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Abstract

This study investigates the predation of P. noctiluca ephyrae on Atlantic Bluefin tuna (ABFT) eggs under different
experimental conditions. The specific factors considered in the experimental design were: a) water mix conditions to
explore predation under two-dimensional (2D) and three-dimensional (3D) prey distributions, b) prey density to
investigate the ingestion rate capacity, and c) incubation time to inspect gut saturation. The eggs and jellyfish
ephyrae were collected during the 2012 ABFT spawning survey off Ibiza (Balearic Isl., Western Mediterranean). The
results showed that the proportion of feeding ephyrae increased with size. The mean clearance rate of feeding
ephyrae, 4.14 L h-1, was the highest ever recorded for ephyrae. Under calm conditions the eggs floated at the surface
(2D spatial arrangement) and the clearance rates, at low prey densities, were at least twice those under mixed
conditions (3D spatial arrangement). At high prey density, clearance rate did not differ between mix conditions,
probably due to the fast gut saturation, which was reached in c.a. 15 min, as revealed by time series observations of
gut contents. The fast saturation of ephyrae and their slow digestion time of approximately 18 h suggest the
existence of a diel feeding periodicity. We conclude that in the Western Mediterranean, P. noctiluca ephyrae are
capable of predating on ABFT eggs, a highly pulsed and spatially restricted resource that potentially switches from a
3D to a 2D configuration in the absence of wind-generated turbulence. The P. noctiluca and Atlantic Bluefin tuna egg
system might represent an example of a general mechanism linking pelagic and neustonic food webs.
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Introduction

The Atlantic bluefin tuna (hereafter Thunnus thynnus, ABFT)
is a highly migratory species targeted on both sides of the
Atlantic by different fisheries due to its extraordinary
commercial value. This species is composed of two stocks
which share Atlantic feeding grounds and migrate to spawn in
warmer seas. The Western stock spawns in the Gulf of Mexico
[1] and the eastern stock in the Mediterranean [2]. Tuna fishing
commenced around 7000 BC in the Mediterranean [3]. Since
the 16th century, the early fishing modalities have been
replaced gradually by traps [4], and in the late 1990s the
increase in market demand and the incorporation of capture-
based aquaculture [5] led to a high risk of overfishing.
However, the ABFT is certainly exposed to other hazards,
since its biogeographic range contracted decades before the
rise in fishing intensity. This contraction had been reported
since the 1950s [6,7], but the reasons for its disappearance in
certain areas are still unclear [8]. In view of the weak condition

of the stocks at the beginning of this century, the International
Commission for the Conservation of Atlantic Tunas (ICCAT)
established a multiannual recovery plan in 2007. However, the
rebuilding capacity of fish populations also depends on fishing-
independent factors, in particular those responsible for
recruitment success or offspring survival during the early life
stages of development. Mortality during the egg and larval
stages is thought to play a major role in determining survival
and latter recruitment into adult stocks [9,10]. There are a wide
variety of factors inducing fish egg mortality [11-13], although
predation is generally considered the main cause [14-16].

Jellyfishes are top planktonic predators [17], generally
considered detrimental to fish populations through competition
for zooplankton prey [18] or directly by predation on fish eggs
and larvae [19]. Jellyfish predation on fish eggs and larvae has
been confirmed from results of experimental studies [20-23]. In
addition, a positive selection for ichthyoplankton has been
reported [24-27]. In the Mediterranean, P. noctiluca, a warm-
water holoplanktonic scyphomedusae [28], is abundant and
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widespread in various regions [29-33], showing large
fluctuations with massive outbreaks correlated with warm, dry
conditions [34]. This species represents the most abundant and
most venomous jellyfish in the Mediterranean [35]. P. noctiluca
is an opportunistic predator [31]; therefore, its impact on fish
populations may vary with regions and will depend on its
spatial and temporal overlap with the early life stages of fish
populations.

The impact of P. noctiluca on ABFT spawning is unknown.
However, increasing evidence of their spatio-temporal overlap
prompts an evaluation of this predation potential. The
abundance of this jellyfish in Balearic waters is increasing and
its swarms enter the Mediterranean following the progression
of Atlantic surface waters [36]. This is the same migratory
displacement process and route known for ABFT spawning
[4,37,38]. Balearic waters represent the most important ABFT
spawning area in the Mediterranean [39,40], where spawning
seems to takes place mostly in offshore mixed waters of the
frontal areas in the confluence of Atlantic and Mediterranean
water masses [41]. There is evidence from different studies
that higher densities of this jellyfish species also occur in the
vicinity of frontal areas [27,30]. The results from field studies on
spawning behavior, aboard ABFT transport cages in Balearic
waters, showed a clear nocturnal concurrence of ABFT
spawning and P. noctiluca larvae at the sea surface [42], where
jellyfish larvae appeared to exhibit predatory behavior on ABFT
eggs.

Solid experimental evidence of predation of P. noctiluca
ephyrae on ABFT eggs must be secured before attempting any
speculation on the potential impact of this jellyfish on ABFT
populations. The diurnal scarcity and nocturnal abundance of
P. noctiluca at the sea surface in the ABFT spawning region
[42] is indicative of the well-known pattern of diel vertical
migration of this species [30,35,43,44], enabling foraging
throughout a wide range of water column depths. In contrast,
freshly laid ABFT eggs are positively buoyant and rapidly
accumulate on a single layer at the surface of experimental
beakers (Gordoa, unpublished observation). P. noctiluca
captures prey while cruising [30], a feeding mechanism which
seems hardly compatible with a two-dimensional prey
distribution [45].

ABFT transport cages transiting Balearic waters are used to
monitor ABFT spawning patterns and serve as a unique
opportunity to concurrently obtain live specimens of ABFT eggs
and P. noctiluca for an experimental test of predation. In June
2012, we used this opportunity to conduct predation
experiments in a portable laboratory in a coastal aquarium-
cave in the island of Ibiza (W Mediterranean). In this study we
investigated the predation of P. noctiluca ephyrae on ABFT
eggs under different experimental conditions. We explored the
role of positive egg buoyancy as a strategy to evade ephyrae
predation by measuring predation rates in mixed experimental
beakers, where the eggs had a 3D distribution, and still
experimental beakers, where eggs accumulated at the surface
(2D). We also tested the effect of prey density and incubation
time on predation rates and digestion time. Video observations
were recorded to provide supplementary information on
predatory capture conducts. Our results provide experimental

evidence of predation of P. noctiluca ephyrae on ABFT eggs,
using highly efficient alternative predation mechanisms for 3D
(water column) and 2D (neuston) prey fields.

Methods

Experiment logistics
Experiments were conducted at the Cap Blanc Aquarium, a

coastal cave located in Ibiza (Figure 1). The permission to
perform the study on this site was given by the town council of
Sant Antoni de Portmany (Ibiza) and the Aquarium Cap Blanc,
a private company that holds the concession of the aquarium.
This location was chosen for its proximity to the ABFT
spawning grounds, in order to minimize transport time of
jellyfish and ABFT eggs. The samples were collected during
the 2012 spawning survey using a bongo frame fitted with 0.3
mm mesh nets and towed from the rear of an ABFT transport
cage at a fixed depth of 3 m [42]. The cage was moved close to
the aquarium during 13th to 27th June to facilitate transport of
specimens to the field laboratory.

Sampling was carried out at night during the ABFT spawning
window (2: 00 to 5: 00 a.m. local time). Live fish eggs and
jellyfish were carefully transferred to transport containers filled
with 0.3 mm filtered water for transport to the field laboratory.

Experiment layout
Prior to the experiments, the eggs were kept in two 40-L

aerated aquaria and the jellyfish in two 6-L aquaria without
aeration. All the aquaria were filled with 3 mm filtered seawater
adjusted to the seawater temperature at the time of sampling
(23 ± 0.3 °C). Every two days, the aquaria were cleaned and
filled with fresh eggs. Due to space limitations, replicated
experimental treatments were not done simultaneously but
sequentially one at a time, between 10:00 and 18:00, with
replicates adequately interspersed in time.

The study considered four treatments arranged in a 2-way
orthogonal design with a prey density factor with high (12 eggs
L-1) and low (6 eggs L1) density levels and a mixing regime
factor with two levels, stirred and still experimental suspension
(these treatments led to a homogeneous, 3D distribution of the
eggs within the experimental beaker and to a 2D surface
accumulation, respectively) (Table 1). The low egg
concentration was selected according to other similar
experiments with gelatinous predators [14,46] to ensure being
in the linear segment of the functional response curve, and
doubling the prey density to enable a differential concentration
response. Gentle mixing conditions were achieved by using a
methacrylate comb with 5 teeth, each 1.5 cm wide and 1.5 cm
apart and penetrating 2 cm into the water. The comb was
connected to an electric motor rotating at 10 rpm and changing
direction every 2 seconds.

We used 10 jellyfish per incubation, which lasted 15 minutes.
The scarcity of P. noctiluca in 2012 imposed limitations on the
availability of ephyrae of different sizes for experimentation.
Although the size range of collected jellyfish was 3-13 mm,
most of them were smaller than 7 mm (median = 5 mm):
consequently, bigger individuals were under-represented in the
experiments. A known number of eggs were added to 6-L
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experimental beakers after being counted on a Petri disc. The
eggs were gently spread over the water surface, and under still
experimental conditions the ephyrae were introduced
immediately afterwards, while under stirred conditions they
were introduced once the eggs were fully mixed in the beaker.
At the end of each experiment each jellyfish was removed from
the tanks and placed alive under a stereo-microscope for
measuring and counting the numbers of eggs inside its gut.

Also interspersed with the treatments of the previous
experiment, we examined the effect of incubation time at a prey
concentration of 6 eggs L1 without stirring (Table 1). For this,
we conducted pairs of replicate incubations lasting 5, 10, 25

Table 1. List of treatments used in the experiments.

   Incubation time  
Mixing regime Egg concentration 5’ 10’ 15’ 25’ 120’
unstirred low (6 egg L-1) 2(u) 2(u) 4(s) 3(s) 4(s)
unstirred high (12 egg L-1)   3(s)   
stirred low (6 egg L-1)   4(u)   
stirred high (12 egg L-1)   4(s)   

Number of replicates for each treatment and whether the jellyfish guts were under
saturated (s) or unsaturated (u) conditions with Atlantic Bluefin Tuna eggs,
according to our results.
doi: 10.1371/journal.pone.0074721.t001

and 120 minutes, plus the four 15-minute replicates of the
previous experiment (Table 1). Randomly and from different
treatments, some of the jellyfish which had eggs in their guts
after the incubation were kept in sealed 50-mL bottles and
examined every 5 hours to monitor egg digestion and/or
regurgitation, allowing a crude estimation of digestion time.

Calculation of feeding rates
For each of the experimental beakers, individual ingestion

rates were calculated as

IR= e
tN

where e is the sum of eggs counted inside the guts of all
larvae in the incubation, t is the incubation time and N is the
total number of ephyrae which were feeding during the
incubation.

Population clearance rates were calculated following Moller
et al. (2010) [47] as

CR=
V ln Ci − ln C f

tN

where V is the volume of water in the incubation container
(L) and Ci and Cf are the initial and final egg concentrations
(eggs L-1) in the incubation flask. Ci was calculated as the initial

Figure 1.  Map showing the location of the field laboratory (●) and of the tuna transport cage (▲).  
doi: 10.1371/journal.pone.0074721.g001
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concentration of eggs in the incubation flask, while Cf was
estimated by subtracting the number of eggs observed in the
guts of the ephyrae from the initial number of eggs in the
container and dividing by V.

Statistical analysis
The response of the proportion of feeding ephyrae (p), the

individual ingestion rate (IR) and the individual clearance rate
(CR) to mixing conditions and egg concentrations was
analyzed with a two-way ANCOVA with mean ephyra size as
covariate. Variables were log-transformed to account for
allometric power relationships between the feeding rates and
body length, and were checked for normality, homogeneity of
variances and homogeneity of slopes prior to analysis. In the
case of IR, there was a significant difference among regression
slopes between treatments (P=0.04). However, the regression
lines showed good fits and appeared nearly parallel on visual
inspection, so we followed Quinn & Keough [48] and applied
ANCOVA under an assumption of homogeneity of slopes. In
addition, there were differences in the range of ephyrae size
between treatments, so our ANCOVA adjustment for the effect
of size involves some degree of extrapolation outside the
ephyra size range for each treatment. Finally, one replicate
was lost, which led to an unbalanced design, dealt with by
using a type III sum of squares.

Results

After the experimental incubations, not all the jellyfish had
eggs inside their gastric pouches, indicating that not all were
feeding actively on ABFT eggs. The proportion of feeding
ephyrae increased with size, with nearly all individuals larger
than 8 mm containing ABFT eggs in their guts (Figure 2). In the
experiments, the number of feeding ephyrae varied between 0
and 7 out of the ten animals used per incubation. The
proportion of feeding ephyrae depended significantly on mean
ephyrae size (P=0.030) and on egg concentrations (P=0.020),
but was unaffected by mixing conditions (P>0.05, Table 2,
Figure 3).

IR was significantly affected by the average size of the
feeding ephyrae (P<0.001) and by a significant interaction
between egg concentration and mixing regime (P=0.026). At
low egg concentrations, ephyrae in unstirred beakers had
almost twice as many eggs in their guts as ephyrae in stirred
beakers (Figure 3). Thus, the ephyrae were particularly apt at
removing the eggs from the surface, where they accumulated
in the absence of stirring, as is clearly shown in video
recordings made during the experiments (Movie S1). However,
this difference disappeared at the high food concentrations,
resulting in similar IR in both the stirred and the unstirred
beakers. This is probably due to the saturation of the digestive

Figure 2.  Proportion of feeding ephyrae in all of the experimental beakers for each of 7 different size classes.  The first and
the last classes are open. The numbers on top of each bar indicate the number of individuals.
doi: 10.1371/journal.pone.0074721.g002
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system of ephyrae (Figure 4A). Video observations revealed
differences in predation mechanisms between mixing regimes:
the ephyrae used the subumbellar tentacles when the eggs
where homogeneously distributed in the water column and the
marginal lappets when the eggs were at the surface (Figure
4B-C).

Ephyrae cleared eggs at rates of up to 6.75 L individual-1 h-1.
The CR was significantly affected by the average size of the
feeding ephyrae (P<0.001) and by the interaction between egg
concentration and mixing regime (P=0.039, Table 2). The CR
of ephyrae in the unstirred beakers was more than twice that of
ephyrae in stirred beakers at the low egg concentration (Figure
3). Thus, the larvae were more efficient at removing the 36
eggs used per incubation when accumulated in 60 cm2 of water
surface than when suspended in the 6 L of water volume.
However, this difference disappeared when egg concentration
was high, again suggesting some sort of limitation, probably
due to gut saturation.

Although our ANCOVA analysis may to some extent be
hindered by differences between treatments in the size range
of the ephyrae (see methods), it is fully consistent with the
results of the experiment testing the effect of incubation time.
The proportion of feeding ephyrae was quite constant for the
different incubation times (Figure 5). The number of eggs
inside the guts of the ephyrae increased during the first 15
minutes of incubation and showed symptoms of saturation
afterwards, at a gut content of nearly 3 eggs ind-1 (Figure 5). It
should be noted that the conditions during this experiment
corresponded to the low egg density/no stirring treatment used
in the previous experiment, where we already found symptoms
of saturation with an ingestion rate close to 20 eggs ind-1 h-1

(Figure 3). This ingestion rate is equivalent to a gut content of

Table 2. ANCOVA table for the ephyrae response to
different treatments.

Source  df MS F P
Dependent variable: p      
egg density  1 0.25 7.63 0.020*
mixing  1 0.02 0.37 0.444
egg density x mixing  1 0.07 2.03 0.185
logsize (all ephyrae)  1 0.21 6.42 0.030*
Dependent variable: IR      
egg density  1 0.03 15.38 0.040*
mixing  1 0.07 28.67 0.004*
egg density x mixing  1 0.03 6.83 0.026*
logsize (feeding ephyrae)  1 0.39 79.70 0.000*
Dependent variable: CR      
egg density  1 0.19 16.27 0.002*
mixing  1 0.08 6.39 0.030*
egg density x mixing  1 0.07 5.66 0.039*
logsize (feeding ephyrae)  1 0.54 45.20 0.000*

Dependent variables were the proportion of feeding ephyrae (p , the individual
ingestion rate (IR) and the individual clearance rate (CR). It is a two-way, fully
orthogonal design with two fixed factors, mixing regime and food concentration,
and mean ephyra size as covariate. Asterisk indicates significant (<0.05) P-values.
doi: 10.1371/journal.pone.0074721.t002

ca. 5 eggs ind-1 after an incubation time of 15 minutes. The
ingestion and clearance rates declined after 15 minutes of
incubation (Figure 5), basically because the number of eggs
inside the guts remained nearly constant, while the incubation
time increased.

The digestion time was not significantly related to the size of
the ephyra (log-log regression of digestion time on ephyra
length, P > 0.05, Figure 6). Therefore, an average digestion
time of 18.55±5.26 h can be assumed for all ephyra sizes
within the studied size range (Figure 6). This is much longer
than the incubation times of our experiments and implies that
once full of eggs, the ephyrae must stop ingesting at least until
there is sufficient room again for a new egg or, more
conservatively, until all the gut contents have been digested. In
this scenario, and as a first-order approximation, it follows that
the predation rates of P. noctiluca ephyrae on ABFT eggs
should be encapsulated between two extremes: saturating and
non-saturating conditions. Under saturating conditions, it is the
egg volume and the digestion time that limits the ingestion rate.
Under non-saturating conditions, it is the clearance potential
and the prey concentration that matters. We will make an
attempt at calculating the ingestion rate in saturating conditions
and the clearance rate in unsaturated conditions. For this
purpose, each animal and its gut content is considered
separately, rather than in batches as for the preceding
calculations.

An average long-term ingestion rate in saturating conditions
(IRsat, eggs ind-1 h-1) can be calculated by assuming that
complete digestion is necessary to resume predation. Under
these conditions:

IRsat =
esat

T

where esat is the number of eggs inside the full gut of an
individual and T is the digestion time. IRsat increased rapidly
with ephyra length, according to the power relationship; IRsat
(eggs in-1 h-1) = 0.5[ephyra length (mm)]2.05 (Figure 6).

In unsaturated conditions, the animals would be clearing
prey with maximum rates, which can be easily calculated from
the number of eggs inside their guts and the egg
concentrations in the beakers at the beginning and end of the
incubations. Firstly, an instantaneous individual ingestion rate
in unsaturated conditions (IRuns, eggs h-1 individual-1) can be
calculated as:

IRuns=
euns

t

where euns is the number of eggs inside the ephyra after
incubation under non-saturating conditions and t is incubation
time. Methods in Møller et al. (2010) [47] can then be adapted
to estimate an individual clearance rate (L h-1 individual-1) as:

CRuns=
IRuns
Cm

Jellyfish Predation on Tuna Eggs

PLOS ONE | www.plosone.org 5 September 2013 | Volume 8 | Issue 9 | e74721



Figure 3.  Effect of egg concentration and mixing regime on the proportion of feeding ephyrae (p), egg ingestion rate (IR)
and egg clearance rate (CR) of P. noctiluca ephyrae feeding on Atlantic Bluefin tuna eggs.  Dots represent geometric means
adjusted to the mean ephyra size, which was 0.50 mm for p (includes all ephyrae used in each incubation) and 0.66 mm for IR and
CR (includes only feeding ephyrae). Deviations correspond to ±10SE, where SE is the standard error of the log-transformed
variables. Filled and empty dots correspond to the unstirred and stirred treatments, respectively.
doi: 10.1371/journal.pone.0074721.g003
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where Cm is the mean egg concentration experienced by the
ephyrae inside the experimental container during the course of
the incubation [47]. Cm can be estimated as:

Cm=e

ln C0C f
2

CRuns calculated using these equations grew almost
isometrically with ephyra length, according to the power law
CRuns (L ind-1 h-1) = 3.4[ephyra length (mm)]0.93 (Figure 6).

Discussion

The results of this study clearly demonstrate the predatory
capacity of P. noctiluca on ABFT eggs. Overall, we found four
specific experimental results to be discussed in the context of
the coupled spatio-temporal distribution patterns of both
species in the study area. Firstly, in the lab, large ephyrae are
voracious predators of ABFT tuna eggs, with remarkably high
clearance rates. Secondly, those clearance rates are sustained
or even increased when the eggs are accumulated on the
surface of the incubation containers rather than suspended in
the water. Thirdly, the ingestion rate of P. noctiluca ephyrae
rapidly saturates, leading to cessation of their prey capture
behavior. Finally, P. noctiluca ephyrae are likely to resume
predation after a long digestion time of approximately 18 h.

To our knowledge, P. noctiluca exhibited among the highest
clearance rates reported for jellyfish of a similar size (Table 3).
This difference may be in part methodological, as most
previous studies measured predation rates by counting the
number of prey inside the experimental container before and
after incubation (but see 49). However, non-feeding individuals
are not detected by this approach, thereby underestimating
actual individual clearance rates. Thus, in the present study,
the gut contents of all individual ephyrae were inspected right
after the incubation, to readily detect non-feeding individuals.

In this study, the individual ephyrae cleared actively during
rapid ca. 15 min bursts, but halted feeding afterwards.
Accordingly, an assumption of steady-state ingestion rate has
to be rejected for P. noctiluca at the prey concentrations and
conditions of our experiments, a situation which is similar to
that observed by Hanson & Kiørboe ( [50]) in the jellyfish
Sarsia tubulosa. Our study lends support to their idea that

Figure 4.  Ephyrae with eggs in different situations: A)
ephyra on a Petri disc after feeding, B) ephyra capturing
eggs during feeding incubation under stirred conditions,
C) ephyra capturing eggs during feeding incubation under
unstirred conditions.  
doi: 10.1371/journal.pone.0074721.g004

jellyfish use their large gastric pouches as a buffering, food-
accumulating organ allowing bursts of high food intake when
prey is available in short-lived pulses, as is the case of ABFT
eggs during spawning events in the field. During the spawning
season in 2012, the average weight of the captured ABFT
shoals was 30 t, with a maximum of around 120 t [51].
Spawning takes place at night, with the exact timing varying
between ABFT groups, but always taking place within a small
temporal window (0: 00 to 3: 00 GMT). Spawning events last
about ten minutes, during which the shoals stop horizontal
displacement and stay at the surface. According to previous
calculations [52] based on average fecundities [53], a 30 t
shoal should produce around 840 million eggs within a
diameter of approximately 40 m (personal observation). As a
result, local egg densities of ca. 668 449 eggs m-2 can be
reached in the natural environment, 263 times higher than the
highest density used in this study. Thus, potential predators
present at the right time and location will suddenly experience
an extraordinarily abundant prey source before it is dispersed
by ocean currents. Clearly, high capture efficiencies and large
guts should be highly beneficial under these circumstances.

Short, intense predation episodes by the ephyrae on this
pulsed food source might be relevant in their life cycle, in
particular in the oligotrophic waters of the Balearic archipelago
[54]. This could be especially important for a species like P.
noctiluca, which has no benthic stage and therefore depends
exclusively on surface-dwelling prey. It is worth noting that the
digestion time of the ephyrae is close to the duration of one
day. This suggests that ephyrae digestion times and feeding
rates are metabolic adaptations to a diel feeding cycle. This
supposition is consistent with the pattern of diel vertical
migration in P. noctiluca [35,43], most probably related to
feeding [55].

The highly positive buoyancy of ABFT eggs does not
represent a strategy of floating on the sea surface and evading
predation by jellyfish and other pelagic predators. In particular,
P. noctiluca is a typical cruising predator that screens the water
following a sinusoidal search path [56], generating feeding
currents around its umbrella and feeding tentacles [57]. A
priori, this mechanism seems suited to operating in a 3D, not
2D, prey distribution. However, our experiments show that P.
noctiluca ephyrae can sustain higher apparent clearance rates
when ABFT eggs are accumulated at the water surface,
allowing for rejection of our initial hypothesis. Nevertheless, our
measured feeding rates in a 2D prey distribution might
overestimate feeding rates in the field, because water motions
generated by the feeding ephyrae may well have altered the
uniform distribution of eggs towards the edges of the beakers,
enhancing their catchability. Our own visual observations
during the incubations do not suggest that this may have been
a major source of bias. Video observations suggest that this
species switches from cruising tactile predation with capture at
the subumbellar tentacles (Movie S2) to some kind of directed
prey-detection mechanism with capture at the marginal lappets
(Figure 3B-C, Movie S1). Interestingly, adult P. noctiluca exhibit
a different capture system for non-motile prey at the water
surface, based on positioning their bells upside down and
moving their oral arms towards the surface film [56]. Video
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Figure 5.  Effect of incubation time on the proportion of feeding ephyrae (p), the number of eggs inside the gastric
pouches after incubation, the ingestion rate (IR) and the Clearance Rate (CR).  Dots are observations (beakers), and crosses
represent means for each incubation time. Crosses have been joined by lines to visualize tendencies.
doi: 10.1371/journal.pone.0074721.g005
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Figure 6.  Digestion time (T), average long-term ingestion rate under saturating conditions (IRsat) and clearance rate under
unsaturating conditions (CRuns) vs ephyra length.  The solid line indicates: in the upper panel, the mean T (18.55±5.26 h); in the
middle panel, the least-squares power regression (log (IRsat, eggs ind-1 h-1)=(-0.305) +(2.05) log (ephyra length, mm), n=70,
R2=0.65, P<0.001); in the lower panel, the least-squares power regression (log (CRuns, L ind-1 h-1)=(0.529) +(0.934) log (ephyra
length, mm), n=35, R2=0.176, P=0.006). Animals used for calculation of the IRsat and the CRuns belong to experimental treatments
labeled "(s)" and "(u)" in Table 1.
doi: 10.1371/journal.pone.0074721.g006
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observations illustrated ephyrae feeding behavior, exhibiting
controlled and directed movements between ephyrae to
displace the competitor in the pursuit of a prey (Movie S1).

Theory indicates that predators should have shorter
searching times and higher consumption rates in a 3D than in a
2D prey distribution [45]. This does not seem to apply for P.
noctiluca ephyrae, which seem to be capable of easily
switching from a 3D to a 2D configuration. Neustonic 2D
predation may increase predation success on an egg
population that has already been dispersed but that floats at
the surface in the absence of wind. On more general grounds,
the P. noctiluca-ABFT egg system might represent an example
of a general mechanism linking pelagic and neustonic food
webs. In the absence of wind forcing, planktonic organisms that
swim upwards or that have positive buoyancy will accumulate
on the surface, thus becoming a valuable food source for both
obligate (e.g. Physalia Physalis, Velella velella or Porpita
porpita) and facultative neustonic predators (e.g. P. noctiluca).
The onset of wind-generated turbulence on the sea surface will
bring many of those organisms back into suspension, where
pelagic predators will be at an advantage.

Table 3. Experimentally measured clearance rates of small
scyphomedusae.

Reference
Predator
Species

Predator
size Prey

Prey size/
life stage

Clearance
rate

Hansson &
Kiørboe
2006

Sarsia

tubulosa
- copepods -

*0.04-0.10 L
h-1

Tilves et al.
2013

Pelagia

noctiluca

3.8-4.2
mm

Mnemiopsis

leidy
1-3 mm 0.4 L h-1

  
20-25
mm

 8-12 mm 62 L h-1

Morand et
al. 1987

Pelagia

noctiluca
8 mm Artemia nauplii *0.13 L h-1

Riisgård &
Madsen

Aurelia

aurita

5.1-5.9
mm

Artemia 0.9 mm
0.05-0.09 L
h-1

Bailey &
Batty 1984

Aurelia

aurita

20-22
mm

Clupeaarengus Yolksac 2.2-5.5 L h-1

Fancett
&Jenkins
1988

Cyanea

capillata
25 mm

Paracalunus

indicus
- 0-2.5 L h-1

This study
Pelagia

noctiluca
5 mm

Thunnus

thynnus
1 mm

0.73-7.54 L
h-1

Converted from original units L d- 1

doi: 10.1371/journal.pone.0074721.t003

We conclude that in the Western Mediterranean, P. noctiluca
ephyrae are functionally well suited to predating on ABFT eggs,
a highly-pulsed, spatially-restricted resource that potentially
switches from a 3D to a 2D configuration in the absence of
wind-generated turbulence. However, the potential impact of P.
noctiluca on ABFT early life stages must be verified against
field observations in future studies. Moreover, the possibility
that the annual cyclic fluctuations of ABFT [4] could be related
to those observed in P. noctiluca [34,58,59] should also be
investigated.
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Movie S1.  A video showing the interaction between two
ephyrae of Pelagia noctiluca at the time of catching Atlantic
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under mixing condition, ephyra catching eggs with subumbellar
tentacles under mixing conditions and ephyra under a stereo-
microscope after feeding experiment.
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