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Abstract

Pichia pastoris is one of the most widely used expression systems for the production of recombinant secretory
proteins. Its universal application is, however, somewhat hampered by its unpredictable yields for different
heterologous proteins, which is now believed to be caused in part by their varied efficiencies to traffic through the
host secretion machinery. The yeast endoprotease Kex2 removes the signal peptides from pre-proteins and releases
the mature form of secreted proteins, thus, plays a pivotal role in the yeast secretory pathways. In this study, we
found that the yields of many recombinant proteins were greatly influenced by Kex2 P1' site residues and the
optimized P1’s amino acid residue could largely determine the final amount of secretory proteins synthesized and
secreted. A further improvement of secretory yield was achieved by genomic integration of additional Kex2 copies,
which again highlighted the importance of Kex2 cleavage to the production of recombinant secretory proteins in
Pichia yeast.
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Introduction due to the inherent properties of the foreign proteins of interest

[8,25]. Although there are many reports of secretion of

Protein based biopharmaceuticals make up the largest and
fastest growing part of global top selling drugs [1,2]. Pichia
pastoris is one of the most commonly used expression hosts
for production of heterologous secretory proteins [3], thanks
mainly to a highly efficient and tightly regulated expression
system based on the promoter of the alcohol oxidase 1 gene
(AOXT), high levels of protein products being secreted into
almost protein-free media as well as its capacity of carrying out
correct folding and post-translational modification for
mammalian proteins [4-8]. Genetic engineering on this strain to
optimize the yield of expression, including analysis of Pichia
pastoris genome [9-11], transcriptome [12-15], and proteome
[16], as well as glycoengineering [17-19], promoters and
regulatory factors engineering [20-24], has always been the hot
and practical topic in the area. Although extensive efforts have
been made, the secretory protein yields are still highly variable
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recombinant proteins with yields up to the range of grams per
liter [26-28], for apparently obvious reasons, cases of low
secretory yields or complete failure are seldom published.
Recently it is reported that the trafficking of folded proteins
through secretion machinery, rather than transcription and
translation, is most likely the rate-limiting step in the final yield
of recombinant proteins [25]. However, the strategies to
improve the efficiency of this secretion machinery and the
specific components within this complex system that may serve
as a viable target for engineering remain elusive.

The yeast KEX2 gene encodes a Ca?* dependent serine
endoprotease [29,30] which cleaves the yeast endogenous
pre-proteins for maturation in a site-specific manner [31,32]
(paired dibasic sites in target peptides). The cleavage process
removes the signal peptides of pre-proteins in the late Golgi
(Figure 1A), which facilitates the subsequent entry of the
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mature proteins toward the secretion vesicles and thus
represents a key step in the yeast secretion pathways
[31,33,34]. Moreover, in vivo positive correlation between Kex2
cleavage and yeast secretory rate has been reported [35],
indicating that optimization of Kex2 cleavage might represent
an efficient way to improve yeast secretion productivity. As an
endoprotease with a relatively fixed cleavage site, the site
specificity of Kex2 has been under intense investigation [34].
The most stringent and crucial selectivity occurs at P1 site,
where only Arginine is accepted [34,36], while at P2 site, basic
residues such as Lysine or Arginine are recognized equally
well [35] (Figure 1A). At P4 site, dual recognition of both
aliphatic and basic side chains are acceptable [37] (Figure 1A).
In contrast, on the other side of the Kex2 scissile bond, the
substrate residue specificity is relatively less selective, except
that bulky side chains are disfavored at P1’ site [38] (Figure 1A)
according to previous reports based on in vitro enzymatic
characterizations with short synthetic peptide as substrates
[39,40], which may or may not truly reflect the situations in vivo.
To determine whether Kex2 cleavage efficiency influences
the secretion levels of the heterologous proteins, we have
developed a set of recombinant library yeast vector system
with all twenty naturally occurring amino acid present at the
Kex2 P1’ site. Reporter genes (Venus and luciferase) and
several mammalian proteins were tested in this library system
(Figure 1B). We demonstrated that optimization at the Kex2 P1’
site residue substantially enhanced the production of the
foreign secretory proteins. In addition, additional Kex2 copies
introduced into yeast genome further increased the secretion
yield, which again demonstrated the feasibility of augmenting
secretory productivity via enhancement of the Kex2 cleavage.

Materials and Methods

Strains, plasmids, and reagents

Escherichia coli TOP10 strain, Pichia pastoris X-33 strain,
pPICZaA secretory expression vector, yeast nitrogen base
(YNB), D-sorbitol, D-biotin and BCA protein concentration
assay kit were purchased from Invitrogen (CA, USA). Tryptone
and yeast extract were purchased from Oxoid (Hampshire,
England). Polyethylene glycol (PEG) 3350 and lithium chloride
(LiCl) were purchased from Sigma-Aldrich (MO, USA).
Sonicated single stranded salmon sperm DNA was purchased
from Genmed (MA, USA). Zeocin was purchased from
Invivogen (CA, USA). Steady-Glo® Luciferase Assay System
was purchased from Promega (WI, USA). Plasmid miniprep kit,
DNA recovery/purification kit, pMD20-T cloning vectors,
restriction endonucleases, DNA polymerases for PCR reaction
and T4 DNA ligase were purchased from Takara (Guangzhou,
China). Primers synthesis and DNA sequencing service were
provided by Invitrogen (Shanghai, China). Escherichia coli
TOP10 single colonies were selected on normal (for pMD20-T
cloning) or low salt (for pPICZaA cloning) LB agar plates (1%
tryptone, 0.5% yeast extract, 1% (normal) or 0.5% (low salt)
NaCl and 1.5% agar) with corresponding antibiotics. Newly
generated Pichia pastoris transformants were initially selected
on YPD plates (2% peptone, 1% yeast extract, 2% dextrose,
2% agar) with 100 pg/ml zeocin, then on YPD plates with
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increasing doses of zeocin (from 200, 500 to 1000 ug/ml) to
determine the copy number of integrants. For methanol
induced expression, the P. pastoris recombinants were first
grown in BMGY (1% vyeast extract, 2% peptone, 100 mM
potassium phosphate (pH 6.0), 1.34% YNB, 4x10-5% biotin, 1%
glycerol) medium to reach higher biomass and then induced in
BMMY medium which contains the same ingredients as BMGY
except the replacement of glycerol with methanol, as detailed
in EasySelect™ Pichia expression kit user manual.

Vectors construction

Venus coding DNA sequence (CDS), followed by kanamycin
resistance gene, was amplified with primers (forward primers
which covered the P1’ site were listed on Table 1 with the
reverse primer of 5-
GGCTAGCGGCCGCAGACATGATAAGATACATTGATGAG-3
which complements the 3’ terminus of kanamycin resistance
gene) to place all 20 amino acids (codons were chosen
according to the yeast preference [41]) at P1’ site to form a
vector library. The 20 PCR amplification products were sub-
cloned into pMD20-T plasmid and sequenced subsequently to
ensure the sequences were correct. Then these plasmids were
digested with Sall and Notl, the PCR product fragments were
recovered from the agarose gel and inserted between the Xhol
and Notl sites of pPICZaA, resulting in the Venus P1’ vector
library (Figure 1B).

For construction of luciferase version of the library (Figure
1B), the counterpart vectors were digested with EcoRI and
Notl, the plasmid backbone fragments were recovered.
Luciferase CDS was amplified with 5-
GGAATTCCTCGAGATGGAAGACGCCAAAAACATAA-3'  as
the forward primer and 5-
GGCGGCCGCTAGCACGGCGATCTTTCCGCCCTTC-3'  as
the reverse primer and sub-cloned into pMD20-T plasmid and
sequenced. Then the inserted plasmid was digested with
EcoRI and Notl and the inserted fragments were recovered and
ligated with vector backbone fragments originated from the
Venus vector library.

For construction of other recombinant mammalian proteins
version of the libraries (Figure 1B), the counterpart vectors
were constructed just the same as the luciferase library, with
respective gene-specific primers.

For plasmids to introduce additional Kex2 copies into yeast
genome (Figure 1B), we took advantages of the zeocin
resistance gene cassette from pPICZoA and chose S-Venus
and G-Venus to demonstrate the utility of such approach. First,
the zeocin resistance gene cassette on the pPICZaA backbone
was replaced with a pair of Sfil sites through mutation PCR
with 5-
GGCCATTACGGCCAAGCTTGGCCAGGGCGGCCCACGTCC
GACGGCGGCCCACGG-3' as the forward primer and 5'-
GGCCGCCCTGGCCAAGCTTGGCCGTAATGGCCGGTTTAG
TTCCTCACCTTGTCG-3' as the reverse primer. Second, the
P. pastoris Kex2 CDS was cloned from yeast genome with 5'-
CGGATCCACCATGTATTTGCCAGCACTTCGCTTAGC-3' as
the forward primer and 5-
GCTCGAGCAATGCCGCACGTTTGGGATGTTCATTAG-3' as
the reverse primer, sequenced and inserted into a plasmid to
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Figure 1. The scheme of rationale and the construction of a library of vectors: (A) the physiological role and cleavage
site of Kex2; (B) the construction of pPICZaA-CDS libraries with all 20 natural amino acids at Kex2 P1’ site and the

pPICZaA-S/G-Venus-Kex2 with additional Kex2 copy.
doi: 10.1371/journal.pone.0075347.g001

fuse the flag tag to C-terminus of the CDS and Sfil sites at both
ends of this cassette. After elimination the endogenous Sacl
site with synonymous point mutation, Kex2 CDS was then
subcloned into the Zeo(R) deleted S-Venus and G-Venus
between Sfil sites. Finally, Zeo(R) was reintroduced into these
plasmids at BamHI site to the 3’ end of AOX1 transcription
terminator.
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Pichia pastoris transformation and selection of
transformants

The yeast expression library vectors were linearized by Sacl
digestion and transformed into P. pastoris X-33 with the lithium
chloride transformation method described in EasySelect™
Pichia expression kit user manual (Invitrogen). Transformants
were initially grown on YPD plates supplemented with 100
pg/ml zeocin. After integration of the plasmid into the yeast
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Table 1. Sequences of the forward primers to construct the
library of vectors with 20 natural amino acids at Kex2 P71’
site, the P1’ site codons are highlighted in bold.

P1’ amino

acids Primer sequence
GGTCGACAAAAGA GCT

8 GAATTCATGGTGAGCAAGGGCGAGGAG
GGTCGACAAAAGA TGT

c GAATTCATGGTGAGCAAGGGCGAGGAG
GGTCGACAAAAGA GAT

B GAATTCATGGTGAGCAAGGGCGAGGAG
GGTCGACAAAAGA GAA

E GAATTCATGGTGAGCAAGGGCGAGGAG
GGTCGACAAAAGA TTT

i GAATTCATGGTGAGCAAGGGCGAGGAG

G GGTCGACAAAAGA GGT
GAATTCATGGTGAGCAAGGGCGAGGAG

H GGTCGACAAAAGA CAT
GAATTCATGGTGAGCAAGGGCGAGGAG
GGTCGACAAAAGA ATT

: GAATTCATGGTGAGCAAGGGCGAGGAG
GGTCGACAAAAGA AAA

& GAATTCATGGTGAGCAAGGGCGAGGAG

L GGTCGACAAAAGA CTT
GAATTCATGGTGAGCAAGGGCGAGGAG

» GGTCGACAAAAGA ATG
GAATTCATGGTGAGCAAGGGCGAGGAG

N GGTCGACAAAAGA AAC
GAATTCATGGTGAGCAAGGGCGAGGAG

B GGTCGACAAAAGA CCA
GAATTCATGGTGAGCAAGGGCGAGGAG
GGTCGACAAAAGA CAA

Q GAATTCATGGTGAGCAAGGGCGAGGAG

= GGTCGACAAAAGA AGA
GAATTCATGGTGAGCAAGGGCGAGGAG
GGTCGACAAAAGA TCT

s GAATTCATGGTGAGCAAGGGCGAGGAG
GGTCGACAAAAGA ACT

X GAATTCATGGTGAGCAAGGGCGAGGAG
GGTCGACAAAAGA GTT

v GAATTCATGGTGAGCAAGGGCGAGGAG
GGTCGACAAAAGA TGG

B GAATTCATGGTGAGCAAGGGCGAGGAG

v GGTCGACAAAAGA TAT

GAATTCATGGTGAGCAAGGGCGAGGAG
doi: 10.1371/journal.pone.0075347.t001

genome was confirmed by colony PCR, resulting colonies were
transferred to YPD plates with 200, 500 and 1000 pg/ml zeocin
for determination of the copy number of integrants. The
subsequent comparisons of secreted proteins were only made
between transformants with approximately the same copy
numbers as determined by the same concentration range of
drug resistance against zeocin.
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Pichia pastoris cultivation and methanol induced
expression

The experimental protocol from EasySelect™ Pichia
expression kit user manual to express recombinant Pichia
pastorish has been followed. Briefly, the selected colonies were
initially cultivated (shaking vigorously at 250 rpm) in BMGY
medium at 28-30°C until the value of ODg, reached 2
approximately. After centrifugation and removal of BMGY, cell
pellets were re-suspended in BMMY to an ODg, of 1 to induce
expression. The volume of the culture should be no more than
10-30% of the total well/tube/flask volume to ensure sufficient
aeration. Methanol was added to a final concentration of 1%
every 24 hours to maintain induction. Yeast culture media were
sampled and assayed every 24 hours. Small-scale cultivation
and expression using 96-deep-well plates (Bel-Art
Scienceware, NJ, USA) were carried out as previously
described [42,43] whenever high-throughput screening of the
secretory productivity was needed.

Fluorescence and luminescence assays

Before these assays, 100 pl yeast culture medium from each
sample was measured for ODg,, and the values were used to
normalize fluorescence or luminescence data. For Venus
fluorescence assay, the cells were sprung down and 80 ul
supernatant was added to each well of 96-well solid bottom
black plates (CulturPlate™-96, PerkinElmer, MA, USA) and the
signal measured under an excitation spectrum of 515 nm and
an emission spectrum of 528 nm. For luminescence assay, 50
pl supernatant was added with equal volume of Steady-Glo®
reagent in each well of 96-well solid bottom white plates
(CulturPlate™-96, PerkinElmer, MA, USA) and the signal
measured on a Veritas ™microplateluminometer from Turner
Biosystems (CA, USA).

Western blotting analysis

The yeast cell lysis and cellular total protein extraction for
SDS-PAGE and western blotting were carried out as described
previously [44]. The yeast culture supernatants were also
collected, TCA precipitated and sampled when needed. The
samples were subjected to SDS-PAGE after protein
concentration determination with the BCA Protein Quantitative
Analysis Kit (Shenergy Biocolor, Shanghai, China). The
resulting SDS-PAGE gels were subsequently subjected to
either Coomassie staining (R-250) or western blotting. For
western blotting, after PVDF (Millipore) electro-transfer, the
membranes were blocked, incubated with antibodies, washed
and developed on Fuji medical X-ray film (Fuijifilm, Tokyo,
Japan) for photographing and analysis. The gray-scale
intensity values were calculated by Imaged.

Large-scale fermentation and purification

Scale-up expression was carried out in a 2 L baffled flask. P.
pastoris strain harboring the most productive P1’-stem cell
factor (V-SCF, Table 2) was cultivated in 500 ml BMGY at
28-30°C with constant vigorous shaking till the value of ODgy,
reached 8.0-12.0. Cells were pelleted and re-suspended in 250
ml BMMY, then cultured for 96 hours. Methanol was added in
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Table 2. The P. pastoris secretory expression level of
foreign mammalian proteins capped with the P1’ library of
20 natural amino acids, the values of the least secreted
activities of all P1’ recombinants were set as 1, and the
values of the highest secreted activities of all P71
recombinants were highlighted in bold.

SCF FGF16 FGF20

pPICZaA 0.01 0.001 0.002
A 54.9 2.91 1.56
C 51.12 2.25 1.44
D 29.67 3.56 1.53
E 25.49 2.96 1

F 12.53 8.82 1.67
G 22.61 2.79 1.47
H 20.41 3.31 1.13
| 12.78 2.58 1.73
K 25.04 3.4 1.41
L 28.43 2.48 1.24
M 65.91 1.8 1.66
N 52.7 2.37 1.45
P 26.17 8.48 1.91
Q 14.41 2.74 1.28
R 15.71 2.18 1.68
S 1 1 1

T 24.34 2.33 1.16
\% 78.56 4.12 4.13
w 22.45 21 4.54
Y 21.23 2.55 1.57

pPICZoA: empty vector control.
doi: 10.1371/journal.pone.0075347.t002

the medium to a final concentration of 1% every 24 hours to
maintain induction. Yeast culture was centrifuged; the
supernatant was collected, sampled and assayed every 24
hours. The protein concentration of the supernatant was
determined by Bradford assays; the supernatant collected was
dialyzed against 2 L extract buffer (50 mM Tris-HCI, 200 mM
NaCl, 20 mM imidazole, pH 8.0) at 4°C overnight, filtrated with
0.22 pm filter, loaded onto a 5 ml HisTrap™ HP column (GE
Healthcare, Piscataway, NJ) and washed with extract buffer.
The protein was eluted with a gradient of 20-500 mM
imidazole. The purified protein was sent for MS analysis for
identification.

Statistical analysis

Each fluorescent/luminescent value with an error bar was
presented as meantSEM representing the average of 5-6
individual colonies for the same vector with the same antibiotic
resistance range for zeocin. P values were calculated with t-
test (Student’s t-test); the actual P values of all statistical
significances were given on the corresponding figure legends.
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Results

Vector Construction and Yeast Transformation

The 20 yeast recombinant Venus/luciferase expression
vectors were generated by PCR amplification and TA-cloning
of Venus-Kana(R) fragments with all 20 AAs at P1’ site into the
original yeast secretory expression vector pPICZoA (Figure
1B). Both the Venus coding sequence (CDS) and P1’ site were
confrmed by DNA sequencing (data not shown). The
engineered pPICZaA vectors were transformed into the Pichia
pastoris strain X-33. The resultant yeast colonies grown on
YPD plates containing antibiotic zeocin (100 pg/ml) were
subjected to colony PCR to confirm transformation (data not
shown), and transferred to YPD plates containing 200, 500 and
1,000 pg/ml zeocin to empirically estimate the copy number of
the integrants. On average, 20-30 colonies derived from each
vector were tested for their integrated copy number, from which
5-6 colonies for the given vector, with zeocin resistance
ranging 200-500 and 500-1,000 pg/ml, respectively, were
selected for subsequent analysis of their levels of secretion.

Cultivation and Fluorescence/luminescence Assays

Cultivations were sampled every 24 hours till 120 hours post
methanol induction. The supernatants of the yeast cultures
were assayed for fluorescence (Venus) or luminescence
(luciferase). As shown in Figure 2, different P1’ amino acids
rendered considerable differences on the recombinant protein
levels in supernatants. In particular, the highest levels in Venus
library were achieved by S-Venus (serine at the P1’ site), which
were nearly 13 folds higher than that of Y-Venus, the lowest
ones (Figure 2A, B). In the luciferase library, the highest N-
luciferase produced approximately four folds as much
compared to the lowest C-luciferase (Figure 2C, D). Our
western result (Figure 3) of luciferase library supported the
luminescent measurements since the A, D, K, N, S-luciferase
appeared to possess more secretory productivity over the
others while the C, L, Q, W-luciferase did not produce much at
all. This result indicated that for different proteins different P1’
site is optimal.

Optimization of Expression for Mammalian Proteins

To achieve the objective of increasing the yields of
mammalian proteins with medical relevance, several such
proteins were expressed using this methodology. The results
showed that the yields of all the recombinant proteins tested
could be enhanced by P1’ site replacement (Table 2). The
most productive stem cell factor (V-SCF) shown in Table 2
enable us to express and obtain substantial amount of
recombinant SCF through a scale-up yeast fermentation and
protein purification (Figure 4). The identity of the harvested
recombinant protein was confimed to be SCF by Mass
Spectrometry analysis (Figure 4), and its SCF bioactivity was
confirmed by tests on hematopoietic stem cells (data not
shown). SCF is a well-known cytokine that plays an important
role in hematopoiesis, spermatogenesis and melanogenesis
[45-53], which may be used along with other cytokines to
culture hematopoietic stem cells and hematopoietic progenitors
[45,51]. The cultivation of such stem cells would provide
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Figure 2. Fluorescence/luminescence measurements of Venus/luciferase libraries with variable P1’ site. Relative
fluorescence/luminescence units (RFU/RLU) were normalized to the ODg,y, of the corresponding cultures and then analyzed and
compared with the measurements of recombinant yeast strains with the same range of zeocin resistance. pPICZaA: empty vector
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doi: 10.1371/journal.pone.0075347.g002
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(B) the western gray-scale intensity of luciferase library. pPICZaA: empty vector control; single letters: the single-letter codes of the

corresponding P1’ residues.
doi: 10.1371/journal.pone.0075347.g003

sufficient hematopoietic progenitor cells in clinical bone marrow
transplantation in the treatment of leukemia and other
diseases. Our example (Figure 4) demonstrated that protein of
great interests could be efficiently produced in large amounts
with the help of our system, especially those with less secretory
productivity by traditional means. As another proof of principle,
we have designed a degenerative library at the P1’ site for
secretory expression of previously poorly expressed human
tissue plasminogen activator (tPA) and interleukin 4 (data not
shown).

Genomic Integration of Additional Kex2 Copies

Finally, we investigated whether additional copies of Kex2 in
P. pastoris hosts could further increase the secretory
productivity. To this end, the Venus expression constructs with/
without additional Kex2 copies were chosen, cultivated,
sampled and expression levels determined. Western blotting
analysis showed that introduction of additional Kex2 copies
greatly increased the Kex2 expression in the yeast host cells
(Figure 5A). The fluorescence intensity in yeast culture media
was significantly elevated upon addition of more Kex2 copies in
that G-Venus-kex2 nearly doubling the productivity (Figure 5B).
Taken together, our results clearly demonstrated that the
feasibility of achieving high levels of recombinant secretory
proteins in P. pastoris by optimizing P1’ site and increased
Kex2 copies.

PLOS ONE | www.plosone.org

Discussion

During decades of using Pichia pastoris as an eukaryotic
protein expression system, the problem of inconsistent
secretory productivity among different recombinant proteins,
i.e. some proteins could reach extremely high yields [26-28]
while some others had little or no expression at all, has always
been a major obstacle for routine application in both research
and industry. A recently published report found that the folded
protein flux through the cellular secretory pathway rather than
the transcription and translation was most likely the rate-limiting
step to the secretory protein production event [25], based on a
systematic series of analysis and mathematical simulations.
However, few reports have directly addressed this issue and
provided efficient ways to increase the secretory yields of
recombinant proteins by improving the flux of proteins through
the secretory pathway. Our present study suggested a new
strategy to increase P. pastoris secretory productivity by
optimizing the yeast convertase Kex2 cleavage.

Our study was carried out with the commonly used yeast
secretory expression vector, i.e., pPICZaA. Through generating
a library of vectors (Figure 1), yeast transformation and
secretory expression assays, we found that variable P1’ site
amino acid greatly influenced the recombinant proteins
secretory yields (Figure 2, Figure 3, Table 2) as described in
Results. Unlike previous results based on in vitro enzymatic
data [38,54], our in vivo experiments might reflect the
physiological situation of the P. pastoris host cells since
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Figure 4. Scale-up expression, purification and mass spectrometric analysis of SCF (about 20 KDa). (A) Time course for the
induction of SCF in 12% SDS-PAGE of TCA precipitated yeast culture supernatant, stained with Coomassie R-250; (B) the
corresponding time course showing western blotting result; (C) Ni?*-HisTrap™ elution profile of recombinant SCF, the bound protein
was eluted with a gradient of 20-500 mM imidazole; and (D) Coomassie-stained 12% SDS-PAGE of collected fractions 1-9, 4.8 mg
purified SCF in 6 ml was obtained from 400 ml yeast culture supernatant; (E) MALDI TOF/TOF™ MS analysis of the purified

recombinant SCF.
doi: 10.1371/journal.pone.0075347.g004

influences of different P1’ residue on the secretory yields were
variable. The most significant result of our study clearly
demonstrated that the patterns and the extents of these
variations depended on different proteins (Figure 2, Figure 3,
Table 2). Based on this discovery, one could possibly identify
the most productive P1’ amino acids for any given recombinant
proteins, and maximize the secretory productivity as
exemplified in Figure 4.

Other than optimization of the P1’ residues, integration of
additional constitutively expressing Kex2 copies into the Pichia
yeast genome has also been proved to significantly improve

PLOS ONE | www.plosone.org

the secretory yields of recombinant secretory proteins
regardless of the P1’ residues in our study (Figure 5), which
demonstrated that the Kex2 cleavage was pivotal for improving
yeast secretory yields and that the improvement could be
achieved by either selection of the optimum Kex2 substrates,
and/or elevating the levels of Kex2 or both. In summary, the
major finding of this study is to enhance the P. pastoris
secretory productivity of recombinant proteins by making
optimal use of Kex2 activity, which was accomplished by
optimization of Kex2 P1’ site residue and/or introduction of
additional Kex2 copies into yeast genome.
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Figure 5. Integration of additional Kex2 copies and the resulting influence on Venus fluorescence measurements: (A)
western blotting (protein loads: 30 pg/well) showing the expression of integrated additional Kex2 copies (with flag tag), P
values determined by t-tests of and S, G (Zeo 200-500 ug/ml) are *: 0.0022 and **0.0015 respectively; and (B) comparisons
of Venus fluorescence measurements (normalized to the ODg,, of the corresponding cultivation) between recombinant
strains with zeocin resistance ranging from 200-500 pg/ml. Each value representing the average of 5-6 individual colonies for
each vector with the same resistance range for zeocin was presented as meantSEM.

doi: 10.1371/journal.pone.0075347.9g005
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