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Abstract
Purpose—To identify metabolic pathways that are perturbed in pancreatic ductal
adenocarcinoma (PDAC), we investigated gene-metabolite networks with integration of
metabolomics and transcriptomics.

Experimental design—We have performed global metabolite profiling analysis on two
independent cohorts of resected PDAC cases to identify critical metabolites alteration that may
contribute to the progression of pancreatic cancer. We then searched for gene surrogates that were
significantly correlated with the key metabolites by integrating metabolite and gene expression
profiles.

Results—55 metabolites were consistently altered in tumors as compared with adjacent
nontumor tissues in a test cohort (N=33) and an independent validation cohort (N=31). Weighted
network analysis revealed a unique set of free fatty acids (FFAs) that were highly co-regulated and
decreased in PDAC. Pathway analysis of 157 differentially expressed gene surrogates revealed a
significantly altered lipid metabolism network, including key lipolytic enzymes PNLIP, CLPS,
PNLIPRP1, and PNLIPRP2. Gene expressions of these lipases were significantly decreased in
pancreatic tumors as compared with nontumor tissues, leading to reduced FFAs. More
importantly, a lower gene expression of PNLIP in tumors was associated with poorer survival in
two independent cohorts. We further demonstrated that two saturated FFAs, palmitate and stearate
significantly induced TRAIL expression, triggered apoptosis, and inhibited proliferation in
pancreatic cancer cells.
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Conclusions—Our results suggest that impairment in a lipolytic pathway involving lipases and
a unique set of FFAs, may play an important role in the development and progression of
pancreatic cancer and provide potential targets for therapeutic intervention.
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Pancreatic Lipase

Introduction
Pancreatic cancer is the fourth leading cause of cancer death in the United States with an
estimated 44, 920 new cases and 37, 390 deaths in 2013 (1). Pancreatic cancer cases and
deaths have been on the rise since 1998. The median survival of all PDAC cases is less than
6 months, and only 6% of patients survive 5 years after diagnosis. The mortality rate has not
improved significantly, due to late diagnosis and resistance to available chemotherapy.
Therefore, a better understanding of molecular mechanisms of disease progression and
discovery of novel therapeutic targets are desperately needed to improve outcomes in
patients with PDAC.

Genetic alterations have been extensively characterized in pancreatic cancer. We and others
have previously identified gene markers of PDAC which have prognostic and therapeutic
significance (2, 3). However the impact of those gene alterations on metabolism and gene-
metabolite networks in PDAC has not been clearly defined. Several oncogenes and tumour
suppressors such as P53 and c-Myc, control the activity of different metabolic pathways to
support the metabolic transformation of a cancer cell (4). A growing body of evidence
demonstrated the strong connection between cancer and metabolism, including the discovery
that some key metabolic enzymes such as succinate dehydrogenase, fumarate hydratase,
isocitrate dehydrogenase and phosphoglycerate dehydrogenase, if mutated, could lead to
different forms of cancer (5). The development of pancreatic cancer has also been linked to
abnormal glucose metabolism which is induced by long-term type 2 diabetes, a known risk
factor for pancreatic cancer (6). Metabolites are central in intermediary metabolism, and
they provide substrates for biological processes, and have an active role in regulating cell
cycle, proliferation and apoptosis (7). Recently, there has been an increased interest in
global analysis of metabolites for cancer biomarker discovery and identification of potential
novel therapeutic targets. New technologies applying chromatography-mass spectrometry
(MS) provides sensitive and reproducible detection of hundreds to thousands of metabolites
in a single biofluid or tissue sample, and allows non-targeted high-throughput metabolic
profiling analysis (8). Furthermore, integration of comprehensive gene expression profile
with metabolic profiling has been shown to be an innovative way to reveal the complex
regulatory networks involving genes and metabolic pathways in cancers (9, 10).

In the present study, we have performed global metabolite profiling analysis in two
independent cohorts of PDAC cases to identify critical metabolite alterations that may
contribute to the progression of pancreatic cancer. We then searched for gene surrogates that
were significantly correlated with the key metabolites using transcriptomic profiling data of
the same samples in the test cohort from our previous study (2). The integrative analysis of
metabolomics and transcriptomic data revealed a lipid metabolism network involving 4
lipases and a unique set of FFAs that may play an important role in pancreatic tumor
progression and could provide potential targets for therapeutic intervention.
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Materials and Methods
Tissue Collection

Primary pancreatic tumor and adjacent nontumor tissues were collected from patients with
PDAC at the University of Medicine, Göttingen, Germany, and from the University of
Maryland Medical Center at Baltimore, Maryland through the NCI-UMD resource contract.
Tissues were flash frozen immediately after surgery. Demographic and clinical information
for each tissue donor, including age, sex, clinical staging, resection margin status, survival
times from diagnosis, and receipt of adjuvant chemotherapy were collected. Tumor
histopathology was classified according to the World Health Organization Classification of
Tumor system(11). Use of these clinical specimens was reviewed and approved by the NCI-
Office of the Human Subject Research (OHSR, Exempt # 4678) at the National Institutes of
Health, Bethesda, MD.

Metabolic Profiling of PDAC
Metabolic profiling of PDAC samples (tumor and adjacent nontumor tissues) was carried
out at Metabolon Inc. using the general protocol as outlined earlier (12, 13) (see more details
in the supplementary file). Metabolon analytical platform incorporates two separate ultra-
high performance liquid chromatography/tandem mass spectrometry (UHPLC/MS/MS2)
injections and one gas chromatography GC/MS injection per sample. The UHPLC injections
are optimized for basic species and acidic species. This integrated platform enabled the
high-throughput collection and relative quantitative analysis of analytical data and identified
a large number and broad spectrum of molecules with a high degree of confidence (12). A
total of 469 known metabolites were measured.

Weighted Coexpression Network Analysis
Weighted coexpression network analysis (WGCNA) has been implemented in R, a free and
open source statistical programming language (14). We followed the protocols of WGCNA
to create metabolite networks. Briefly, for each metabolite profiling data set, Pearson
correlation coefficients were calculated for all pairwise comparisons of metabolites across
all tumor samples. The resulting Pearson correlation matrix was transformed into an
adjacency matrix using a power function, which resulted in a weighted network (14).
WGCNA defines modules as a group of densely interconnected molecules with high
topological overlap in weighted network analysis. For each data set, we used average
linkage hierarchical clustering with a dynamic tree-cutting algorithm to identify modules on
the basis of the topological overlap dissimilarity measure (15).

Ingenuity Pathways Analysis
Canonical pathway analysis identified the pathways from the Ingenuity Pathways Analysis
library of canonical pathways that were most significant to the data set. The association
between the data set and the canonical pathway was measured in 2 ways: (i) The statistical
significance: Fischer's exact test was used to calculate a p-value determining the probability
that the association between the genes in the data set and the canonical pathway is explained
by chance alone; (ii) A ratio of the number of genes from the data set that map to the given
pathway divided by the total number of genes in that canonical pathway (16).

RNA Isolation and Transcriptome Profiling
RNA from frozen tissue samples was extracted using standard TRIZOL (Invitrogen)
protocol. RNA quality was confirmed with the Agilent 2100 Bioanalyzer (Agilent
Technologies) before the microarray gene expression profiling. Tumors and paired non-
tumor tissues from the Germany cohort were profiled using the Affymetrix GeneChip

Zhang et al. Page 3

Clin Cancer Res. Author manuscript; available in PMC 2014 September 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Human 1.0 ST arrays according to the manufacturer's protocol at the LMT microarray core
facility at National Cancer Institute, Frederick, MD. All arrays were RMA normalized and
gene expression summaries were created for each gene by averaging all probe sets for each
gene using Partek Genomics Suite 6.5. All data analysis was performed on gene summarized
data. The microarray gene expression data has been deposited in the National Center for
Biotechnology Information's (NCBIs) Gene Expression Omnibus (GEO; http://
www.ncbi.nlm.nih.gov/geo) with accession number GSE28735.

Quantitative RT-PCR (qRT-PCR)
Total RNA was reverse transcribed using High-Capacity cDNA Reverse Transcription Kit
(Applied Biosystems). qRT-PCR reactions in 384 well plates were performed using Taqman
Gene Expression Assays on an ABI Prism 7900HT Sequence Detection instrument from
Applied Biosystems. Expression levels of GAPDH were used as the endogenous controls.
All assays were performed in triplicate. For quality control, any sample with a gene cycle
value greater than 36 was considered of poor quality and removed. All the primers for qRT-
PCR in the present study were purchased from Applied Biosystems (Table S1).

Cell lines and culture conditions
Human pancreatic carcinoma cell lines hTERT-HPNE (CRL-4023™), MIApaca2
(CRL-1420™) and Panc1 (CRL-1469™) were obtained from American Type Culture
Collection ATCC (Rockville, MD, USA). Cells were maintained in GIBCO® RPMI Media
1640 supplemented with GlutaMAX™-I (Invitrogen), penicillin-streptomycin (50 IU/ml and
50 mg/ml, respectively), and 10% (v/v) fetal calf serum (FCS). Fatty acids were purchased
from Sigma (MO, USA). The stock solutions of fatty acids bound to BSA were prepared as
described earlier (17). A 5% FFA-free BSA solution was prepared in H2O and dissolved for
30mins at 55°C in an a water bath. The appropriate amount of 50 mM FFA stock solution
was added to BSA solution and incubated for 8 hours at 37 °C under nitrogen atmosphere to
prevent oxidization. The FFA/BSA stock solution was then cooled to 25 °C, filter sterilized,
and stored at −20 °C.

MTT assay
Cells were seeded in 96-well plates (3,000–5000 cells/well) and incubated for 2–10 days.
Then, the MTT solution was added and incubated for 4 hours. The solution was aspirated
and 100ul DMSO was added to each well. The absorbance was measured at 570nm and 650
nm.

Apoptosis Assay
Panc1 and MIApaca2 cells were seeded and incubated for 24 h in standard medium. After
12 h of serum starvation, cells were incubated in serum-free medium with BSA-bound fatty
acids or BSA control for 12 and 24 hours. Caspase activity was measured by Apo-ONE™
Homogeneous Caspase-3/7 Assay (Promega, Madison, WI) and potency of caspase
activation was calculated compared to control cells.

Quantification of TRAIL protein level by Enzyme-Linked Immunosorbent Assays (ELISA)
TRAIL protein level was directly quantified in pancreatic cancer cells treated with 0.1 μM
FFA or BSA for 24 hours. Cells were lysed (5 × 105cells/ 100ul lysate buffer) and TRAIL
production in cell lysates was measured using Quantikine Human TRAIL/TNFSF10 ELISA
KIT (R&D Systems, Minneapolis, MN) according to the manufacturer's instructions. Optical
density of each well was then determined using a microplate reader set to 450 nm. TRAIL
concentrations were calculated using a standard curve and linear regression analysis.
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Statistical Analysis
A student's T-test was used to compare metabolite or gene expression between tumors and
non-tumor tissues using Graphpad Prism 5.0 (Graphpad Software Inc, San Diego,
California). Correlation analysis and Kaplan-Meier analysis were performed with Graphpad
Prism 5.0. Fisher's exact test, correlation analysis and Cox Proportional-hazards regression
analysis were performed using Stata 11 (StataCorp LP, College Station, Texas). Univariate
Cox regression was performed on genes and clinical covariates to examine the influence of
each on patient survival. For these analyses, resection margin status was dichotomized as
positive (R1) vs negative (R0); TNM staging was dichotomized based on non-metastatic (I–
IIA) vs metastatic (IIB–IV) disease; histological grade was dichotomized based on well and
moderately differentiated (G1&2) vs poorly differentiated (G3&4). All Cox regression
models were tested for proportional hazards assumptions based on Schoenfeld residuals, and
no model violated these assumptions. The statistical significance was defined as P<0.05. All
P values reported were 2- sided.

Results
Metabolomics of PDAC

The characteristics of the patients with PDAC in a test cohort (N=33) and a validation cohort
(N=31) are shown in Table S1. The two cohorts were similar in TNM staging, resection
margin status, grade and cancer-specific mortality (P=0.76, Kaplan-Meier log rank) with 1-
year survival rate of 50.8% for the test cohort and 51% for the validation cohort.

Metabolite profiling was performed using liquid and gas chromatography coupled with mass
spectrometry to identify and statistically compare the relative metabolite expression levels
between tumor and nun-tumor tissues from PDAC cases. We identified 55 metabolite that
were differentially expressed in tumors as compared to nontumor tissues (P<0.01) in both
test and validation cohorts (Table S2).

Weighted network analysis identified a unique set of fatty acids that are co-regulated in
PDAC

We constructed coexpression networks using the 55 metabolite profiling data in 2
independent cohorts. According to recently described methodology (14), the connectivity (k)
was determined for all metabolites in the network by taking the sum of their connection
strengths (coexpression similarity) with all other nodes in the network. To identify modules
of highly co-regulated metabolites, we used average linkage hierarchical clustering to group
metabolites based on the topological overlap of their connectivity (see Materials and
Methods for details). WGCNA identified 3 modules of highly connected metabolites. Each
module was assigned a unique color identifier (Figure 1A), with the remaining, poorly
connected metabolites colored gray. In a topological overlap matrix (TOM) plot, the
increasing color intensity indicates higher connectivity among metabolites in the network
(Figure 1A). Metabolites with the greatest connectivity index represent network “hubs” and
are localized in the center of individual modules. Highly connected and correlated hub
metabolites are often sharing common pathways and tightly co-regulated within the same
metabolism networks (18).

Because of the indicated importance of hubs in the network, we ranked metabolites within
turquoise module (Table S3) based on their intramodular connectivity to identify module
hubs (Table 1). Eight metabolites with high connectivity (IMconn > 6) in the turquoise
module represented the main hubs in both test and validation cohorts. Interestingly, this set
of highly co-regulated hub metabolites are all free fatty acids, suggesting that fatty acid
metabolism may be significantly altered in PDAC.
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Integration of metabolomics and transcriptomics revealed altered lipid metabolism
pathway in PDAC

In order to define genetic alterations and the molecular pathways associated with 8 fatty
acids identified from WGCNA, we first searched for gene surrogates that were significantly
correlated with these 8 fatty acids within the same 33 samples in test cohort. Using
transcriptomic profiling data from our previous study (2), we performed Pearson correlation
analysis between gene expression and metabolite profile data of 8 fatty acids. These
analyses identified 157 gene surrogates that were highly correlated with the set of 8 fatty
acids (Pearson correlation P<0.01) and differentially expressed between tumors and
nontumors (T-test, FDR-corrected P<0.01, |fold change|>1.5, Table S4).

Furthermore, Ingenuity Pathways Analysis demonstrated that 157 gene surrogates of 8 fatty
acids were highly enriched for glycerolipid metabolism, axonal guidance signaling, starch
and sucrose metabolism, intrinsic prothrombin activation pathway and other pathways. The
glycerolipid metabolism pathway is the top hit with Fisher's exact test p-value of 0.001
representing the most significant pathway that is associated with our dataset (Figure 1B).
Significant enrichments were also observed for surrogate genes associated with apoptosis
and Wnt signaling, which are known to play critical roles in tumorigenesis. IPA's network
analysis further identified interacting modules involved in lipid metabolism and apoptosis
signaling networks, which include fatty acids and their surrogate genes PNLIP (pancreatic
lipase), CLPS (colipase, pancreatic), PNLIPRP1 (pancreatic lipase-related protein 1) and
PNLIPRP2 (pancreatic lipase-related protein 2) (Figure1C).

Lypolytic enzymes PNLIP, CLPS, PNLIPRP1 and PNLIPRP2 are significantly decreased in
PDAC

It should be noted that surrogate genes PNLIP, CLPS, PNLIPRP1 and PNLIPRP2 which
encode key lipolytic enzymes playing central roles in glycerolipid metabolism, were
decreased in tumors as compared with adjacent nontumor tissues in the test cohort (Figure
2A), which is consistent with the down-regulation of FFAs in pancreatic tumors (Table 1).

To validate the association of these lipases with the set of 8 fatty acids identified in
metabolic profiling, we then used the validation cohort of PDAC cases (N= 31) to examine
the gene expression of PNLIP, CLPS, PNLIPRP1 and PNLIPRP2 by qRT-PCR. Our data
confirmed that the expression of all 4 lipases were decreased in tumors, as compared with
surrounding nontumor tissues in two independent cohorts (Figure 2), and consistently all 8
fatty acids were also decreased in tumors from both cohorts (Table 2). Particularly, qRT-
PCR data in the validation cohort showed ~100- to 1000-fold decrease in the gene
expression of these lipases in pancreatic tumors. Our data also showed that gene expression
of PNLIP, CLPS, PNLIPRP1 and PNLIPR2 are lower in PDAC cell lines Panc1 and
MIApaca2, as compared to non-tumorigenic hTERT-HPNE cells (Figure S1). These data are
consistent with other publically available transcriptional profiling data in Oncomine
database (Table S5), suggesting that the gene expression of these lipases are potential
diagnostic markers for PDAC.

Pancreatic lipases directly hydrolyse triglycerolipids into fatty acid and glycerol, therefore
regulating fatty acid turnover and signaling (19). In both test and validation cohorts, gene
expressions of these lipases are significantly correlated with the set of 8 FFAs (Table S6),
indicating that markedly decreased expression of PNLIP, CLPS, PNLIPRP1 and PNLIPRP2
may have a role in reduced fatty acid level in pancreatic tumors.
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PNLIP is a predictor of cancer-specific mortality in PDAC
There's no significant association between 8 fatty acids and cancer-specific mortality in both
cohorts of PDAC cases (data not shown). We then tested whether the 4 lipolytic genes were
associated with patient outcome. The association of gene expression with cancer-specific
mortality was evaluated in both test and validation cohort using Cox regression analysis, in
which we dichotomized high and low gene expression as values above and below the
median. In our study, univariate Cox regression analysis (Table 2) for all cases showed that
only PNLIP, was associated with prognosis in both test cohort (hazard ratio (HR), 0.36; 95%
CI, 0.15–0.88; P=0.023) and validation cohort (HR, 0.36; 95% CI, 0.15–0.87; P=0.02).
Therefore, surrogate gene PNLIP maybe a prognostic marker for pancreatic cancer.

Palmitate and stearate inhibits cell growth in vitro
IPA Canonical Pathway analysis identified an enriched set of interactions between the lipid
metabolism and the apoptosis signaling pathway (Figure1B & C), leading to the hypothesis
that fatty acids may regulate apoptosis and cell growth of pancreatic tumors. Therefore, we
studied the effects of this unique set of FFAs on the proliferation of human pancreatic cancer
cell lines Panc1 and MIApaca2. Palmitate, stearate, linoleate and oleate were chosen
because they are the most abundant fatty acids in animals (17). MTT cell proliferation
assays showed that palmitate and stearate significantly inhibit Panc1 and MIApaca2 cell
growth in a dose-dependent manner. In contrast, linoleate and oleate had little effect on cell
proliferation in both cells (Figure 3A). Cell counting and BrdU assays in addition to MTT
assay, also showed significant growth inhibitory effect of palmitate and stearate on Panc1
and MIApaca2 cells (Figure S2). To better assess the growth-inhibitory effect of palmitate
and stearate, cell growth curve was generated by incubating Panc1 and MIApaca2 cells in
the media containing either BSA alone (as a control) or 0.25mM FFAs over a 8-day period
(Figure 3B). Our data showed that palmitate and stearate substantially inhibit the growth of
pancreatic cancer cells.

Palmitate and stearate induce TRAIL expression and promote apoptosis in pancreatic
cancer cells

To determine whether palmitate and stearate could affect apoptosis, we examined the
caspase-3 activity in Panc1 and MIApaca2 cells following treatment of FFAs for 24 hours.
Our data showed that palmitate and stearate (0.25mM) significantly increased caspase-3/7
activity by 2- to 3- fold as compared to controls in both cell lines (P<0.01, Figure 4A). To
elucidate the potential underlying mechanisms of apoptosis regulation by palmitate and
stearate, we then analyzed the gene expression of apoptosis related genes in response to FFA
treatment using qRT-PCR and found that palmitate and stearate significantly induced the
expression of the pro-apoptotic gene TRAIL by 2- to 3- fold in pancreatic cancer cell lines
as compared to controls (P<0.01, Figure 4B). Consistent with the gene expression, the
protein level of TRAIL was also increased by about 3- to 4- fold following 24 hour
incubation with 0.25mM palmitate or stearate. Taken together, these results show that
palmitate and stearate induce TRAIL expression and trigger apoptosis in pancreatic cancer
cells.

Discussion
Altered metabolism is considered as one of the hallmarks of cancer (20). Genetic alterations
enable cancer cells to reprogram metabolism to meet increased energy demands for cell
proliferation and to survive in hypoxic and nutrient-deprived tumor microenvironment (21).
In this regard, a better understanding of metabolic dysregulation in pancreatic cancer could
lead to the discovery of novel therapeutic targets (22). Integrative post-genomic studies and
systems biology approaches have emerged with the aim of developing a more
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comprehensive understanding of cellular physiology and metabolism (23, 24). To the best of
our knowledge, here we report for the first time the implementation of a systems biology
approach to investigate gene-metabolite networks and metabolic dysregulation in pancreatic
cancer, with integration of metabolomics and transcriptomics.

Metabolomics allow for global assessment of a cellular state within the context of the
immediate environment, taking into account genetic regulation, altered kinetic activity of
enzymes, and changes in metabolic reactions (25). Thus, compared with transcriptomics or
proteomics, metabolomics reflects changes in phenotype and therefore cellular function
(26). Metabolomics strategies have been applied to tissues, serum and other body fluid, to
develop novel early diagnostic biomarkers in human cancers (27–30).

In this study, we identified 55 differentially expressed metabolites using metabolic profiling
in two independent cohorts of PDAC cases. Next, we applied WGCNA to analyze metabolic
networks in PDAC. WGCNA is a systems biology–based network analysis that has been
demonstrated to be an important alternative and more meaningful tool for discovery of
molecular interaction networks and candidate biomarkers (31–35). Using WGCNA, we have
identified 8 highly connected fatty acid hubs in a conserved lipid module, which are
decreased in tumors as compared to adjacent non-tumor tissues in two independent cohorts
of PDAC. Further data mining revealed significant involvement of these fatty acids in cell
proliferation and tumorigenesis (36). Free fatty acids play an important role in numerous
biological functions. They serve as a source of energy and as precursors of many signaling
and cellular components. The effect of different types of FFAs on cell proliferation and
apoptotic activity in pancreatic cancer remains unclear. In this study, we showed for the first
time that two major saturated FFAs, palmitate and stearate, exert a strong growth inhibitory
effect in pancreatic cancer cells. Our data also showed that palmitate and stearate
significantly induce apoptosis in pancreatic cancer cells. These findings are consistent with
previous reports on induction of apoptosis by palmitate in other cell types, including breast
cancer cells (37), hematopoietic cells (38), pancreatic β-cells (39), and cardiomyocytes (40).
In contrast, many studies reported contradictory findings with respect to the role of
unsaturated fatty acids in tumor growth, particularly for oleic acid, in breast cancer cells and
tumor xenograft models (41). Our functional investigation in different pancreatic cancer cell
lines showed that unsaturated FFAs linoleate and oleate have no significant effect on the
proliferation of pancreatic cancer cells.

It has been proposed that excess palmitate could induce cell death through increased
intracellular concentration of ceramide (38, 39), a metabolite exclusively produced from
saturated FFAs. However, other studies suggested that apoptosis induced by palmitate could
occur through the generation of reactive oxygen species (ROS) rather than ceramide
synthesis (40). FFA-induced production of mitochondrial ROS is linked to the activation of
protein kinase C (PKC) and the redox sensitive transcription factor NF-κB (42), which
might be involved in the regulation of apoptosis (43). However, the biochemical pathways
by which fatty acids influence pancreatic cancer cell growth and death have not been
adequately defined. Our data show that palmitate and stearate can upregulate TRAIL
expression in pancreatic cancer cells, which may contribute to the apoptosis induced by
these two fatty acids.

To further define the genetic alterations and molecular pathways associated with this unique
set of fatty acids identified by metabolic profiling, we integrated transcriptomics and
metabolomics, and identified 157 gene surrogates for the fatty acid set that is associated with
PDAC. Pathway and network analysis revealed that the expected lipid metabolism,
particularly in lipolytic pathway involving gene surrogates PNLIP, CLPS, PNLIPRP1 and
PNLIPRP2, is significantly altered in PDAC (Figure1B and 1C). Pancreatic lipase, also
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known as pancreatic triacylglycerol lipase, is encoded by PNLIP, and secreted by the
pancreas, and is the primary lipase that hydrolyzes lipids, converting triglyceride substrates
to monoglycerides and free fatty acids (44). Unlike some pancreatic enzymes that are
activated by proteolytic cleavage, pancreatic lipase is secreted in its final form. Colipase
encoded by the CLPS gene, is a protein co-enzyme required for optimal enzyme activity of
pancreatic lipase (45). PNLIPRP1 and PNLIPRP2 code for two novel human pancreatic
lipase-related proteins in pancreatic juice, referred to as PNLIP-related proteins 1 and 2,
each showing an amino acid sequence identity of 68% to PNLIP. PNLIPRP2 shows a
lipolytic activity that is only marginally dependent on the presence of colipase, whereas the
function of PNLIPRP1 remains unclear (44). Overall, these functionally related lipases play
key roles in direct regulation of fatty acid turnover and signaling. Therefore, decreased
expressions of lipases eventually lead to reduced levels of free fatty acids. Consistent with
the function of lipases, our data showed positive correlations between FFA levels and gene
expression of these lipases in tumor samples, indicating that a profound dysregulation of the
lipolytic network exists in PDAC and may play an important role in tumor growth (Figure
1C).

Excessive production of pancreatic lipase may indicate the presence of certain disorders,
most notably inflammation of the pancreas, or pancreatitis (46). Elevated levels of
pancreatic lipases also occur in bowel obstruction or kidney disease (47, 48). On the other
hand, individuals with Crohn's disease, cystic fibrosis, and celiac disease suffer from lipase
deficiency, in which the cells of the pancreas responsible for producing this enzyme may be
irreversibly damaged (49). The most common symptoms associated with lipase deficiency
are, muscle spasms, acne, arthritis, gallbladder stress and formation of gallstones, bladder
problems and cystitis. Therefore, pancreatic lipase supplements are used to treat PNLIP
deficiency diseases (49). However, the role of PNLIP in pancreatic cancer remains
unknown. In this study, we have shown striking decreases (>100 fold) in the gene
expression of all four lipases including PNLIP in pancreatic tumors, and consistently
immunohistochemical staining on paraffin sections also showed that PNLIP protein level is
lower in pancreatic ductal carcinomas as compare to normal ducts (Figure S3). In addition,
our study also provided the first evidence that a lower expression of PNLIP is associated
with poor outcome in PDAC.

In summary, we have used a systems biology approach and identified an altered lipolytic
network involving lipase genes and a unique set of fatty acids that are associated with
pancreatic cancer. This approach moves beyond single gene investigation to provide a
systems level perspective on the potential relationships among members of a biological
network in pancreatic cancer. Our results suggest that the impaired lipolytic pathway may
contribute to the development and progression of PDAC. In conclusion, our study showed
significant decrease in fatty acids and their surrogate lipase genes in PDAC, and
demonstrated tumor inhibitory roles of palmitate and stearate in pancreatic cancer.
Furthermore, to the best of our knowledge, this is the first report indicating the potential
prognostic significance of PNLIP in pancreatic cancer. Further studies are needed to
determine the mechanism underlying the altered expression of these lipase genes, and to
explore their potential clinical application in PDAC. These studies will lead to a better
understanding of the aggressiveness of pancreatic cancer and may facilitate therapeutic
target discovery.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Translational Relevance

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies
worldwide. Altered metabolism is considered as one of the hallmarks of cancer.
Therefore, a better understanding of metabolic dysregulation in pancreatic cancer could
lead to the discovery of novel therapeutic targets. In the present study, we investigated
metabolic dysregulation and gene-metabolite networks in pancreatic cancer, with
integration of metabolomics and transcriptomics. Our results suggest that the impaired
lipolytic network involving 4 lipases and a unique set of fatty acids may play an
important role in the development and progression of pancreatic cancer. Furthermore, our
study demonstrated that integration of omics data provide a systems level perspective of
pancreatic cancer that could facilitate the development of novel treatments for this
disease.
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Figure 1. Integration of metabolomics and transcriptomics revealed altered lipid metabolism
pathways in PDAC
(A) Weighted network analysis showed that the turquoise-colored module was highly
conserved in both test and validation cohort. 8 fatty acids (indicated by stars) with high
connectivity (IMconn > 6, Table 1) in both cohorts represent the main hubs in the metabolite
network that were chosen for integration analysis. (B) Canonical pathways analysis
identified 10 pathways from the Ingenuity Pathways Analysis library of canonical pathways
that were most significant (P<0.05) to the data set of 157 surrogate genes for the unique set
of 8 fatty acids in PDAC. Glycerolipid metabolism was the most significantly enriched
pathway. (C) IPA analysis revealed a lipid metabolism network involving 4 lipases and fatty
acids highlighted here, that may potentially regulate and interact with apoptosis signaling
pathways. Lipolytic genes PNLIP, CLPS, PNLIRP1 and PNLIPRP2 from the surrogate gene
data set, play central roles in lipolysis.
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Figure 2. Gene expressions of PNLIP, CLPS, PNLIPRP1 and PNLIPRP2 in two independent
cohorts of PDAC
(A) PNLIP, CLPS, PNLIPRP1 and PNLIPRP2 are decreased in tumors as compared with
adjacent non-tumor tissues in test and validation cohorts. Dot plots represent gene
expression level with relative intensity (log2) of microarray data in the test cohort or relative
threshold cycle value (Ct) normalized with endogenous control gene GAPDH using qRT-
PCR data in validation cohort. Bars indicate median value. Student t-tests P value and
tumor: non-tumor ratios (T:N) are indicated in the graphs. (B) Kaplan Meier analysis of
PNLIP in test and validation cohorts. Gene expression of PNLIP is dichotomized into high
and low groups using a median cutoff. Log-rank P value is indicated in the graphs.
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Figure 3. Palmitate and Stearate inhibit pancreatic cancer cell proliferation
(A) Dose dependence of palmitate and stearate on inhibition of cell proliferation in Panc1
and MIApaca2 cells. After 16 hours of starvation, cells are treated with BSA control or
BSA-bound FFAs for 72 hours. Saturated fatty acids palmitate and stearate show significant
inhibition of cell proliferation at the concentration of 0.031–0.5mM. Unsaturated fatty acids
linolate and oleate have little or no effect on cell proliferation. (B) There are significant
decreases in cell growth of Panc1 and MIApaca2 treated with 0.25mM palmitate and
stearate as compared with control cells over a 8-day period. Data are presented as means ±
S.D. from 3 independent experiments. ** t-test P <0.01, ANOVA P<0.01.
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Figure 4. Palmitate and stearate induce TRAIL expression and promote apoptosis
(A) There are significant increases in caspase-3/7 activity in Panc1 and MIApaca2 cells with
palmitate and stearate treatment. Relative Caspase3/7 activity represents the effect of FFAs
on apoptosis compared to control cells after 24h incubation. (B) Palmitate and stearate
upregulate TRAIL expression. Cell lysates were collected after 24h of incubation with
0.25mM FFAs or BSA control. Real-time PCR was performed to determine TRAIL mRNA
levels. TRAIL protein level in cell lysates was measured using an ELISA kit (R&D
Systems) according to the manufacturer's instructions. Data represent means ± S.D. from 3
independent experiments. ** t-test P <0.01, ANOVA P<0.01.
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Table 1

A set of co-regulated fatty acids are identified using WGCNA on two independent cohorts.

Test Cohort Validation Cohort

Metabolite ID P-value* Ratio
†

IMconn
† P-value* Ratio

†
IMconn

‡

linolenate (18:3n3 or 6) 2.3E-04 0.53 6.91 1.9E-06 0.42 9.83

palmitate (16:0) 4.2E-04 0.53 6.00 1.1E-04 0.48 6.60

margarate (17:0) 1.0E-03 0.56 6.79 5.5E-07 0.40 13.24

stearate (18:0) 1.5E-03 0.58 6.85 1.3E-06 0.41 13.50

linoleate (18:2n6) 1.9E-03 0.58 6.79 4.6E-06 0.43 12.20

oleate (18:1n9) 3.1E-03 0.59 7.86 4.3E-06 0.43 13.62

eicosenoate (20:1n9 or 11) 3.9E-03 0.59 6.43 6.7E-05 0.47 12.22

10-nonadecenoate (19:1n9) 4.1E-03 0.59 7.50 2.6E-05 0.45 12.12

*
P-value calculated using t-test in each cohort.

†
Ratio of tumor vs. non-tumor.

‡
Intramodular connectivity represents the strength of coexpression for each metabolite in network analysis

Clin Cancer Res. Author manuscript; available in PMC 2014 September 15.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Zhang et al. Page 19

Table 2

Univariate Cox regression analysis on test and validation cohorts.

Test cohort Validation cohort

Variables (comparison/referent) HR (95% CI) P HR (95% CI) P

PNLIP (high/low)* 0.36 (0.15–0.88) 0.023 0.36 (0.15–0.87) 0.020

CLPS (high/low)* 0.34 (0.14–0.84) 0.027 0.46 (0.20–1.09) 0.077

PNLIPRP1 (high/low)* 0.37 (0.15–0.89) 0.028 0.56 (0.24–1.31) 0.182

PNLIPRP2 (high/low)* 0.35 (0.14–0.85) 0.020 0.50 (0.20–1.21) 0.122

Grading (G3&4/1&2) 1.94 (0.89–4.26) 0.097 1.11 (0.47–2.62) 0.819

Resection Margin (R1/R0) 1.18 (0.54–2.58) 0.677 0.80 (0.32–1.96) 0.622

Tumor stage (IIB-IV/I-IIA) 1.07 (0.54–2.14) 0.844 0.95 (0.39–2.32) 0.914

*
Gene expression value was dichotomized into high and low groups using median. P-value was calculated using univariate cox regression analysis.
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