrated over some nonzero interval in order to yield a
nonzero probability. Unlike probability, probability density can take values higher than 1, so
long as the integral over any interval—the probability itself—does not exceed 1. For smooth
densities over continuous random variables (like the one over turning angle considered in
our article), the “probability” per se of a single point value—say, 45°—is automatically 0
(because, again, it must be integrated across some nonzero interval to amount to a nonzero
value). Hence, an expression such as “the probability of an angle α0” really means “the
integral of the probability density function in a small neighborhood of α0,” more properly

notated , where f(x) is the probability density function—a notation we avoided
in our article as pedantic and potentially confusing. In words, what this means is that the
probability of a given angle corresponds to the area under the density curve over a small
range (e.g., the probability that the turning angle falls between 45° and 46°)—an area that is
a subset of the tail and thus necessarily smaller than the tail, which Chebyshev showed is
itself bounded in size. This was our original argument, and it is correct. Lim and Leek's
suggestion that it leads to an absurd conclusion—that there is no bound on the magnitude of
probability—depends entirely on perversely interpreting p(α) as density rather than
probability, which results only in showing that probability density can be larger than 1—
which is correct, but trivial. Once one distinguishes correctly between probability and
probability density, Lim and Leek's Equation 3, which stated that the area under the curve in
the neighborhood near a given angle, p(t + Δt)Δt in their notation, is limited by the
Chebyshev bound, becomes precisely equivalent to our assertion that they claim to dispute.
In sum, the only way our claim could appear to be invalid is if one misreads the notation
p(α) to mean probability density at an infinitesimal point—an interpretation that is no way
supported by our article and is very unlikely to be drawn by any mathematically
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knowledgeable reader. The authors' point is therefore most charitably understood as a
pedantic criticism about notation and less charitably understood as a deliberate obfuscation
intended to create the appearance of an error.

Returning to the main issue, the primary contribution of our original article was the
observation that information along contours can be understood as Shannon surprisal (−log
p), once one adopts a suitable probability model for contours. One can make a range of
assumptions about this probability model, with concomitant constraints on the resulting
surprisal. We can divide these assumptions into three basic cases, all of which were
mentioned at various points in our original article, but which Lim and Leek (2012) conflated
in their discussion:

Strongest Assumption
One can assume a particular distribution of turning angle, such as that it is Gaussian or von
Mises. As documented above and in our original article, such an assumption is well
supported by the psychological literature. In this case, surprisal clearly increases with
turning angle. Lim and Leek (2011) did not dispute this.

Weaker Assumption
Instead of assuming a particular functional form for the distribution, we can simply assume
that the distribution has a probability that is monotonically decreasing with the increasing
turning angle. In this case, the increase in suprisal −log p with increasing turning angles
again follows immediately.

Weakest Assumption
Finally, instead of assuming a monotonically decreasing probability distribution, we can
instead make no assumptions about the functional form of the distribution, in which case
(the Chebyshev argument shows) one can still make a surprisingly strong claim about angle
probability, namely that it is bound by a monotonically decreasing function (and hence that
contour information is bound by a monotonically increasing function). Lim and Leek (2012)
disputed this argument, but in so doing, they repeatedly conflated it with one of the above
assumptions. (They also conflate “probability” and “probability density,” as we noted
above.) The fact that the bound decreases monotonically obviously does not mean that the
function itself decreases (which is why our original article asserted only that the bound
decreases in this case). Of course, in practice, a decreasing bound places a strong constraint
on likely angles since it implies that the range of possible angle probabilities gets tighter as
the angle gets larger.

Another point of criticism raised by Lim and Leek (2012) is that as the sampling density of
the contour is increased, the effect of the turning angle on information content gets
progressively smaller. This criticism is equally misplaced. For any finite-resolution
measurement system, it must be the case that the smaller the window through which one
examines a smooth contour, the closer to linear it looks. If this microscopic view of the
contour is all that is available to the system, it would indeed have to conclude that that
contour segment is (locally) flatter. Their criticism thus simply boils down to the fact that in
a sufficiently small neighborhood, all smooth curves approximate straight lines. From the
point of view of perception, this is uninteresting because the visual system does not have
access to an arbitrarily fine view.3 Moreover, their criticism presupposes that when the

3A more elaborate treatment of the information content of contours should of course take into account analysis at multiple scales.
Although the details of such an analysis await future work, our original article set up the mathematical components that would be
required for it.
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separation between consecutive sample points is decreased, the dispersion (or spread) of the
von Mises distribution on turning angle will remain unchanged. This assumption is
unjustified. Simple considerations of the geometry of smooth contours suggest that the
distribution of turning angles would be expected to be tighter (smaller spread) when the
contour is examined through smaller apertures. This criticism of Lim and Leek's (2012) is
thus based on a straw man—a patently invalid extension of our framework, which serves
only to confuse. Finally, Lim and Leek's complaint about our visualization code is trivial—
analogous to complaining about the scale of the y-axis in a data plot.

Lim and Leek's (2012) Three-Dimensional Extension and the “Modified
Minima Rule”

Later in their article, Lim and Leek (2012) attempted to generalize their approach from two-
dimensional contours to three-dimensional (3D) surfaces. Unfortunately, their proposed 3D
extension fails several basic tests of plausibility.

Curvature on a 3D surface is substantially more complex than for a contour, and several
alternative formulations of curvature are possible (Koenderink, 1990). At any given point on
a surface, the curvature of a path depends on the direction in which it is taken; there is a
different curvature value for each possible direction. Of these directions, one has maximal
curvature and one has minimal curvature, and these form an orthogonal basis for describing
surface curvature. These two directions determine the so-called principal curvatures, κ1 and
κ2, which must be combined in some way in order to characterize “the curvature” of the
surface at that point. Different measures of surface curvature combine them in different
ways: Gaussian curvature takes their product and mean curvature takes their average,
whereas curvedness and shape index use more complex combination functions (Koenderink,
1990). A central challenge in defining information content for surfaces is to determine how
exactly the two principal curvatures contribute to the surprisal. Lim and Leek (2012)
unfortunately disregarded this deep issue altogether and simply adopted Gaussian curvature
as a basis for their information measure—giving no motivation or principled reason for their
choice and indeed not even mentioning that alternative measures of surface curvature exist.

Unfortunately, Gaussian curvature is not in our view an adequate basis upon which to
quantify information. Most obviously, Gaussian curvature is zero if either of the two
principal curvatures is zero—such as everywhere along the curved surface of a cylinder.
More generally, Gaussian curvature is zero everywhere along the surface of a generalized
cylinder with a straight axis but an arbitrary (though fixed) cross-section—regardless of the
curvature profile of the cross-section (e.g., the cookie-cutter cat in Figure 2A). This means
that Lim and Leek's (2012) formalism predicts that all points on such a curved surface
convey identical—and minimal—shape information. Similarly, the surface in Figure 2B,
although it has ridges and valleys of varying strengths, nevertheless has zero Gaussian
curvature everywhere (because one of the two principal curvatures is consistently zero).
That these variations in surface geometry convey no variation in shape information blatantly
contradicts intuition, and this is not supported by any empirical finding of which we are
aware. It is disappointing that these rather obvious defects in the formulation are not
acknowledged, much less addressed, in Lim and Leek's article.4

4It may be argued that surfaces with zero Gaussian curvature are nongeneric because one of the principal curvatures must be exactly
zero. However, whether such surfaces are generic depends on one's generative model for surfaces. If the distribution on each principal
curvature peaks sharply at 0, for example, such surfaces will typically not be nongeneric. Further, small perturbations to the zero
principal curvature on such surfaces will perturb the Gaussian curvature only slightly away from zero. Hence, even taking small
perturbations into account, it would still be the case that variations in the nonzero principal curvature (such as the outline of the
cookie-cutter cat in Figure 2A) will affect the surface surprisal only minimally.
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Lim and Leek (2012) went on to argue that their measure of 3D surface information implies
a constraint on 3D part boundaries, namely, that they can only occur within regions of
negative Gaussian curvature (saddle-shaped regions). Indeed, the tendency for such regions
to contain part boundaries was observed almost three decades ago in a well-known article by
Koenderink and van Doorn (1982), which Lim and Leek did not cite. Lim and Leek gave no
argument whatsoever for any mathematical connection between shape information as they
have quantified it and part boundary status—which makes it difficult to evaluate its intended
scope.

In any case, it is readily apparent that part boundaries need not fall only within negative
Gaussian curvature regions, as Lim and Leek's (2012) “modified minima rule” asserts. Many
biological limbs have boundaries that do not fall exclusively within negative Gaussian
curvature regions but are nevertheless perceived as psychological parts of objects (see, e.g.,
de Winter & Wagemans, 2006; Singh, Seyranian, & Hoffman, 1999). An example is the
human shoulder joint, which has negative Gaussian curvature underneath but positive
Gaussian curvature above. Thus, Lim and Leek's definition of part would seem to exclude
human arms, as well as legs and most animal limbs. Indeed, it is well established that the
loci of negative minima are by themselves insufficient to segment shapes into parts, and
various researchers have proposed geometric factors beyond negative minima for part
decomposition (e.g., de Winter & Wagemans, 2006; Siddiqi, Tresness, & Kimia, 1996;
Singh & Hoffman, 2001; Singh et al., 1999). By contrast, Lim and Leek's proposal simply
added a further constraint on which negative minima should be used (namely, those that lie
in hyperbolic regions). It does nothing to address the limitations of negative minima that
have been discussed in the parts literature, and thus, it contributes little to our understanding
of part decomposition.

The surfaces in Figure 2 illustrate another shortcoming of limiting part boundaries to
negative Gaussian curvature regions: These surfaces contain no negative Gaussian curvature
regions at all but do contain several fairly salient part boundaries (e.g., at the base of the ears
or tail of the cookie-cutter cat and along the valleys of “wave”).

Conclusion
In summary, we are gratified that Lim and Leek (2012) seem to agree with the major
elements of the approach we proposed in our 2005 article, though we are somewhat baffled
by the negative way in which they have framed their agreement. Our approach is simple, is
internally coherent, agrees with both intuition as well as psychophysical and physiological
data on contour perception, and harmonizes with the growing literature on probabilistic
approaches to visual perception. The defects that Lim and Leek listed stem either from
mathematical misunderstandings or from bizarre misreadings of our article—some of which
we hope we have clarified above. Unfortunately, while the prospect of extending this
approach to 3D is appealing, the simplistic manner they propose to do so, based solely on
Gaussian curvature, is unconvincing. Still, we welcome attention to this important problem
and look forward to what we hope will be more edifying developments in the future.

Acknowledgments
The research discussed here was supported by National Science Foundation Grant CCF-0541185; National Institute
of Health, National Eye Institute Grant 15888; and National Institute of Health, National Eye Institute Grant
0214924.

Singh and Feldman Page 7

Psychol Rev. Author manuscript; available in PMC 2013 September 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



References
Attneave F. Some informational aspects of visual perception. Psychological Review. 1954; 61:183–

193. [PubMed: 13167245]

Barenholtz E, Cohen EH, Feldman J, Singh M. Detection of change in shape: An advantage for
concavities. Cognition. 2003; 89:1–9. [PubMed: 12893121]

Barenholtz E, Feldman J. Visual comparisons within and between object parts: Evidence for a single-
part superiority effect. Vision Research. 2003; 43:1655–1666. [PubMed: 12798147]

Bertamini M, Farrant T. Detection of change in shape and its relation to part structure. Acta
Psychologica. 2005; 120:35–54. [PubMed: 16098833]

Bosking W, Zhang YBS, Fitzpatrick D. Orientation selectivity and the arrangement of horizontal
connections in the tree shrew striate cortex. The Journal of Neuroscience. 1997; 17:2112–2127.
[PubMed: 9045738]

Cohen EH, Barenholtz E, Singh M, Feldman J. What change detection tells us about the visual
representation of shape. Journal of Vision. 2005; 5:313–321. [PubMed: 15929654]

Cohen EH, Singh M. Geometric determinants of shape segmentation: Tests using segment
identification. Vision Research. 2007; 47:2825–2840. [PubMed: 17868766]

de Winter J, Wagemans J. Segmentation of object outlines into parts: A large-scale integrative study.
Cognition. 2006; 25:275–325. [PubMed: 16043166]

de Winter J, Wagemans J. The awakening of Attneave's sleeping cat: Identification of everyday
objects on the basis of straight-line versions of outlines. Perception. 2008a; 37:245–270. [PubMed:
18456926]

de Winter J, Wagemans J. Perceptual saliency of points along the contour of everyday objects: A
large-scale study. Perception & Psychophysics. 2008b; 70:50–64. [PubMed: 18306960]

Elder JH, Goldberg RM. Ecological statistics of Gestalt laws for the perceptual organization of
contours. Journal of Vision. 2002; 2:324–353. [PubMed: 12678582]

Feldman J. Regularity vs. genericity in the perception of collinearity. Perception. 1996; 25:335–342.
[PubMed: 8804096]

Feldman J. Curvilinearity, covariance, and regularity in perceptual groups. Vision Research. 1997;
37:2835–2848. [PubMed: 9415364]

Feldman J. Bayesian contour integration. Perception & Psycho-physics. 2001; 63:1171–1182.

Feldman J, Singh M. Information along contours and object boundaries. Psychological Review. 2005;
112:243–252. [PubMed: 15631595]

Field DJ, Hayes A, Hess RF. Contour integration by the human visual system: Evidence for a local
“association field”. Vision Research. 1993; 33:173–193. [PubMed: 8447091]

Geisler WS, Perry JS. Contour statistics in natural images: Grouping across occlusions. Visual
Neuroscience. 2009; 26:109–121. [PubMed: 19216819]

Geisler WS, Perry JS, Super BJ, Gallogly DP. Edge co-occurrence in natural images predicts contour
grouping performance. Vision Research. 2001; 41:711–724. [PubMed: 11248261]

Hoffman DD, Richards WA. Parts of recognition. Cognition. 1984; 18:65–96. [PubMed: 6543164]

Hoffman DD, Singh M. Salience of visual parts. Cognition. 1997; 63:29–78. [PubMed: 9187064]

Koenderink, JJ. Solid shape. Cambridge, MA: MIT Press; 1990.

Koenderink JJ, van Doorn AJ. The shape of smooth objects and the way contours end. Perception.
1982; 11:129–137. [PubMed: 7155766]

Lamote C, Wagemans J. Rapid integration of contour fragments: From simple filling-in to parts-based
shape description. Visual Cognition. 1999; 6:345–361.

Lim IS, Leek EC. Curvature and the visual perception of shape: Theory on information along object
boundaries and the minima rule revisited. Psychological Review. 2011 Advance online
publication. 10.1037/a0025962

Mardia, KV.; Jupp, PE. Directional statistics. New York, NY: Wiley; 2000.

Panis S, de Winter J, Vandekerckhove J, Wagemans J. Identification of everyday objects on the basis
of fragmented versions of outlines. Perception. 2008; 37:271–289. [PubMed: 18456927]

Singh and Feldman Page 8

Psychol Rev. Author manuscript; available in PMC 2013 September 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Pizlo Z, Salach-Goyska M, Rosenfeld A. Curve detection in a noisy image. Vision Research. 1997;
37:1217–1241. [PubMed: 9196739]

Resnikoff, HL. The illusion of reality: Topics in information science. New York, NY: Springer-
Verlag; 1985.

Siddiqi K, Tresness KJ, Kimia BB. Parts of visual form: Psychophysical aspects. Perception. 1996;
25:399–424. [PubMed: 8817619]

Singh M, Fulvio JM. Visual extrapolation of contour geometry. Proceedings of the National Academy
of Sciences, USA. 2005; 102:939–944.

Singh M, Fulvio JM. Bayesian contour extrapolation: Geometric determinants of good continuation.
Vision Research. 2007; 47:783–798. [PubMed: 17292938]

Singh, M.; Hoffman, DD. Part-based representations of visual shape and implications for visual
cognition. In: Shipley, T.; Kellman, P., editors. From fragments to objects: Segmentation and
grouping in vision: Advances in psychology. Vol. 130. New York, NY: Elsevier; 2001. p.
401-459.

Singh M, Seyranian GD, Hoffman DD. Parsing silhouettes: The short-cut rule. Perception &
Psychophysics. 1999; 61:636–660. [PubMed: 10370334]

Smits JT, Vos PG. The perception of continuous curves in dot stimuli. Perception. 1987; 16:121–131.
[PubMed: 3671035]

Swindale NV. Orientation tuning curves: Empirical description and estimation of parameters.
Biological Cybernetics. 1998; 78:45–56. [PubMed: 9518026]

Uttal WR. The effect of deviations from linearity on the detection of dotted line patterns. Vision
Research. 1973; 13:2155–2163. [PubMed: 4763529]

Vandekerckhove J, Panis S, Wagemans J. The concavity effect is a compound of local and global
effects. Perception & Psycho-physics. 2008; 69:1253–1260.

Singh and Feldman Page 9

Psychol Rev. Author manuscript; available in PMC 2013 September 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
In the Feldman and Singh (2005) approach, a contour is assumed to continue with a turning
angle that is distributed as a von Mises (approximately normal) distribution with a mean of
0° (i.e., straight). The information at a point depends on the surprisal of the turning angle,
−log p(α).
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Figure 2.
Examples of 3D shapes with zero Gaussian curvature everywhere and thus—in Lim and
Leek's (2012) account—constant, minimal, shape information everywhere. In both shapes,
Gaussian curvature is zero everywhere because one of the two principal curvatures is zero.
Under Lim and Leek's account, the cookie-cutter cat in A, unlike Attneave's (1954) cat,
would have no variation in the concentration of shape information; similarly, in B, the
variations in the strengths of the ridges and valleys would convey no variation in shape
information. These predictions blatantly contradict intuition.
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