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Abstract

Systemic inflammatory response syndrome is associated with either fever or hypothermia, but the mechanisms responsible
for switching from one to the other are unknown. In experimental animals, systemic inflammation is often induced by
bacterial lipopolysaccharide (LPS). To identify the diencephalic and brainstem structures involved in the fever-hypothermia
switch, we studied the expression of c-Fos protein, a marker of neuronal activation, in rats treated with the same high dose
of LPS (0.5 mg/kg, intravenously) either in a thermoneutral (30uC) or cool (24uC) environment. At 30uC, LPS caused fever; at
24uC, the same dose caused profound hypothermia. Both fever and hypothermia were associated with the induction of c-
Fos in many brain areas, including several structures of the anterior preoptic, paraventricular, lateral, and dorsal
hypothalamus, the bed nucleus of the stria terminalis, the posterior pretectal nucleus, ventrolateral periaqueductal gray,
lateral parabrachial nucleus, area postrema, and nucleus of the solitary tract. Every brain area studied showed a comparable
response to LPS at the two different ambient temperatures used, with the exception of two areas: the dorsomedial
hypothalamic nucleus (DMH), which we studied together with the adjacent dorsal hypothalamic area (DA), and the
paraventricular hypothalamic nucleus (PVH). Both structures had much stronger c-Fos expression during LPS hypothermia
than during fever. We propose that PVH and DMH/DA neurons are involved in a circuit, which – depending on the ambient
temperature – determines whether the thermoregulatory response to bacterial LPS will be fever or hypothermia.
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Introduction

Systemic inflammation is strongly associated with changes in the

regulation of deep body temperature (Tb). Whereas a majority of

patients with systemic inflammatory response syndrome have an

increased Tb, or fever, about 10% of patients (those with most

severe inflammation) present a lowered Tb, or hypothermia [1,2].

The same thermoregulatory manifestations, fever and hypother-

mia, occur in animal models of systemic inflammation. In the

laboratory, aseptic systemic inflammation is often induced by

injecting rats intravenously or intraperitoneally with lipopolysac-

charide (LPS, a cell-wall constituent of gram-negative bacteria).

When the dose of LPS is low (,100 mg/kg), and when the thermal

environment is neutral or warm, rats respond to LPS with a fever;

when the dose is high, and when the thermal environment is

subneutral, the predominant response is hypothermia [2–5].

Although some autonomic and behavioral thermoeffectors [6,7]

and biochemical processes [8] have been reported to be selectively

involved in LPS hypothermia (as opposed to LPS fever), what

determines the fever-hypothermia switch remains unknown, and

the neuroanatomical substrate of this switch has not been

elucidated. In an attempt to identify the diencephalic and

brainstem structures involved in the switch between fever and

hypothermia, we studied the brain distribution of c-Fos protein, a

marker of rapid cellular activation, in rats challenged with the

same high dose of LPS in either a thermoneutral environment (in

which the typical response is fever) or cool environment (in which

the predominant response is hypothermia). We found two

hypothalamic structures in which the Fos response to LPS

depended strongly on the thermal environment.
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Methods

Animals and surgery
The experiments were conducted in male Wistar rats (Harlan,

Indianapolis, IN, USA) in accordance with the recommendations

in the Guide for the Care and Use of Laboratory Animals of the

National Institutes of Health and under protocols approved by the

St. Joseph’s Hospital Animal Care and Use Committee. The rats

were housed individually in cages in a rack equipped with a Smart

Bio-Pack ventilation system and Thermo-Pak temperature control

system (Allentown, Allentown, NJ, USA); the temperature of the

incoming air was maintained at 28uC. Standard rat chow and tap

water were available ad libitum. The room was on a 12 h light/dark

cycle (lights on at 6:00 A.M.). Each rat was extensively habituated

to staying inside a wire-mesh conical confiner. At the time of the

experiments, rats weighed 300–450 g.

All rats were implanted with venous catheters. Under ketamine-

xylazine-acepromazine (55.6, 5.5, and 1.1 mg/kg, respectively,

intraperitoneally) anesthesia and antibiotic (enrofloxacin, 1.2 mg/

kg, subcutaneously) protection, a small incision was made on the

ventral surface of the neck, left of the trachea. The left jugular vein

was exposed, freed from its surrounding connective tissue, and

ligated. A silicone catheter (ID, 0.5 mm; OD, 0.9 mm) filled with

heparinized (10 U/ml) saline was passed into the superior vena

cava through the jugular vein and secured in place with ligatures.

The free end of the catheter was knotted, tunneled under the skin

to the nape, and exteriorized. The skin wounds on the ventral

surface of the neck and on the nape were sutured. The catheter

was flushed with heparinized saline on days 1 and 3 after surgery.

On day 4, each rat was taken into one of the two experiments.

Experiment 1: measuring the thermoregulatory response
to LPS

To record the colonic temperature (a measure of deep Tb), each

rat was instrumented with a copper-constantan thermocouple

(Omega Engineering, Stamford, CT, USA), placed in a confiner,

and transferred to a climatic chamber (Forma Scientific, Marietta,

OH, USA). The thermocouple was lubricated with Vaseline,

inserted into the colon (9–10 cm past the anal sphincter), affixed to

the tail with a loop of tape, and plugged into a data logger (model

AI-24, Dianachart, Rockaway, NJ, USA). The venous catheter

was connected to a polyethelene-50 extension filled with the drug

of interest. The extension was then passed through a port in the

chamber wall and connected to a syringe. The ambient

temperature (Ta) in the chamber was set to 30.0 or 24.0uC; these

conditions are thermoneutral and subneutral (cool), respectively,

for rats in the experimental setup used [9]. After a 1-h stabilization

period, E. coli 0111:B4 LPS (Sigma-Aldrich, St. Louis, MO, USA)

suspension (0.5 mg/ml) in pyrogen-free saline (1 ml/kg) or saline

was bolus-injected through the extension of the venous catheter.

Both the Tb and Ta were sampled every 2 min throughout the

experiment.

Experiment 2: measuring the c-Fos response
Rats in individual confiners were placed in the climatic

chamber, and LPS or saline was injected, as in Experiment 1.

At 150 min postinjection, the rats were anesthetized with

intravenous ketamine-xylazine-acepromazine (5.6, 0.6, and

0.1 mg/kg, respectively). Through the ascending aorta (right

atrium cut), rats were perfused with 50 ml (15 ml/min) of

heparinized (10 U/ml) phosphate-buffered saline (PBS) followed

by 280 ml (6 ml/min) of cold (4uC) 4% paraformaldehyde (Sigma-

Aldrich, catalog number HT50-1-640) in PBS by using a syringe

pump (model 53220, Stoelting, Wood Dale, IL, USA). The brains

were removed, post-fixed in paraformaldehyde for 6–24 h at 4uC,

and transferred to a 20% sucrose solution with 0.02% sodium

azide for cryoprotection. The brains were then cut on a freezing

microtome into 40 mm sections that were stored at 4uC in PBS

with 0.01% sodium azide.

For c-Fos immunochemistry, tissue sections were rinsed with

PBS and then incubated: 1) in 0.3% hydrogen peroxide in PBS for

20 min at room temperature; 2) in 0.3% Triton X-100 in PBS for

20 min at room temperature; 3) with rabbit primary polyclonal

immunoglobulin G (1:4,000 in PBS; Santa Cruz Biotechnology,

Dallas, TX, USA, catalog number sc-52) for 48 h at 4uC; and 4)

with biotinylated goat anti-rabbit immunoglobulin G (1:400 in

PBS; Vector, Burlingame, CA, USA) for 2 h at room temperature.

Thereafter, the slides were exposed to avidin-biotin complex

(1:300 in PBS; Vector Elite Kit) for 2 h at room temperature,

rinsed, and incubated in 0.02% diaminobenzidine tetrahy-

drochloride (Sigma-Aldrich), 0.02% nickel (II) sulfate (Wako

Chemicals, Richmond, VA, USA), and 0.017% hydrogen

peroxide dissolved in 0.1 M Tris-hydrochloride buffer. The tissues

were mounted onto gelatin-coated slides and air-dried. Each slide

was covered with a glass microcoverslip.

To evaluate the c-Fos expression, we examined the diencephalic

and brainstem structures under a microscope (Eclipse E600,

Nikon, Tokyo, Japan). Special attention was paid to the structures

involved in the neural pathways for thermoregulation and

immunoregulation [10,11]. Only clearly stained cells with a dark

reaction product localized in the nucleus were considered c-Fos-

immunoreactive neurons. All brains were examined by the same

researcher. The initial phase of examination was aimed at

identifying a set of brain structures with a robust c-Fos response

to LPS (irrespective of the Ta). The Fos-expression level was

compared semi-quantitatively in each brain structure across

treatments, and, when necessary, verified by counting the number

of Fos-positive neurons per section. Next, we reexamined all LPS-

responsive structures in order to identify those that showed a clear

difference in the Fos-response to LPS in the cool versus neutral

environment. A strong difference was found in two areas only: the

paraventricular hypothalamic nucleus (PVH) and the dorsomedial

hypothalamic nucleus (DMH); the latter was examined together

with the adjacent dorsal hypothalamic area (DA). In the final

phase of analysis, we quantified the level of expression by counting

Fos-positive neurons in both the PVH and DMH/DA. In each

structure, neurons were counted in three consecutive sections from

both sides of the slide, and the average of six counts was

determined. Photomicrographs were produced by capturing

images with a digital camera (HC-2500, Fuji Film, Tokyo, Japan)

mounted directly on the microscope.

Data processing and analysis
Data are reported as mean6SE. The deep Tb responses were

compared across treatments and time points by a two-way analysis

of variance (ANOVA) with repeated measures. The two-way

ANOVA was followed by the post-hoc Tukey test. The numbers of

Fos-immunoreactive cells were compared between experimental

groups using the unpaired Student’s t-test. The differences were

considered significant at P,0.05.

Results

Experiment 1: the thermoregulatory response to LPS
As expected [12], rats had a ,0.5–1.0uC higher basal Tb at a

neutral Ta (30uC) than at a subneutral Ta (24uC); saline did not

alter the Tb at either Ta (Fig. 1A). In the neutral environment,

intravenous LPS (0.5 mg/kg) induced a marked febrile response

Brain Fos Expression in LPS Hypothermia and Fever
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with the Tb reaching a plateau (,1.3uC above the basal level) at

,180 min and remaining at that level until the end of the

experiment (Fig. 1A). In contrast, the same dose of LPS

administered in the cool environment produced a profound

hypothermic response with a nadir (,2.5uC below basal Tb) at

,90 min. The observed Tb changes were dependent on both the

experimental treatment [F (3,989) = 35.767; P,0.001] and time [F

(45,989) = 15.055; P,0.001)]. At thermoneutrality, the Tb of

febrile, LPS-treated rats differed from that of saline-treated

controls during the period 150–420 min post-injection (P,0.05).

In the cool environment, the Tb of hypothermic, LPS-treated rats

differed from that of saline-treated controls during the period 50-

220 min post-injection (P,0.05). Rats treated with LPS at 24uC
had a significantly lower Tb than rats treated with the same dose of

LPS at 30uC during the period 20–420 min (P,0.05).

Experiment 2: LPS-induced Fos expression
Saline-treated rats presented very limited c-Fos immunoreac-

tivity in all diencephalic and midbrain areas studied, irrespective of

the Ta. The only area that had clearly different Fos expression in

saline-treated rats at 24uC, as compared to 30uC, was the DMH/

DA. The number of Fos-positive neurons in the DMH/DA area

was 6.262.4 at 30uC and 13.162.7 (111% higher) at 24uC [t

(10) = 1.891; P,0.05; Figs. 1B and 2].

The febrile response to LPS at 30uC was associated with

increased Fos expression in most brain areas studied. In the

diencephalon, these areas included the organum vasculosum of the

lamina terminalis, the median preoptic nucleus, ventromedial

preoptic region, supraoptic nucleus, PVH, anterior hypothalamic

area, lateral hypothalamus, and the DMH/DA area, as well as the

bed nucleus of the stria terminalis. In the PVH, Fos expression was

found throughout the entire nucleus, including both magnocellular

and parvocellular subnuclei (Fig. 2). Brainstem areas that

expressed c-Fos during LPS fever included the posterior pretectal

nucleus, ventrolateral periaqueductal gray, lateral parabrachial

nucleus, area postrema, and nucleus of the solitary tract. Due to the

observational nature of our analysis, we were likely to miss brain

areas in which the c-Fos response to LPS was less robust.

At 24uC, LPS generally induced a c-Fos expression pattern that

was very similar to that seen at 30uC. No brain structure showed a

markedly stronger response to LPS in the thermoneutral

environment, as compared to the cool environment. Two areas

showed a strong increase in the LPS-induced c-Fos expression at

24uC, as compared to 30uC: the PVH and the DMH/DA. Again,

due to the nature of this analysis, we might have missed some areas

in which the Ta-dependent difference in the c-Fos response to LPS

was less pronounced.

The PVH and DMH/DA areas were subjected to a systematic

quantitative analysis. Compared to the 72.4610.8 Fos-immuno-

reactive cells found in the PVH of LPS-treated rats at thermo-

neutrality, the PVH of LPS-treated rats exposed to the cool

environment showed a 173% increase [197.8641.7 cells; t

(12) = 2.481; P,0.05; Figs. 1B and 2]. Similarly, the DMH/DA

area of LPS-treated rats exposed to the cool environment had 73%

more Fos-positive neurons (62.869.4), as compared to LPS-

treated rats exposed to the neutral environment [36.469.5 cells; t

(12) = 1.803; P,0.05; Figs. 1B and 2].

Discussion

In agreement with earlier reports [8,13,14], we found that the

same dose of LPS produced two different thermoregulatory

responses in rats exposed to different thermal environments. At a

neutral Ta of 30uC, rats responded to the high LPS dose used in

the present study with fever; at a subneutral Ta of 24uC, they

developed hypothermia. Both fever and hypothermia are thought

to be mediated by the brain; an argument in favor of the brain

mediation being that both responses recruit a variety of

thermoeffectors, including behavioral [5]. However, the neural

substrate of the Ta-sensitive fever-hypothermia switch is unknown.

Our main finding is that two hypothalamic structures, the PVH

and the DMH/DA, showed a substantially higher level of LPS-

induced Fos expression at 24uC (when the thermoregulatory

response to LPS was hypothermia) than at 30uC (when the

response was fever). Similar results, but with different doses of

LPS, were reported by Elmquist et al. [15]. They found that fever

caused by a low dose (5 mg/kg) was associated with induction of

the c-Fos protein in both PVH and DMH/DA neurons, whereas

marked hypothermia caused by a higher LPS dose (125 mg/kg)

was accompanied by a much stronger Fos response in both

structures. Based on these findings, it is tempting to propose that

PVH and DMH/DA neurons are involved in the circuit for the

fever-hypothermia switch.

One hypothetical scenario of how the thermoregulatory

response switches from fever to hypothermia was proposed by

Ivanov et al. [16]. According to this scenario, the Ta affects the

Figure 1. The deep Tb response (A) and the hypothalamic (PVH
and DMH/DA) c-Fos responses (B) of rats to intravenous LPS
(0.5 mg/kg) or saline (1 ml/kg) in a thermoneutral (Ta of 306C)
or cool (Ta of 246C) environment. All Tb curves differed from each
other with high levels of significance (not marked). For c-Fos responses,
significant differences (P,0.05) are marked as * (compared to saline at
the same Ta) or + (compared to the same treatment at 30uC).
doi:10.1371/journal.pone.0075733.g001
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thermoregulatory response to LPS by changing the distribution of

blood flow: directing more flow to the skin and less to the viscera at

a higher Ta (thermoregulatory skin vasodilation) and directing

more flow to the viscera and less to the skin at a lower Ta

(thermoregulatory skin vasoconstriction). Due to different patterns

of blood flow distribution, LPS circulates through different

vascular beds and is preferentially delivered to different tissues.

By acting on different receptors in different vascular beds and

tissues, LPS can be speculated to induce different sets of secondary

pro-inflammatory mediators. For example, LPS-induced hypo-

thermia was reported to depend on products of cyclooxygenase

(COX)-1 [8], whereas LPS fever is well-known to depend on

products of COX-2 [17,18]. Even though both COX isoforms

catalyze the same reaction, they are preferentially coupled with

different terminal prostaglandin synthases, thus initiating synthesis

of different prostaglandins [17,19]. Hence, depending on the Ta,

LPS can trigger the production of different mediators, and

different mediators can activate different neural structures to drive

different thermoregulatory responses. We are currently testing this

hypothesis in one of our laboratories.

Figure 2. Fos expression in the PVH and DMH/DA areas. Schematics from the Paxinos and Watson [36] atlas and representative
photomicrographs of coronal sections from the PVH [the anterior-posterior (AP) coordinate of 21.80 mm from Bregma] and DMH/DA area (AP of
23.12 mm) are shown. The treatment [intravenous LPS (0.5 mg/kg) or saline] and Ta (30 or 24uC) are indicated. Photomicrographs of brain sections
from rats treated at 30uC are framed in red; sections from rats treated at 24uC are framed in blue. Fos-immunoreactive nuclei can be seen as black
dots. For the PVH, the following substructures are marked in the schematic: the dorsal cap (PaDC), the lateral magnocellular and medial parvocellular
subnuclei (PaLM and PaMP, respectively), and the ventral aspect (PaV); the third ventricle (3V) and the posterior aspect of the anterior hypothalamic
area (AHP) are marked for orientation. For the DMH, the dorsal, compact, and ventral aspects (DMD, DMC, and DMV, respectively) are marked; the DA
is also shown. The mammilothalamic tract (mt), fornix (f), and 3V are shown as ‘‘landmarks.’’ The section marked ‘‘24uC, LPS’’ includes only a narrow
ventral portion of the mt.
doi:10.1371/journal.pone.0075733.g002
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Another scenario, which has not been studied yet, is that cold

and warmth signals from the skin may interact with inflammatory

signals. Such an interaction may occur in the periphery, e.g., at

thermoreceptors. For instance, the transient receptor potential

melastatin-8 channel, which functions as a cutaneous cold sensor

for several autonomic and behavioral effectors in the thermoreg-

ulation system [20], can be activated by both temperature signals

and inflammatory (e.g., bradykinin and histamine) signals [21].

Integration of thermal and inflammatory signals may also occur in

the brain, and several hypothalamic structures are well-positioned

to constitute such integration sites. For example, prostaglandin E2,

which can play the role of a systemic mediator of inflammation

[22,23], acts on preoptic neurons (that are involved in normal

thermoregulation) to trigger fever [11,24].

There is also abundant literature showing that both the PVH

and DMH/DA serve as integration sites for a variety of stimuli.

Both are involved in the control of autonomic thermoeffectors

[11,25–29], as well as neuroendocrine and behavioral responses

[30–32], and the PVH also receives inflammation-related signals

[33,34]. However, the information that is currently available is

insufficient to delineate the entire circuit of the fever-hypothermia

switch. Nor does it allow for differentiation between various

scenarios of how the switch functions.

Interestingly, the PVH and DMH/DA are the same two areas

that have been shown by Almeida et al. [35] to mediate LPS-

induced cold-seeking behavior, which is one of the effectors of

LPS-induced hypothermia [6]. However, the Almeida et al. [35]

findings cannot explain our current results. Almeida et al. [35]

have found that the cold-seeking response to LPS requires the

integrity of neuronal bodies in the DMH and neuronal fibers of

passage (but not neuronal bodies) in the PVH, whereas the present

and several other studies (e.g., the study by Elmquist et al. [15])

show the induction of c-Fos in the bodies of PVH neurons.

Moreover, cold-seeking behavior did not contribute to the

development of LPS-induced hypothermia in the present study,

because rats were not allowed to choose their preferred thermal

environment. In this experimental setup, the main effector

mechanism of LPS hypothermia is a decrease in the threshold

Tb for cold-induced thermogenesis – not the initiation of cold

seeking [6]. Although the DMH is involved in the control of both

LPS-induced cold-seeking behavior [35] and thermogenesis

[29,32], these two functions are likely controlled by different

populations of neurons (Wanner S. P., Shimansky Y. P., Almeida

M. C., Oliveira D. L., Eales J. R., Coimbra C. C., and

Romanovsky A. A., in preparation). Activation of DMH/DA

neurons that control thermogenesis increases the Tb, whereas

activation of DMH neurons that control the cold-seeking behavior

brings it down. Our present finding of the increased c-Fos

expression in the DMH/DA area of rats treated with saline at

24uC, as compared to 30uC, agrees with the role of DMH/DA

neurons in the control of thermogenesis.

In conclusion, our results indicate that the recruitment of

neurons in the PVH and DMH/DA into the response to bacterial

LPS depends on the Ta. This finding suggests that these

hypothalamic areas may be involved in the neural circuit

responsible for switching the deep Tb response to the inflamma-

tory stimulus from febrile to hypothermic. Neither other parts of

this circuit nor the mechanisms by which the circuit functions are

currently known.
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