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Abstract: To generate imaging biomarkers from disease-specific brain networks, we have implemented
a general toolbox to rapidly perform scaled subprofile modeling (SSM) based on principal component
analysis (PCA) on brain images of patients and normals. This SSMPCA toolbox can define spatial co-
variance patterns whose expression in individual subjects can discriminate patients from controls or
predict behavioral measures. The technique may depend on differences in spatial normalization algo-
rithms and brain imaging systems. We have evaluated the reproducibility of characteristic metabolic
patterns generated by SSMPCA in patients with Parkinson’s disease (PD). We used [18F]fluorodeoxy-
glucose PET scans from patients with PD and normal controls. Motor-related (PDRP) and cognition-
related (PDCP) metabolic patterns were derived from images spatially normalized using four versions
of SPM software (spm99, spm2, spm5, and spm8). Differences between these patterns and subject scores
were compared across multiple independent groups of patients and control subjects. These patterns
and subject scores were highly reproducible with different normalization programs in terms of disease
discrimination and cognitive correlation. Subject scores were also comparable in patients with PD
imaged across multiple PET scanners. Our findings confirm a very high degree of consistency among
brain networks and their clinical correlates in PD using images normalized in four different SPM plat-
forms. SSMPCA toolbox can be used reliably for generating disease-specific imaging biomarkers
despite the continued evolution of image preprocessing software in the neuroimaging community. Net-
work expressions can be quantified in individual patients independent of different physical character-
istics of PET cameras. Hum Brain Mapp 35:1801–1814, 2014. VC 2013 Wiley Periodicals, Inc.
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OVERALL DESCRIPTION OF THE PROCEDURE

It is often a challenge to diagnose and assess neurologi-
cal disorders on clinical criteria alone. Functional brain
imaging methods can provide an objective basis for dis-
criminating patients from controls and for differential di-
agnosis of clinically similar neuropsychiatric syndromes
[Habeck et al., 2008; Spetsieris et al., 2009; Tang et al.,
2010]. Likewise, statistical mapping approaches can be
used to assess disease progression and the effects of novel
interventions on resting brain function [Eidelberg, 2009;
Feigin et al., 2007a; Hirano et al., 2008]. In general, two an-
alytical techniques have been used to identify and validate
disease-related biomarkers in functional and anatomical
neuroimaging data. Mass-univariate general linear models
[e.g. statistical parametric mapping (SPM)] provide a
widely used approach to delineate regional abnormalities
that are specific to a given illness. By contrast, multivariate
approaches based on spatial covariance mapping [e.g.,
scaled subprofile model (SSM)/principal component anal-
ysis (PCA)] provide a reliable means to characterize dis-
ease-related network abnormalities and quantify these
changes in individual subjects.

We have implemented a general toolbox (The software
freely available to the neuroimaging community at http://
www.fil.ion.ucl.ac.uk/spm/ext/) to rapidly perform SSM/
PCA operation on brain images from patients and nor-
mals. The underlying algorithm and its assumptions were
introduced in the early 1990s for use in volume-of-interest
(VOI) data [Alexander and Moeller, 1994; Eidelberg et al.,
1994; Moeller and Strother, 1991; Petersson et al., 1999]
and was subsequently extended for voxel-level whole
brain analysis [Asanuma et al., 2005; Habeck et al., 2008;
Ma et al., 2007; Moeller et al., 1999]. This SSMPCA toolbox
was developed to provide automated voxel-wise computa-
tions with an improved user-interface, and optimized
efficiency for general applications. It can identify charac-
teristic abnormal covariance patterns from principal com-
ponents whose expression in individual subjects (i.e.,
subject scores) either discriminate patients from controls or
correlate with independent descriptors of disease severity
or behavior performance. In addition, an inverse algorithm
called topographic profiling rating (TPR) has been devised
to prospectively quantify expressions of a given covariance
pattern for new subjects on a single case basis.

Spatial covariance analysis with SSMPCA toolbox has
been used extensively in the study of Parkinson’s disease
(PD) and other neurodegenerative disorders [Eidelberg,
2009; Ma et al., 2009; Poston and Eidelberg, 2009; Tang
et al., 2010]. We have found with [18F]fluorodeoxyglucose
(FDG) PET that PD is associated with two specific covari-
ance patterns for motor and cognitive symptoms. Subject
scores of the PD motor-related pattern (PDRP) have been
shown to correlate with independent measures of disease
severity, with changes in PDRP expression correlating
with clinical outcome following antiparkinsonian interven-
tions [Asanuma et al., 2006; Fukuda et al., 2001; Poston

and Eidelberg, 2009]. By contrast, subject scores for the PD
cognition-related pattern (PDCP) have been found to cor-
relate with the degree of cognitive impairment noted in
these patients [Eidelberg, 2009; Huang et al., 2007a, 2008].
Furthermore, characteristic metabolic covariance patterns
have also been identified to aid diagnosis of atypical
[Eckert et al., 2008; Tang et al., 2010] and tremor-related
[Mure et al., 2011] parkinsonism in a clinical setting.

One key prerequisite for univariate or multivariate brain
mapping studies at the voxel level is spatial registration
and normalization of individual images. This is usually
performed using commonly available computing tools
implemented in SPM software [Friston, 2007]. Over the
last decade this software has evolved steadily (four offi-
cially released versions from spm99 to spm8) to provide
more powerful solutions for inferential statistics. In partic-
ular, optimized algorithms are incorporated into these rou-
tines to improve the accuracy of image preprocessing.
Parallel to these developments in the neuroimaging field,
SSMPCA can be run using different preprocessing meth-
ods, which are likely to introduce a degree of inconsis-
tency into the results. Thus, it may be difficult to compare
or interpret the results of SSMPCA without knowing the
comparability of covariance patterns using these different
image preprocessing tools. Network expressions may also
depend on differences in PET cameras and image recon-
struction algorithms given the variation of imaging sys-
tems among many nuclear medicine facilities.

In this study, we evaluated the performance of the
SSMPCA toolbox in generating characteristic disease-
specific patterns with the use of different versions of the
SPM program. This was based on both PDRP and PDCP
which have been generated and validated extensively with
spm99 [Asanuma et al., 2006; Hirano et al., 2008; Huang
et al., 2007a,b; Ma et al., 2007; Mattis et al., 2011; Spetsieris
and Eidelberg, 2011; Trost et al., 2006]. We observed an
error of 5–7% in the diagnostic accuracy when evaluating
these brain networks with images normalized using newer
versions of SPM software. By preprocessing FDG PET
images with different spatial normalization algorithms, we
assessed the stability of metabolic covariance patterns in
discriminating patients from controls and in correlating
with behavioral measures in independent populations. The
reproducibility of subject scores for these patterns was
also assessed using images from different PET scanners
and SPM normalization programs.

SUMMARY OF THE MATERIALS AND

EQUIPMENT USED

The SSMPCA toolbox was implemented in MATLAB
(Mathworks, Natick, MA), a common software platform
used by researchers in the neuroimaging field. Brain
images from the scanner database are extracted into
DICOM format and transformed into standard Analyze or
NIfTI-1 file format. Imaging volumes of all subjects are
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then mapped to the same physical space by spatial trans-
formation to a standardized brain template. This normal-
ization procedure allows automated data-driven
processing in both VOI- and voxel-based analyses over the
whole brain. User-defined threshold criteria, smoothing
and masking constraints are also applied uniformly over
all image data to enhance signal-to-noise ratio prior to sta-
tistical analysis.

For network analysis and diagnosis, we use an imple-
mentation of SSM in conjunction with PCA that includes
automated TPR diagnostic tools [Ma et al., 2007; Spetsieris
et al., 2006]. SSMPCA can be applied to brain images for a
combined group of patients and controls or a single sub-
ject group (Fig. 1). Each input VOI dataset or spatially
normalized brain image undergoes a natural log-transfor-
mation if imaging data have positive values and multipli-
cative variability (e.g. PET). In contrast, this
transformation is not suitable if imaging data have nega-
tive values or additive variability (e.g. fMRI). The resulting

data from all subjects are then entered into a PCA after
applying an offset to remove subject- and voxel-specific
mean effects. It is this two-step centering procedure that
ensures that the estimated topographic pattern is a direct
measure of the spatial covariation among widely distrib-
uted brain regions. Although the log-transformation is not
always essential, the use of double-centered log-trans-
formed PCA [Joliffe, 2002] is known to minimize the effect
of any subject- and/or group-dependent differences in
global brain function on pattern topography (c.f. [Spetsie-
ris and Eidelberg, 2011]). SSM analysis outputs a set of
principal components (PCs) along with the fraction of the
variance accounted for (VAF) by each PC. This operation
also generates subject scores that reflect the degree to
which a subject expresses the associated network topology
in each PC.

The PCs resulting from a single SSM/PCA run represent
a set of regional vectors or voxel maps of Group Invariant
Subprofile (GIS) that may result from functional abnormal-
ity in relevant brain disorders. Each GIS pattern consists
of voxels with both positive and negative values that are
termed region weights [Eidelberg, 2009; Ma et al., 2009].
The values of the region weight measure the degree and
direction of regional covariance and the relative contribu-
tion to a GIS pattern by each voxel. Positive voxel weights
indicate that as pattern expression increases, relative meta-
bolic activity in the positively weighted voxels increases as
well. Likewise, negative voxel weights indicate decreases
in relative local metabolic activity with increasing pattern
expression.

To obtain a clinically relevant covariance pattern it is
necessary to examine a subset of PCs (e.g. 1–6) with the
total voxel-subject variance exceeding 50%. Subject scores
for individual PCs can be linearly combined by logistical
regression to identify the optimal combination that best
separates patients from controls or predicts behavior corre-
lates in a single subject group. Consequently, a disease-
specific covariance pattern can be defined by either a sin-
gle PC or a linear combination of these PCs using the
same parameters determined by the logistic regression. In
the forward application, subject scores were determined
by TPR from the dot product between the covariance pat-
tern and individual brain images with or without the natu-
ral log-transformation. Hence, subjects will have higher
scores for a pattern if their brain images contain more
regions with concomitantly more increased and/or more
decreased relative brain activity. Likewise, subjects will
have lower scores following the restoration of regional
brain function.

To derive a robust covariance pattern one has to assess
the reliability of the region-weight that is significantly dif-
ferent from zero at each voxel. The SSMPCA toolbox uses
a bootstrapping algorithm to estimate the reliability of
each covariance pattern as described elsewhere [Habeck
et al., 2003]. In this module, PCA procedure is repeated
iteratively for a large number of iterations (e.g. 500–1,000)
by resampling the original sets of brain images with

Figure 1.

Flow chart for the multivariate covariance analysis with SSMPCA

toolbox. (A) Pattern derivation: principal component analysis

(PCA) can be performed on brain images for two subject groups

or one single group. Input data may be log-transformed and

then offset to remove subject-specific measures of global scaling

factors and region-specific effects termed group mean profile

(GMP). PCA is done within a brain mask defined by the input

imaging data. Logistic regression is conducted on subject scalar

factors for a subset of PCs for optimizing the discrimination

between the two subject groups or behavioral correlation in the

single subject group. (B) Forward application: topographic profil-

ing rating (TPR) can be applied prospectively to brain images

from any number of subject groups or conditions. The computa-

tion is carried out using a brain mask and GMP either come

from the original sample for the PCA operation or defined by

the user in the prospective sample of any new population. Sub-

ject scores of each covariance pattern are usually transformed

into z-scores for prospective analysis.
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replacement. A three-dimensional (3D) map of inverse
coefficient of variation (ICV) is produced on a voxel basis
by dividing the region–weight of the original covariance
pattern by the standard deviation of covariance patterns
generated from all iterations in the bootstrapping. This
map allows the user to define a statistic for measuring the
reliability by selecting a z-threshold for both positive and
negative region–weights of a particular covariance pattern.

STEP-BY-STEP DESCRIPTION OF THE

RESEARCH PROTOCOL

In this study, we used brain scans of cerebral glucose
metabolism from several cohorts of patients and normal
controls for pattern derivation and prospective validation.
FDG PET images were acquired in 3D mode using a GE
Advance tomograph (GE Medical Systems, Milwaukee,
WI) at North Shore University Hospital. On a fast since
the night before, all subjects remained at rest in a quiet
and dimly-lit room during radiotracer uptake and imag-
ing. The procedure involved taking one single blood sam-
ple at 20 min post-injection, followed by a sequential
transmission and emission scanning protocol [Ma et al.,
2007]. Table I provides the demographic and clinical infor-
mation of all subjects. For studies on the motor-related
PDRP network, two independent cohorts were created ran-
domly from the FDG PET images in 33 patients with PD
and 33 age-matched controls that were originally used to
generate the PDRP in the test–retest study [Ma et al.,
2007]. The patients had a total motor score of 31.3� 16.4
(mean� SD) as evaluated by the Unified Parkinson’s Dis-
ease Rating Scale (UPDRS). For PDRP identification, we
used images in the first cohort of 20 patients with PD (age
55� 5 year; Hoehn and Yahr [H&Y] stages: 2–4) and 20

normal controls (age 55� 9 year). For prospective valida-
tion, subject scores were determined in the second cohort
of 13 patients with PD (age 61� 11 year; H&Y stages 2–4)
and 13 normal controls (age 55� 19 year). There were no
significant differences in age (ANOVA: F3,62¼ 1.11,
P¼ 0.35) among these four subject groups.

To derive the cognition-related PDCP network, we used
FDG scans from a single group of 15 nondemented PD
patients (age 59� 10 year; H&Y stages 2–4; MMSE
28.2� 2.1) [Huang et al., 2007a]. Fifteen age-matched
healthy subjects (age 57� 13 year) served as normal con-
trols. Furthermore, an independent sample of 15 patients
with PD (age 62� 5 year; H&Y stages 2–4; MMSE
28.2� 1.6) was used for prospective validation of this pat-
tern [Huang et al., 2008]. Age did not differ across these
three subject groups (ANOVA: F2,42¼ 1.16, P¼ 0.32). All
patients with PD were assessed with UPDRS and a battery
of neuropsychology tests on their cognitive performance
as described previously [Huang et al., 2007a, 2008].
Patients in the validation sample had been diagnosed to
have single domain mild cognitive impairment (MCI) but
were otherwise similar to those in the derivation sample
(P� 0.23; Student’s t-test; Table I). Ethical permission for
this study had been given by the local Institutional Review
Board. Written informed consent had been obtained from
each subject with detailed explanation of the procedures
and in accordance with the Code of Ethics of the World
Medical Association (Declaration of Helsinki).

All images were preprocessed using four different ver-
sions (spm99, spm2, spm5, and spm8) of SPM software
(Wellcome Department of Imaging Neuroscience, Institute
of Neurology, London, UK; http://www.fil.ion.ucl.ac.uk/
spm). Individual images were spatially normalized into
Talairach brain space. This standard anatomical space was
defined by a series of image-modality specific brain tem-
plates. The normalization used linear and nonlinear regis-
tration algorithms in each of four SPM versions
[Ashburner and Friston, 1999; Ashburner et al., 1997]. The
default registration was not regularized sufficiently in
spm99. The algorithms were more refined from spm2
onwards, with increased regularization and optimization
in the iterative registration algorithm. These algorithms
perform better in reducing the effect of potential brain at-
rophy (e.g. in the PDCP network) on the normalization ac-
curacy compared to the previous method implemented in
spm99. The normalized images were then smoothened by a
10mm Gaussian filter over a 3D space to increase signal to
noise ratio before statistical analysis.

PDRP and PDRP topographies were generated from
images spatially normalized by each version of SPM soft-
ware. Differences across four versions of PDRP or PDCP
were separately assessed by visual inspection and by
quantitative pairwise comparison. For qualitative inspec-
tion, the four versions of each pattern were overlaid onto
a standard MRI brain template on three orthogonal views
using the same thresholds. For quantitative analysis, the
four versions of each pattern were compared by

TABLE I. Clinical characteristics in patients with PD

and normal controls

Group

Derivation sample Validation sample

PD NC PD NC

PDRP
Number 20 20 13 13
Age (year) 54.7� 4.9 55.1� 9.0 61.1� 10.6 54.9� 18.7

PDCP
Number 15 – 15 15
Age (year) 58.6� 9.5 – 62.1� 5.2 56.8� 9.5
UPDRS 31.3� 15.4 – 33.7� 16.3 –
MMSE 28.3� 2.1 – 28.2� 1.6 –
CVLT 35.0� 15.3 – 34.6� 9.5 –
Trails B 138.1� 63.9 – 134.0� 63.2 –
HVOT 19.2� 4.5 – 19.6� 4.5 –

UPDRS, Unified Parkinson’s Disease Rating Scale; MMSE, Mini-
mal Mental Status Examination; CVLT, California Verbal Learning
Test; Trails B, Trail Making Test Part B; HVOT, Hooper Visual Or-
ganization Test.
All values are given as mean� SD.
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computing the region–weights in a set of 30 VOIs covering
the whole brain, including only voxels ��80% of the
maxima within each VOI. The comparisons were also
made voxelwise to evaluate topographic patterns more
accurately. In addition, subject scores for PDRP/PDCP
were computed for the images in the validation sample.
All subject scores were z-transformed individually by sub-
tracting control mean and dividing by pooled standard
deviation in the original derivation sample. This made the
mean value of the derivation controls equal to zero and
ensured the comparability of subject scores across different
populations.

MULTICENTER REPRODUCIBILITY OF

NETWORK EXPRESSIONS

To assess the reproducibility of PDRP/PDCP scores across
multiple PET scanners, we used FDG PET scans acquired at
baseline from 23 nondemented patients with advanced PD
who belonged originally to the sham group in a randomized
double-blind gene therapy trial [Lewitt et al., 2011]. All sub-
jects (age 61� 7 year; H&Y stages 2–4; UPDRS 39.0� 8.7)
were scanned over 35–45 min post-injection in five medical
centers in the USA with five different PET cameras (Sup-
porting Information Table I). These cameras included four
PET alone machines and one PET/CT scanner made by two
major vendors, with a 3D resolution of 4–6 mm at the center
and 5–7 mm at 10 cm from the center. PET images were
reconstructed with one of four different methods commonly
used at each site. Subject scores of PDRP/PDCP networks
were then determined as described earlier.

STATISTICAL ANALYSIS

Data analyses for PDRP and PDCP networks were per-
formed separately and in parallel. All comparisons were
made in reference to the results from spm99-processed
images which have been validated rigorously as noted in
the Introduction. For the four versions of each pattern,
region weights were correlated pairwise using both VOI-
and voxel-based regression analyses. Between-group dif-
ferences in subject scores for each version of the PDRP
were evaluated with two-sample t-tests and receiver oper-
ating characteristic (ROC) analyses in both cohorts of
patients with PD and healthy controls. To assess the sin-
gle-case diagnostic power of PDRP score from spm99-nor-
malized images, an optimal threshold was chosen to give
high sensitivity and specificity of 95% in the derivation
cohort and then applied to the validation cohort. In each
cohort, the reproducibility of diagnostic accuracy was fur-
ther tested by subject scores from the other three versions
of the PDRP using the same optimal threshold chosen
above. In addition, subject scores for each version of the
PDCP were correlated with age, UPDRS motor ratings,
and neuropsychological measures in patients. Within each
group of patients and controls, subject scores were also

correlated among the four versions of PDRP or PDCP net-
work. All statistical computations were performed using
SPSS software (SPSS, Chicago, IL) running on PCs and
were considered significant with P< 0.05.

RESULTS

PDRP

The PDRP topography was identified as the first PC that
accounted for at least 18.3% subject� voxel variance in the
four derivation analyses (Fig. 2), each using a different
version of the SPM normalization software. Subject scores
for each of the four resulting versions were elevated in the
patients with PD relative to the healthy controls
(P< 0.0001). These four PDRPs were very similar in terms
of metabolic topographies of increased and decreased re-
gional covariation (Fig. 3) and reliable at P< 0.005 accord-
ing to the bootstrapping estimation (Supporting
Information Fig. 1A). The major results for the four PDRP
versions were summarized in Table II. Region-weights of

Figure 2.

Eigenvalue distributions produced for the derivations of PDRP and

PDCP using FDG PET images normalized by spm99, spm2, spm5,

and spm8. Variance accounted for (VAF) was plotted for each of

major principal components from SSMPCA network analyses. Each

of the PDRPs was identified by the first PC (asterisk) from 20

patients with PD and 20 age-matched normal volunteers in the

original derivation sample. Each of the PDCPs was identified by

the second PC (asterisk) from 15 nondemented patients with PD

with mild to moderate motor symptoms in the original derivation

sample. Asterisks denoted the optimal PC that gave rise to the

maximum group separation (PDRP) or behavioral correlation

(PDCP). [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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these patterns from images normalized by spm2, spm5, and
spm8 were highly intercorrelated (P< 0.0001) with those
from spm99 (R� 0.998; Supporting Information Fig. 2) and
almost identical among themselves (R¼ 1.0).

The subject scores for each version of the four PDRPs
were significantly higher in the patients versus the controls
in the two separate cohorts (P< 0.0001; Fig. 4). These scores
exhibited excellent discriminating accuracy in the original
derivation (AUC� 0.984, 95% confidence of interval [CI]¼
0.956–1.012) and the prospective validation (AUC� 0.959,
95% CI¼ 0.892–1.027) cohorts. For single-case diagnosis, the
specificity and sensitivity were excellent in the derivation
cohort, but slightly better for the spm99-processed images

than for the other three versions. In the validation cohort,
despite high specificity overall, the sensitivity was also bet-
ter for the former than for the latter. PDRP scores from four
SPM-normalization programs were highly inter-correlated
(P< 0.0001; Supporting Information Fig. 2) for the controls
and the patients in the derivation (R� 0.971) and the vali-
dation (R� 0.966) cohorts.

PDCP

PDCP was identified in separate analyses in which sub-
ject differences in the expression of each PC were correlated
with the behavioral measures [Huang et al., 2007a]. The

Figure 3.

Comparisons of PDRP from FDG PET images normalized by

spm99, spm2, spm5, and spm8. Each of the PDRPs was identified

by network analysis of FDG PET scans from 20 patients with

PD and 20 age-matched normal volunteers in the original deriva-

tion sample. This covariance pattern was characterized by rela-

tive pallidal, thalamic, sensorimotor, pontine, and cerebellar

hypermetabolism, associated with covarying metabolic decre-

ments in the lateral premotor and posterior parietal areas.

PDRP expression (subject scores) for this pattern was signifi-

cantly (P< 0.001) increased in the patients with PD relative to

the normal control subjects. [The displays are on a standard sin-

gle-subject MRI brain template and represent voxels that con-

tribute significantly (P< 0.005) to the network based on a

bootstrapping estimation algorithm. Red/blue colors indicate

brain regions with concurrently increased/decreased covariation

between regional glucose metabolism.]
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PDCP topography was determined as the second PC
(accounting for at least 19.3% of subject� voxel variance;
Fig. 2) using images from each version of the SPM pro-
grams. Subject scores for each of the resulting PDCPs corre-
lated (P< 0.01) with the degree of cognitive impairment
measured by California verbal learning test (CVLT). These
four PDCPs were also highly similar (Fig. 5) and reliable at
P< 0.005 according to the bootstrapping estimation (Sup-
porting Information Fig. 1B). The major results for the four
PDCPs were summarized in Table III. Region-weights of
the PDCPs from images normalized by spm2, spm5, and
spm8 were also highly intercorrelated (P< 0.0001) with
those from spm99 (R� 0.968; Supporting Information Fig. 2)
and almost identical among themselves (R¼ 1.0).

Subject scores from each version of the four PDCPs corre-
lated negatively with individual values of CVLT in the origi-
nal derivation (R��0.645, P< 0.01; Supporting Information
Fig. 3) and prospective validation (R��0.503, P¼ 0.056)
patients with PD. The correlations in the combined sample
were similar (R��0.632, P< 0.001; Fig. 6) with comparable
magnitudes among four versions of the PDCP. In other
words, a higher PDCP score predicted a worsening ability in
verbal learning and memory. However, the same subject
scores did not correlate with UPDRS motor scores in each of
the two patient groups (P� 0.83). In addition, PDCP scores
from the four SPM-normalization programs were highly cor-

related (R� 0.948, P< 0.0001; Supporting Information Fig. 2)
in the derivation and validation groups.

Multicenter Reproducibility of Network

Expressions

Network scores of patients with PD in Sites A (the Fein-
stein Institute), B, C, D, and E were presented in Table IV
and Figure 7. UPDRS motor ratings or PDRP scores were
comparable for the patients across the five sites, with no
differences between the 10 subjects from Site A and the 13
subjects from all other Sites (P> 0.32). PDCP network
scores were similar to those for the PDRP network scores.
PDRP/PDCP scores were also analogous between spm99-
and spm5-processed images for individual subjects at each
of the five Sites (Supporting Information Fig. 4).

DISCUSSION

PD results from progressive losses of dopaminergic neu-
rons in the nigrostriatal system, as well as nondopaminer-
gic neurons of serotonergic and norepinephrinergic origins
in the related neural pathways. Cortical brain atrophy and
Lewy body deposition may also underlie cognitive dys-
function. It is this complex neuropathology that leads

TABLE II. Comparisons of PDRP network and subject scores with FDG PET images normalized by four versions of

SPM software

SPM99 SPM2 SPM5 SPM8

VAF (%) 18.33 19.43 19.46 19.61
GIS weightsa 1.000/1.000 0.998/0.987 0.998/0.986 0.998/0.986
PCA derivation sample
20 NC 0.000� 0.099 0.000� 0.096 0.000� 0.096 0.000� 0.097
20 PDb 1.486� 0.186 1.473� 0.190 1.471� 0.191 1.469� 0.191
AUC (CI) 0.993 (0.974, 1.011) 0.985 (0.959, 1.011) 0.985 (0.959, 1.011) 0.984 (0.956, 1.012)
Sensitivity 0.95 0.90 0.90 0.90
Specificity 0.95 0.90 0.90 0.90
TPR validation sample
13 NC 0.000� 0.118 0.000� 0.117 0.000� 0.117 0.000� 0.117
13 PDb 1.462� 0.239 1.436� 0.246 1.434� 0.247 1.434� 0.247
AUC (CI) 0.970 (0.914, 1.027) 0.959 (0.892, 1.025) 0.959 (0.892, 1.025) 0.959 (0.892, 1.025)
Sensitivity 0.92 0.85 0.85 0.85
Specificity 0.92 0.92 0.92 0.92
Subject score correlationa

20 NC 1.000 0.972 0.971 0.971
20 PD 1.000 0.995 0.995 0.995
13 NC 1.000 0.966 0.968 0.969
13 PD 1.000 0.995 0.996 0.996

AUC, area under the curve in the receiver operating characteristic analysis; CI, 95% confidence of intervals (lower bound, upper bound);
sensitivity, true positive rate (TPR); specificity, true negative rate (TNR); VAF, variance accounted for in principal component analysis;
GIS, Group Invariant Subprofile from the derivation sample of PD and control subjects.
The correlations of the GIS weights were performed over a standard 30 VOI template with a threshold of 80 % or over all voxels of the
brain with non-zero values.
All average values are given as mean� SE.
aP< 0.0001; Pearson correlation coefficient from regression analysis.
bP< 0.0001; with respect to normal controls (Student’s unpaired t-tests).
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ultimately to widespread motor symptoms and cognitive
impairment in PD [Caballol et al., 2007]. We have estab-
lished that motor and cognitive dysfunction in PD are
associated with specific spatial covariance patterns involv-
ing distinct metabolic abnormalities in subcortico-cortical
pathways [Eidelberg, 2009; Huang et al., 2007a; Lozza
et al., 2004; Ma et al., 2007]. Both patterns included large
areas not normally associated with PD, reflecting the na-
ture of covariance analysis for revealing distal brain
regions within a widely distributed network. Widespread
cortical abnormalities in metabolism and perfusion have
also been described with PET and SPECT using other anal-
ysis methods [Bohnen et al., 2011; Hsu et al., 2007].
Indeed, PDRP expression correlated with the increasing
severity of motor symptoms and was modulated with suc-
cessful pharmacologic and stereotaxic surgical interven-
tions for PD [Feigin et al., 2001; Fukuda et al., 2001]. By
contrast, PDCP expression correlated with independent
measures of cognitive dysfunction in PD and did not ex-
hibit such characteristics seen in the PDRP network [Hir-
ano et al., 2008; Huang et al., 2007b]. PDRP and PDCP
expressions in individual patients may be useful in select-
ing candidates for clinical trials and track their response
and prognosis over long-term follow-up.

We have previously shown the excellent reliability of
these two characteristic patterns within and between imag-
ing sessions. By using functional brain images prepro-

cessed with spm99, we validated PDRP/PDCP expressions
as disease-related biomarkers in prospective patient
cohorts scanned at rest with FDG and H2

15O PET techni-
ques [Huang et al., 2007a; Ma et al., 2007]. Subject scores
obtained from regional cerebral glucose metabolism
(rCMRglc) and blood flow (rCBF) data in the same cohort
of patients and controls were highly comparable for both
PDRP and PDCP. We also demonstrated the stability of
these measures in test–retest studies of patients scanned at
different disease stages in the untreated condition and
during pharmacological or neurosurgical interventions.
This information is useful in the design of interventional
imaging studies of novel therapies for PD and related neu-
rodegenerative disorders.

We have now demonstrated that the results obtained
from FDG PET images spatially normalized by spm2, spm5,
and spm8 are highly consistent with those in the previous
studies with spm99. Indeed, the motor-related PDRPs were
strongly correlated among four versions of SPM program
in terms of the region-weights assessed over the whole
brain (R> 0.98; Table II). The topography of these PDRP
networks was very similar to that from multivariate inde-
pendent component analysis of SPECT brain perfusion
data [Hsu et al., 2007]. PDRP expression reliably distin-
guished patients with PD from normal controls with a high
degree of accuracy in two independent cohorts and across
four versions of SPM software. Nevertheless, there was a

Figure 4.

Disease differentiations by subject scores of the PDRP networks

from FDG PET images normalized by spm99 (A) and spm5 (B).

In both cases, PDRP scores were elevated (P< 0.00001) in the

20 patients with PD relative to the 20 controls in the original

derivation sample. This excellent disease discrimination is similar

to that from subject scores computed prospectively between

the 13 patients with PD and the 13 controls in the validation

sample. The dash-lines indicate the optimal threshold defined

from PDRP scores in the derivation cohort using spm99-normal-

ized images. The performance figures by the subject scores of

the PDRP in both derivation sample and validation sample are

highly equivalent between images normalized by the four ver-

sions of SPM program (see text).
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small decline in the discrimination power in the validation
cohort due to the reduced number of subjects. Further-
more, subject scores in PD patients from spm99-normalized
images were slightly higher than those from other versions
of SPM program, consistent with the marginally better dis-
crimination power in the corresponding PDRP. Subject
scores of all PDRPs were strongly correlated in the two in-
dependent groups of PD patients or normal controls.

The determination of disease-specific patterns with
SSMPCA may depend on the selection of optimal PCs,
image smoothing, and sample size. We compared the dis-
tribution of subject scores in the derivation of PDRP or

PDCP with different sets of combinations of contiguous
PCs (1–2 until 1–6), using PET images normalized with
both spm99 and spm5. For each combination of PCs, the
total VAF was comparable with subject scores in each
group highly correlated between the two versions of SPM
(Supporting Information Tables II and III). The first PC
consistently gave the maximum group discrimination in
subject scores. The second PC produced the strongest be-
havioral correlation in the reference condition of spm99.
Hence, the first/second PC was used to define the PDRP/
PDCP as described in this article. The effect of image
smoothing remains to be fully assessed.

Figure 5.

Comparisons of PDCP from FDG PET images normalized by

spm99, spm2, spm5, and spm8. Each of the PDCPs was identified

by network analysis of FDG PET scans from 15 nondemented

patients with PD with mild to moderate motor symptoms in the

original derivation sample. This covariance pattern was marked

by bilateral metabolic reductions in the rostral supplementary

motor area (preSMA) and precuneus, the dorsal premotor cor-

tex, the inferior parietal lobule, as well as in the left prefrontal

region, covarying with relative metabolic increases in the cere-

bellar vermis and dentate nuclei. Subject scores for this pattern

correlated significantly (P< 0.01) with psychometric indices of

verbal learning performance. [The displays are on a standard sin-

gle-subject MRI brain template and represent voxels that con-

tribute significantly (P< 0.01) to the network based on a

bootstrapping estimation algorithm. Red/blue colors indicate

brain regions with concurrently increased/decreased covariation

between regional glucose metabolism.]
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The PDRP network reported here with 20 patients with
PD and 20 control subjects was very similar to that derived
from a large sample of patients and controls. Indeed, PDRP

networks generated from the whole groups of 33 patients
with PD and 33 controls were also highly correlated
(R� 0.94; P< 0.0001) with the former in terms of the

Figure 6.

Behavioral correlations by subject scores of the PDCP networks

from FDG PET images normalized by spm99 (A) and spm5 (B).

In both cases, subject scores were negatively correlated with

individual values of California Verbal Learning Test (CVLT) in the

15 patients with PD in the original derivation sample (closed

circles) and in the 15 patients with PD in the validation sample

(open circles). Each graph included a linear regression fit (solid

line) and 95% confidence of intervals (dash lines) in the com-

bined sample of 30 patients with PD. The performance figures

by the subject scores of the PDCP in individual samples and in

the combined sample are highly equivalent between images nor-

malized by the four versions of SPM program (see text).

TABLE III. Comparisons of PDCP network and subject scores with FDG PET images normalized by four versions of

SPM software

SPM99 SPM2 SPM5 SPM8

VAF (%) 19.28 20.92 20.65 20.81
GIS weightsa 1.000/1.000 0.976/0.949 0.968/0.940 0.970/0.943
PCA derivation sample
15 PD 0.864� 0.312 0.640� 0.325 0.608� 0.326 0.617� 0.325
CVLT �0.727b �0.661c �0.645c �0.650c

TPR validation sample
15 PD2 1.087� 0.236 0.883� 0.225 0.851� 0.222 0.856� 0.222
CVLT �0.503d �0.610d �0.612d �0.610d

CVLT 30 PD �0.650a �0.642a �0.632a �0.635a

Subject score correlationa

15 PD 1.000 0.965 0.957 0.959
15 NC 1.000 0.948 0.947 0.952
15 PD2 1.000 0.975 0.970 0.973

VAF, variance accounted for in principal component analysis; GIS, Group Invariant Subprofile from the derivation sample of patients
with PD.
The correlations of the GIS weights were performed over a standard 30 VOI template with a threshold of 80% or over all voxels of the
brain with non-zero values.
All average values are given as mean� SE.
aP< 0.0001; Pearson correlation coefficient from regression analysis.
bP< 0.005.
cP< 0.01.
dP< 0.05.

r Peng et al. r

r 1810 r



region-weights and subject scores with spm99- or spm5-nor-
malized images. Discrimination power was also compara-
ble among different groups of patients and controls. To test
the effect of the sample size on PDRP, a series of empirical
studies were conducted by randomly selecting a smaller
number of subjects in the derivation sample. The results

indicated that reliable variance patterns may be identified
with as few as 10 patients and 10 controls.

The cognition-related PDCP topographies were also
highly reproducible among four versions of SPM normal-
ization program, with very strong pair-wise correlations in
the region-weights (R� 0.94; Table III). The PDCP network
was almost identical to the topography obtained from
another voxel-based multivariate analysis method using
brain-behavior partial least squares [Mentis et al., 2002].
PDCP expression reliably predicted objective measures of
cognitive dysfunction in two independent groups of PD
patients across four versions of SPM software. However,
the predictive power of the PDCP score was marginally
better in spm99-normalized images than those prepro-
cessed with other versions of SPM in the 15 derivation
patients. PDCP scores from the former were higher (but
not significantly) than those from the latter in both patient
groups. Lower PDCP scores in spm2-8 were attributed to
the normalization methods which tend to minimize the
spread of hypometabolic brain regions (predominate in the
PDCP). Consistent with a diagnosis of MCI the validation
sample had higher (nonsignificant) PDCP scores relative to

TABLE IV. Subject scores of PDRP and PDCP networks

with FDG images from multiple PET scanners

Site (no.)

PDRP PDCP

SPM99 SPM5 SPM99 SPM5

All (n¼ 23) 1.23� 0.14 1.27� 0.15 1.08� 0.14 0.84� 0.13
Site A (n¼ 10) 1.07� 0.21 1.13� 0.22 1.02� 0.19 0.83� 0.19
Others (n¼ 13) 1.36� 0.19 1.38� 0.21 1.12� 0.21 0.84� 0.19

All average values are given as mean� SE.
Subject scores were computed using multicenter FDG PET images
normalized by two different versions of SPM software.
Scanner information for all participating sites is available in Sup-
porting information Table I.

Figure 7.

Reproducibility of disease-related brain network expressions in

patients with PD using FDG images acquired with five different

PET scanners and normalized by spm99 and spm5. (A) UPDRS

motor ratings in patients at each of the five participating sites.

(B) Subject scores of the PDRP network. (C) Subject scores of

the PDCP network. Network scores for patients from the Fein-

stein Institute (Site A) were similar to those from all other Sites

(B–E). Specific information on the PET scanner at each site is

listed in Supporting Information Table I. Network scores were

highly comparable among multiple PET cameras and image

reconstruction methods using different versions of SPM normal-

ization program (see text).
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the derivation sample. Given that the behavioral correla-
tions in the combined sample were comparable in magni-
tudes and directionality with those in the derivation or
validation groups (Table III), the effects of sample size
were also estimated empirically. These results all showed
high similarity among four versions of SPM normalization
program, suggesting that a sample size of 15 is adequate
in such a network analysis in a single group of subjects.

PDRP/PDCP topographies and subject scores were
almost identical using FDG PET images spatially normal-
ized by spm2, spm5, and spm8, suggesting the very high
degree of similarity in the standard brain template and spa-
tial normalization algorithms in these three latest versions
of SPM software. We noted that the PDRP was mostly sym-
metrical in terms of abnormal relative regional metabolism
reflecting bilateral motor symptoms in our patients with
PD. In contrast, the relative cortical hypometabolism in the
PDCP appears to be more pronounced on the left hemi-
sphere, attributed to the stringent threshold used to display
the pattern, although a left-sided dominance of cortical
hypometabolism could not be excluded in PD patients with
verbal learning dysfunction.

We have demonstrated that network expressions in
patients with PD were highly comparable across multiple
PET scanners in the context of a multicenter clinical trial.
Indeed, PDRP/PDCP scores in this sample did not differ
from those in the derivation and validation patients
described earlier, in line with similar degrees of motor
symptoms or cognitive dysfunction among different
cohorts of patients with PD. Despite the small numbers of
subjects available per site this result agreed well with our
recent study in which PD-related networks were found to
be reproducible in many multicenter studies using differ-
ent PET cameras and reconstruction algorithms [Nietham-
mer and Eidelberg, 2012].

The methods implemented in the SSMPCA toolbox have
been applied to many neurodegenerative disorders using a
variety of multimodality brain imaging data at resting-
state. In addition to many studies that employ FDG and
H2

15O PET imaging [Hirano et al., 2008; Ma et al., 2007],
PD-related brain networks can be derived or quantified by
using rCBF data acquired by SPECT [Eckert et al., 2007;
Feigin et al., 2002] and perfusion-weighted MRI [Ma et al.,
2010; Melzer et al., 2011]. We also revealed a spatial covar-
iance pattern related with MPTP-induced parkinsonism
using FDG PET in macaques [Ma et al., 2008, 2012]. This
pattern was topographically similar to the PDRP network
in patients and was modulated by experimental therapy.

Specific spatial covariance patterns were also reported in
normal aging [Moeller et al., 1996; Zuendorf et al., 2003],
Huntington’s disease [Feigin et al., 2007b], and torsion
dystonia [Asanuma et al., 2005; Trost et al., 2002] using
FDG PET, and in patients with Alzheimer’s disease (AD)
using rCMRglc or rCBF data from PET [Habeck et al.,
2008; Kerrouche et al., 2006; Scarmeas et al., 2004] as well
as from the perfusion-weighted MRI [Asllani et al., 2008].
Furthermore, these multivariate techniques were useful in

identifying structural covariance patterns based on ana-
tomical MRI data. These included atrophy-related regional
covariance patterns associated with normal aging [Berg-
field et al., 2010; Brickman et al., 2008] and AD [Chen
et al., 2004] in human subjects, along with the aging-
related pattern in the rhesus macaque [Alexander et al.,
2008]. Therefore, SSMPCA provides a valuable methodol-
ogy for generating specific brain networks with both func-
tional and anatomical imaging markers.

CONCLUSION

PCA-based network analysis with SSMPCA toolbox can
be used to identify disease-related covariance patterns
associated with motor and cognitive functioning. PDRP
and PDCP brain networks have been generated to describe
the characteristic abnormal metabolism in PD using FDG
PET images spatially normalized by four different versions
of SPM program developed over the last decade. All
results replicate our previous work independent of the
normalization algorithms implemented in different SPM
software. Network expressions are also reproducible in
patients with PD of similar clinical severity despite the use
of different PET cameras or image reconstruction methods.
SSMPCA toolbox allows fast multivariate statistical analy-
sis of functional and anatomical brain images in a variety
of neurodegenerative disorders. Disease-specific patterns
may be used as imaging biomarkers to enhance diagnostic
accuracy and track disease progression, improve patient
screening, and treatment evaluation in clinical trials.
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