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People differ in their intelligence, personality,
and behavior, and a century of research in
behavioral genetics has left little doubt that
some of this variation is caused by differences
in their genomes.1---3 Nonzero (and sometimes
substantial) heritability of psychological traits
has been consistently established in twin,
adoption, and family studies that have often
had very large sample sizes. Beyond estab-
lishing that genes matter, however, such
studies have said little about the detailed
genetic architecture of psychological traits,
that is, how many genetic polymorphisms
affect a trait, how the polymorphisms interact,
what they are, and what they do.

The recent advent of affordable genome-
wide association studies (GWAS) offers the
exciting opportunity to understand the genetic
factors that influence psychological trait vari-
ation with far greater precision. GWAS have
the potential to uncover some of a given trait’s
genetic architecture, including the number,
genomic locations, average effects, and allele
frequencies of the DNA variants that affect the
trait. Even an incomplete understanding of
a trait’s genetic architecture could prove
a boon to social scientists for at least 4
reasons.4

First, the presence of genetic variants can be
detected with high reliability. Thus, they may
constitute direct measures of constructs that
were previously regarded as only latent. For
example, some evidence has shown that a per-
son’s genotype for the single-nucleotide poly-
morphism (SNP) in FTO associated with body
mass index (BMI; defined as weight in kilo-
grams divided by the square of height in
meters) may indicate a preference for certain
kinds of high-calorie foods,5 and one might
speculate that other genes may affect how
much body weight is produced from a person’s
caloric intake. These genetic variants could
then be used as variables of interest, or as
controls, in testing models of the causation of

obesity that formerly could only appeal loosely
to genetic factors.

Second, the discovery of genetic associa-
tions may identify or clarify the actual bi-
ological mechanisms that underlie social and
health behaviors. For example, a mechanis-
tic role for the hormone oxytocin in trust-
related behavior has been suggested by
findings that variants in the oxytocin recep-
tor gene (OXTR) are associated with differ-
ences in performance in a behavioral---
economic trust game (albeit with mixed
results so far).6,7 Also, just as in medicine, for
which genetic discoveries have suggested
new pathways for understanding and treat-
ing disease (e.g., Crohn’s disease8), genetic
discoveries may help social scientists de-
compose crude concepts such as risk aver-
sion and time preference, both of which play

roles in health behaviors, into biologically
meaningful subcomponents.

Third, under very special circumstances,
genetic variants could be used as instrumental
variables that would identify causal relation-
ships from nonexperimental data. For such
analysis to be valid, the allele must reliably
and exclusively affect a specific biological trait
(and no other biological traits). If these strong
conditions are met, then one can use the
random assignment (during meiosis) of each
person’s genotype at that allele as a natural
experiment to test the hypothesis that the
biological trait, in turn, causes variation in some
behavioral phenotype. For example, Chen
et al.9 showed that SNPs in ALDH2 that are
known to increase alcohol metabolism are
associated with decreased blood pressure, thus
providing evidence that alcohol consumption
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in fact causes an increase in blood pressure—
under the crucial, and perhaps implausible,
condition that those SNPs are assumed not to
also affect blood pressure through some other
channel. Other studies of this type have been
published,10 but it seems likely that the cir-
cumstances in which the instrumental variable
approach can work are rare.

Fourth, knowledge of individuals’ genotypes
could help in targeting social science inter-
ventions to those who stand to benefit from
them the most—an application of concepts
from personalized medicine to public health
and policy. Such a benefit is particularly likely
to help children because their abilities and
preferences are less developed and harder to
measure. For example, children with geno-
types that confer a susceptibility to dyslexia
might be offered personalized educational
resources from a very early age.

The leap in precision from GWAS compared
with twin studies promises to help not just
working social and behavioral scientists but
anyone interested in the evolutionary history
and adaptive pressures that shaped the human
species and its variation. Not only does an
individual’s genome provide a partial recipe for
the development of his or her unique phenome
(set of phenotypes) forward in time, but our
species’ array of genomic data provides a trace
of our collective evolutionary history backward
in time. For example, once it was discovered
that mutations in the gene FOXP2 could cause
a severe developmental deficit in speech and
language, comparative genomic analyses
showed that this gene’s sequence had changed
at least twice since the separation of humans
and chimpanzees from their common ancestor
and that these changes predate the separation
of humans from Neanderthals—all relevant
to venerable and hitherto nearly unresolvable
debates on the evolution of language.

MOLECULAR GENETIC RESEARCH
ON BEHAVIORAL PHENOTYPES

Despite the extraordinary promise of
extending genetic research to behavioral traits,
results of studies that have searched for genetic
variants associated with these traits have so
far been disappointing: No strong, replicable
associations have been discovered. Most of the
claims of genetic associations with such traits

have turned out to be false positives, or at best
vast overestimates of true effect sizes. Chabris
et al.11 found that across 3 independent sam-
ples, only 1 of 12 published associations of
particular genes with general intelligence
replicated, and this association replicated in
only 1 of the samples. Worse, the new samples
were considerably larger than the originals,
which suggests that all of these reports were
probably false positives. Similarly, Benjamin
et al.4 found a SNP associated with educa-
tional attainment and cognitive function but
could not replicate it in 3 independent sam-
ples. Benjamin et al.12a likewise found no
significant associations with any member of
a set of traits involving economic and political
behavior. Finally, Beauchamp et al.12b con-
ducted a GWAS of educational attainment
(i.e., years of education completed) and found
no hits that met conventional genome-wide
significance levels; those that approached sig-
nificance did not replicate in a second sample.

Difficulty in finding specific genes that cor-
relate with traits that are known to be heritable
is not unique to the social sciences. It is also
a problem in GWAS of medical traits such as
psychiatric diagnoses and susceptibility to
common diseases and even with certain phys-
ical traits, such as height. Table 1 summarizes
the heritabilities estimated from twin studies
of medical, physical, and social science traits,
based on 3 review articles and some recent
publications in behavioral economics; it shows
that the heritabilities of physical and psycho-
logical traits are similar and substantial.

The discrepancy between the high herita-
bility of both physical and psychological traits
and the rarity of replicable discoveries of
particular genes for those traits has been
dubbed the problem of missing heritability.22

One possible resolution of this paradox is that
each of the genes associated with a trait ex-
plains only a minuscule fraction of the total
genetic variance—hence, these genes are diffi-
cult to identify statistically—but the number of
such genes is huge, and the heritability estimate
reflects their aggregated effects.

Zuk et al.23 suggested that the discrepancy
between heritability estimates from traditional
biometrical studies of families and GWAS re-
sults thus far comes from the fact that bio-
metrical studies will overestimate heritability if
genes interact nonadditively. If this suggestion

is correct, then it may be that GWAS ap-
proaches that do not grapple with the combi-
natorial explosion posed by the search for
gene---gene interactions will not produce in-
teresting results. This criticism of biometrical
studies, however, only applies when such
studies focus on only one type of kinship (e.g.,
twins reared together). Many human traits,
including height and IQ, have been studied
biometrically using many different kinds of
kinships (twins reared together and apart,
parents and offspring living together and
apart, adoptive relatives who live together
but are biologically unrelated). When these
results are considered collectively, they con-
verge on relatively large heritability values.

The evidence base for claims about herita-
bility has been strengthened by a recently de-
veloped way to estimate heritability that ex-
amines genetic variation directly. The genomic-
relatedness-matrix restricted maximum likeli-
hood (GREML) technique24 uses all of the
genotypic data from SNP arrays to estimate, for
each pair of participants in a data set, their
degree of genetic similarity (relatedness) and
then correlates genetic relatedness with phe-
notypic similarity across all of the pairs. This
yields an estimate of additive genetic variance.
Note that this technique does not require the
participants to be related in the conventional
genealogical sense of being siblings or cousins.
It exploits the fact that all individuals within
a population are distantly related and that the
level of relatedness varies considerably among
pairs of people. For example, Davies et al.25

reported a GREML analysis with about
550 000 common SNPs and 3000 participants
in which about 45% of the variance in general
cognitive ability could be directly explained
by the SNP variation; Chabris et al.11 replicated
this finding with a smaller sample. In the
original application of GREML, Yang et al.24

showed that 45% of the variance in height
across 4000 participants could be explained by
approximately 300 000 common SNPs. These
estimates leave room for unmeasured genetic
variation (e.g., uncommon SNPs, other non-SNP
polymorphisms) to explain additional herita-
bility.

In this context, a common variant is a poly-
morphic site at which the minor allele shows
a frequency exceeding a certain threshold (say
.05), and a rare variant is a site at which the
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frequency of the minor allele falls below this
threshold. The GREML results finding sub-
stantial heritability owed to common variants
have tended to discredit the hypothesis that
missing heritability arises because common
variants typically studied in GWAS are
merely surrogates for rare variants of pow-
erful effect that, if they could only be dis-
covered, would account for much more
heritability.26 Furthermore, Wray et al.27

provided a thorough analysis of the available
GWAS results and showed that a model re-
lying exclusively on rare causal variants can-
not account for the data. It is important to note
that, under any reasonable evolutionary
model, most genetic variants affecting a given
phenotype may be rare. All else being equal,
however, a common variant contributes more
variability than a rare variant, and thus it is not
at all inconsistent to expect that common
variants will be responsible for a substantial
portion of heritability.

Although medical and behavioral geneticists
are becoming increasingly sympathetic to the
many-common-genes-of-small-effect answer to
the missing heritability question, why such
a diffuse polygenic architecture should be
typical of quantitative traits is still not known.
What might account for the exceptions that
have been found is also not known.

A simple possible explanation invokes the
length of the causal chain from genetic to
phenotypic variation. For example, variation in
pigmentation (e.g., of eyes, skin, and hair) arises
from the number of melanosomes produced,
as well as their size and shape, and the type of
melanin synthesized.28 These biochemical dif-
ferences follow directly from changes in the
composition or regulation of gene products,
which are in turn strongly influenced by dif-
ferences in DNA sequence. Indeed, a single
SNP in HERC2 is largely responsible for blue
eye color.29

By contrast, changes at the molecular and
cellular level must be remote from their
ultimate effects on most behavioral pheno-
types, and even from many physical pheno-
types such as body mass index. Consider that
BMI may depend on what a person likes to eat,
how often the person eats, how much the
person exercises, details of the person’s me-
tabolism, and a host of other complex behav-
iors and physiological processes. Similarly,

TABLE 1—Heritabilities Estimated From Twin Studies of Selected Medical, Physical, and

Behavioral Traits

Phenotype Heritability, % Source

Medical and physical traits

Lipoprotein A level (age 17 y) 95 Boomsma et al.13

LDL cholesterol level (age 44 y) 69 Boomsma et al.13

HDL cholesterol level (age 44 y) 67 Boomsma et al.13

Heart rate (age 17 y) 44 Boomsma et al.13

Respiration rate (age 44 y) 61 Boomsma et al.13

Testosterone level (age 17 y) Boomsma et al.13

Boys 66

Girls 41

Birth weight 10 Boomsma et al.13

Height (ages 16 y–adult) 80a Visscher14

Behavioral traits

Externalizing problem behavior (age 3 y) Boomsma et al.13

Boys 49

Girls 73

Internalizing problem behavior (age 3 y) Boomsma et al.13

Boys 61

Girls 66

Personality traits (adults) Bouchard15

Neuroticism 48

Extraversion 54

Openness to experience 57

Agreeableness 42

Conscientiousness 49

General cognitive ability (age 18 y) 81 Boomsma et al.13

Boredom susceptibility (age 18 y) 50 Boomsma et al.13

Anxiety (age 18 y) 54 Boomsma et al.13

Depression (age 18 y) Boomsma et al.13

Men 39

Women 53

Smoking (yes or no, age 18 y) Boomsma et al.13

Men 66

Women 32

Alcohol use (yes or no, age 18 y) Boomsma et al.13

Men 48

Women 75

Sports participation (age 18 y) 47 Boomsma et al.13

Religiosity (adults) 38 Bouchard15

Specific religion practiced (age 18 y) 0 Boomsma et al.,13 Bouchard15

Conservatism (adults) 55 Bouchard15

Risk attitudes Cesarini et al.16

General willingness to take risk 21

Willingness to take financial risk 26

Risk aversion 34

Portfolio volatility 25 Cesarini et al.17

Continued
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given that the physical basis of psychological
attributes such as cognitive ability, conscien-
tiousness, impulsivity, and risk aversion re-
sides in intricate patterns of neural circuitry
and interlocking biochemical feedback loops,
one should perhaps expect any single genetic
variant affecting such an attribute to con-
tribute only a small fraction of the total
variation in the phenotype.

FISHER’S GEOMETRIC MODEL OF
NATURAL SELECTION

Here we offer a second explanation (which
is not mutually exclusive with the first) that
invokes the differential action of natural selec-
tion. More than 70 years ago, Fisher30 pro-
posed a geometric model of adaptation that is
summarized in Figure 1, which depicts 2
quantitative traits as the vertical and horizontal
dimensions on a 2-dimensional space (repre-
senting a slice of the vast multidimensional
space of possible phenotypes). Point A repre-
sents the current mean phenotype of the
species (in this example, a low value of trait 1
and an intermediate value of trait 2). Point

O represents the optimum favored by natural
selection. Suppose that A was once optimal
because selection had pushed the population to
its optimum value, but that O no longer co-
incides with A because of an abrupt environ-
mental change that demands a different (in
this case, higher) value of trait 1. What would
have to happen for selection to adapt the
organism to the new optimum?

One possibility is a new mutation arising in
a single individual and, if beneficial, reaching
fixation (100% allele frequency) in the popu-
lation. In the model, the fixation of a mutation
corresponds to adding a vector of random
direction to the population’s current trait-space
position at A. This feature of the model cap-
tures 2 key observations: (1) mutations have no
inherent tendency to increase the fitness of
their bearers, and (2) any single mutation
may affect several distinct traits, and there-
fore this mutation could change the popula-
tion’s mean values of both traits 1 and 2.
The subset of new phenotypes that would
result in an increased level of adaptation is
depicted in Figure 1 as the interior of the
circle centered on O, representing all the

combinations of trait values that are closer
to the optimum (using the Euclidean distance
metric).

The diagram also helps one understand the
fates of mutations with different effect sizes.
Note that any mutation whose effect on the
traits exceeds the diameter of the circle would
not be fixed because it leaves the population
farther from the optimum than when it started
(point A). Selection would simply favor the
status quo. In general, the smaller the mutation,
the more likely it is to be beneficial, because
many small moves can be made from A that
stay within the circle, but few very large ones;
most large moves will overshoot the circle or
move away from it. The fact that a smaller
move is more likely to take the population into
the circle should already be evident from
Figure 1. As the number of traits or dimensions
increases to larger values (which cannot be
depicted in a 2-dimensional figure), the greater
ease with which smaller moves take the pop-
ulation into the “hypersphere” becomes quite
dramatic. If the number of traits (n) is large,
then the probability that a random mutation
of length r takes the population into a hyper-
sphere of radius z is 1 – U(x), where U is the
cumulative distribution function of the stan-
dard normal distribution and x = rOn/(2z).30

Fisher30 argued that mutations of large
effect are relatively unimportant in evolution
because they will rarely move a population
closer to O. The closer to the optimum the
organism already is, the less likely large muta-
tions are to be beneficial. Fisher draws an
analogy to the process of focusing a micro-
scope. When a microscope is already close to
the correct focusing point, a small random
perturbation of the knob is likelier than a larger
perturbation to bring it closer to exact focus.

We now expand Fisher’s30 argument to
explain the puzzling contrast between some
physical phenotypes such as skin or eye color
on the one hand and social science and medical
phenotypes on the other. Suppose that trait 1
was previously under strong stabilizing selec-
tion and thus has negligible genetic variation
at the time of the environmental shift that
makes O the new optimum (this state of
affairs would correspond to a tight clustering
of trait 1 values around point A). Because
the rate of the approach to the optimum
via existing genetic variation (i.e., variation

TABLE 1—Continued

Cooperation Cesarini et al.18

Trust 15

Trustworthiness 18

Income, single y 38 Taubman19

Income, single y Benjamin et al.4

Men 37

Women 28

Education, y 28 Taubman19

Behavioral traits, estimates corrected for measurement error

Risk attitudes Cesarini et al.16

General willingness to take risk 35

Willingness to take financial risk 37

Risk aversion 54

Income, 20-y average Benjamin et al.4

Men 58

Women 46

Note. HDL = high-density lipoprotein; LDL = low-density lipoprotein. Estimates are averages of male and female heritabilities
except when heritabilities are provided separately for both sexes (these are cases in which heritability differs by a large
amount between males and females). Except in the third section, heritability estimates were not adjusted for differences in
measurement error, longitudinal stability, or test–retest reliability of the phenotypes. Heritabilities may also vary with age; for
example, general cognitive ability becomes more heritable with age. Summaries of heritabilities of these and other
phenotypes may be found in Plomin et al.,20 Boomsma et al.,13 Bouchard,15 and Barnea et al.21
aEstimated from genome-wide single-nucleotide polymorphism data from twin and sibling pairs in Australia.
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that does not result from de novo mutations)
is bounded above by trait 1’s heritability (per
the breeder’s equation),31 a population with
negligible genetic variability in that trait is
unlikely to adapt quickly toward O unless
a mutation of large effect arises and reaches
fixation—for example, a mutation that took
the population to A9, for which its new value
for trait 1 is much closer to the optimum.

Alternatively, suppose that stabilizing se-
lection on trait 1 had been much weaker,
permitting the buildup of substantial genetic
variation (leading to a wide scatter of trait
1 values around A). In this case, a mutation
of large effect is far less likely to become
common through positive selection. At the
same time that this mutation is struggling to
increase its frequency, the existing genetic

variation is enabling the population to adapt
toward O. If O lies within the current range
of genetic variation (which is true for trait 1
under the assumption of the more variable
population in Figure 1) and selection is even
moderately strong, then the population mean
shifts from A to O even without the arrival
of a mutation of large effect. As the population
evolves, the diameter of the circle bounding
all points of higher adaptation continuously
shrinks. Once the magnitude of the mutation
that would have taken the population to A9
exceeds the diameter of the circle, the muta-
tion is disfavored and is very likely to be
eliminated from the population. A numerical
example may help to illustrate our argument.
Suppose that the fixation of a new mutation
is the only means for the population to

increase its level of adaptation—that is, no
genetic variation initially exists along the
selected direction. If the selective advantage
of the new mutation is 5%, it will then take
about 500 generations to increase from a fre-
quency of 0.001 to a frequency of 0.999.32

A selective advantage of roughly this magni-
tude seems reasonable for many of the muta-
tions affecting pigmentation. Now suppose
that the population contains substantial ge-
netic variability in the trait. In particular,
suppose that the trait has a heritability of
100% and follows a standard normal distri-
bution. If we stipulate that the old and new
optima are separated by 2 phenotypic units
(and that each unit continues to correspond to
a 5% change in relative fitness; i.e., a 5% gain
in offspring per generation), then standard
quantitative genetic results32,33 imply that the
population will reach the new optimum in
40 generations. If the preexisting variants of
small effect have pleiotropic effects, the ad-
aptation time may be somewhat longer. Nev-
ertheless, in a race between the fixation of
a major mutation and polygenic adaptation,
the latter will often have a profound advan-
tage. Once polygenic adaptation has brought
the population close to the new optimum, the
major mutation will become disfavored while
still at a low frequency.

To complete our explanation, we need to
assume that the polymorphic sites contributing
to existing genetic variation tend to be small
in effect. Even under weak stabilizing selection,
variants of large effect experience greater
selection pressure and are consequently more
likely to be found at a low minor allele
frequency,34---36 which implies that any com-
mon (i.e., high-frequency) variants contribut-
ing to standing genetic variation will typically
be small in effect. Thus, we might expect many
loci of small effect to explain most of the
heritable variation underlying a quantitative
trait—unless recent selection for the trait was
strong relative to the initial variability. If a trait
turns out to be associated with many genetic
loci of small effect and few or no loci with large
effects, then we would have evidence that this
trait has not experienced such selection.

In the remainder of this article, we show how
this evolutionary analysis can help epidemiol-
ogists and social scientists make sense of the
genetics of behavior in the era of rapidly

Trait 1

Trait 2

OA

A'

Strong

stabilizing selection

Weak

stabilizing selection

Note. A is the current mean phenotype of the population, A9 is the mean phenotype that would result if the mutation denoted
by the arrow were to be instantly fixed, and O is the new optimum favored by natural selection. The narrow distribution of trait

1 values around A is the situation that would prevail under strong stabilizing selection, whereas the broad distribution would

prevail under weak stabilizing selection.

Source. Fisher.30

FIGURE 1—R. A. Fisher’s geometric model of adaptation.
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expanding genome scans. We report the results
of our own GWAS of more than 100 human
phenotypes—both physical phenotypes, such
as body size and pigmentation, and behavioral
phenotypes of great interest to social scientists,
such as general intelligence, memory ability,
verbal fluency, impulsivity, risk aversion,
fairness, and utilitarianism. We measured
a wide variety of cognitive, personality, and
behavioral---economic traits so that we could
generalize within types of traits and compare
the behavioral phenotypes with the physical
phenotypes. To our knowledge this study is
the first to examine associations between
a genome-wide panel of SNPs and such a broad
spectrum of phenotypes; almost all previous
association studies of behavioral traits have
examined only 1 or a few candidate genes and
phenotypes. In addition to including both
physical and behavioral traits, we examined
traits that are expected to be both monogenic
and polygenic. An additional innovation is
that the behavioral phenotyping was inten-
sive, relying not just on standardized paper-
and-pencil tests but on individual computer-
ized tasks, sometimes administering 100s of
trials to quantify a single trait. This step is
essential because crude measurement of be-
havioral traits could lead to false negatives
and thus would not help explain the puzzling
failure to find associated genes. Thus, each
of 419 participants was tested individually
in a laboratory session lasting an average of
3.5 hours.

To preview the results, despite an adequate
sample size for detecting large effects and
despite high-precision measurements, we
found few associations between SNPs and traits
at an appropriately stringent significance
threshold. Because many of our measured
phenotypes (including our behavioral pheno-
types) are known to be heritable,37 the absence
of strong associations in our data indicates
that—aside from pigmentation—both physical
and behavioral traits are mainly affected by
numerous genes with small effects.

After presenting the results, we discuss their
implications for future genetic association
studies of behavioral traits, which are likely
to become ever more common as the cost of
genotyping and sequencing declines. In ad-
dition to our analysis of the evolutionary
genetics of heritable variation, we introduce

2 other key issues in designing and inter-
preting such studies: the effects of selection
bias for participant inclusion in such studies,
and the trade-offs between measurement
error and statistical power in selecting simple,
fast, inexpensive assessments of traits versus
the sort of complex, time-consuming, and
potentially expensive assessments that we
conducted.

METHODS

We recruited participants and collected data
and samples at 2 sites: Harvard University in
Cambridge, Massachusetts, and Union College
in Schenectady, New York. We made efforts to
recruit from the surrounding communities
a more representative sample than the typical
college student population: paper fliers were
posted at various public locations, advertise-
ments were placed in free newspapers and on
Craigslist, and the study was made available to
the Psychology Department Study Pool at
Harvard.

Participants completed an online screening
questionnaire that included items regarding
age, medical history, and grandparental eth-
nicity. We excluded participants who were
younger than 18 or older than 45 years or who
reported a history of bipolar disorder, schizo-
phrenia, or severe head trauma. To help con-
trol for ancestral confounding of genotypes and
trait levels,38 we recruited a sample of pre-
dominantly Western European ancestry, which
was ascertained at the screening process by
asking potential participants to list the country
of origin or ancestry for each of their biological
grandparents. A total of 419 participants pro-
vided complete, usable genetic and phenotypic
data. Phenotyping took place from July 2007
through June 2009.

Eligible participants were invited to either
the Harvard or the Union lab for a data
collection session typically lasting from 3 to 4
hours. Participants gave informed consent after
the nature of the procedure had been fully
explained to them.We collected a diverse set of
cognitive, personality, economic, attitude, de-
mographic, and physical phenotypes via com-
puterized tasks, paper-and-pencil surveys, and
face-to-face interaction. DNA was collected via
2 mouthwash samples in the lab and then
extracted and genotyped elsewhere. Population

stratification was investigated and controlled
for in all genetic analyses reported here. We
used the program PLINK version 1.07 (Center
for Human Genetic Research, Massachusetts
General Hospital, Boston, MA, and Broad In-
stitute of Harvard University and Massachu-
setts Institute of Technology, Cambridge, MA)
for genotypic data cleaning and analyses.39

(See supporting material, available as a supple-
ment to the online version of this article at
http://www.ajph.org, for a complete list of
phenotypes, descriptions of select phenotypes,
and details of DNA collection, extraction, gen-
otyping, and analysis of population stratifica-
tion.)

We performed logistic regression to test for
association with dichotomous traits and linear
regression for all polytomous and continuous
traits. We chose the standard genome-wide
significance threshold of 5 · 10–8 for declaring
a SNP---trait association to be statistically sig-
nificant.40 Under a frequentist approach aim-
ing to minimize the chance that even a single
declared hit is a false positive, the large
number of examined traits would require
an even more stringent threshold. However,
we adopted the generally accepted quasi-
Bayesian justification of the Wellcome Trust
Case Control Consortium41 for retaining the
standard genome-wide significance threshold;
it maintains a constant ratio of true to false
positives as the number of markers and traits
increases (as long as statistical power and
prior probabilities for any given association
do not change).

For any SNP showing an association with
a trait at the significance threshold 5 · 10–8,
we reran PLINK with our cognitive ability
composite and revised NEO Personality In-
ventory (NEO---PI---R) openness, neuroticism,
and agreeableness factor scores as additional
covariates in an effort to control for selection
bias.42 Selection bias may be an underappre-
ciated contaminant in gene---trait association
studies.43 To understand this bias, consider
this analogy: suppose that a driveway will be
wet in the morning as the consequence of 2
possible causal mechanisms: whether it rained
last night and whether a sprinkler was acti-
vated (Figure 2a). Suppose also that the 2
causal variables are independent; that is,
taking all days into account, no correlation
exists between whether it rains and whether
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the sprinkler turns on. If one only considers
mornings on which the pavement is wet,
however, one will spuriously conclude that the
2 causes are negatively correlated. For in-
stance, if one sees that the pavement is wet
and knows that it did not rain last night, one
can be confident that the sprinkler was acti-
vated. One only sees the true noncorrelation
when one considers all days. Suppose that the
probability of rain and the probability of

sprinkler activity are both 0.5 and are in-
dependent. If one checked the driveway every
morning, wet or dry, then one would observe
rain and no sprinkler a quarter of the morn-
ings, sprinkler and no rain a quarter of the
mornings, both sprinkler and rain a quarter of
the mornings, and neither sprinkler nor rain
a quarter of the mornings—the lack of associ-
ation is apparent. Now suppose one checked
only the mornings on which the driveway

was wet. On a majority of the mornings (two
thirds), one would discover either rain with no
sprinkler or a sprinkler with no rain. In other
words, one would find a negative correlation,
but only because those mornings that would
have diluted the correlation to zero were
excluded. The basic principle emerging from
this example is that if one inadvertently
conditions an observation on the common
effect (is the driveway wet?) of multiple causes
(rain or sprinkler), one can create the illusion
of a nonzero correlation among the causes.

An example using continuous variables may
also help to illustrate the concept of selection
bias and its generality. Suppose that intelli-
gence and athletic ability (both continuous
traits) are uncorrelated in the population at
large. However, if one limits one’s observa-
tions to the students attending a university
that uses both of these attributes as admissions
criteria, then one will find that intelligence and
athleticism are negatively correlated. If one
encounters a student at this university with
low intelligence, then it becomes more prob-
able that the student is a good athlete. Other-
wise the student would likely not have been
admitted. This negative correlation between
intelligence and athleticism among admitted
students holds even if admission is not a de-
terministic function of these two attributes;
other attributes (e.g., musical talent) and ran-
dom noise may play a role. Geiger and Pearl44

provided a rigorous mathematical proof that
conditioning on a common effect induces de-
pendence among the causes. The apparent
dependence does not have to be a negative
correlation as in these examples; an apparent
positive correlation would result if, say, stu-
dents high in both athleticism and intelligence
were especially likely to be admitted.

This same principle applies in GWAS. Sup-
pose that high levels of either trait 1 or 2 are
independent causes of a person ending up as a
participant in our study, either because the
trait affects whether the person decides to
volunteer or it affects whether we decide to
include the person’s data (Figure 2b). Then we
would spuriously find any gene that affects
trait 2 to be associated with trait 1, even if trait
1 is not at all affected by genetic variation,
because among people who participate in
the study, traits 1 and 2 will appear to be
(negatively) correlated, and therefore a cause

Rain 

a

b

Sprinkler 

Wet

driveway

Trait 1 

Trait 2 Gene A 

Participation

in the study  

Note. Conditioning on a collider alters the apparent covariation among the causes; for example, 2 independent causes that

are uncorrelated when all observations are considered can appear to be negatively correlated when we consider only those

observations where the collider assumes a certain value.

Source. Pearl.42

FIGURE 2—Examples of directed acyclic graphs containing a “collider” (the common effect

of 2 or more causes) for (a) 2 uncorrelated causes of a wet driveway that can incorrectly

appear to be correlated and (b) situation in which a gene is associated with a trait that is

itself a cause of participation in the study.
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of scoring high on trait 2 will appear to also be
a cause of scoring low on trait 1. Controlling for
the other traits affecting participation may not
fully solve the problem (even if we know what
these traits are) because the trait of interest may
itself be connected to the other participation-
related traits in a complex causal graph and
therefore the decision to condition on the other
traits could in principle introduce further bias. In
practice, however, conditioning on traits that
may affect study participation is likely to be
a conservative procedure. For example, if 1 trait
mediates the genetic effect of another, then
controlling for the mediating trait will suppress
the genuine effect of the genetic variant on the
downstream trait of interest and is therefore
unlikely to generate additional false positives.

We performed a numerical simulation to
illustrate the extent to which selection bias
may distort GWAS results. We stipulated 2
initially independent traits affecting participa-
tion in the study; the sum of an individual’s
z scores on these traits needed to exceed 3
for the individual to be in the pool of partic-
ipants, which corresponds to slightly less
than 2% of the general population being
available to participate. We believe that this
simulated situation is not so farfetched as
a model of some ongoing projects (e.g., the
Personal Genome Project,45 23andMe46). We
stipulated that each trait has a heritability of
0.50 and is affected by loci all with an allele
frequency of 0.50 and an average effect (re-
gression coefficient) of 0.05; each causal locus
thus accounts for 0.25% of the variance in its
trait. The results were striking: The estimated
effects of the true causal variants with respect
to a given trait were centered at 0.03—off by
40%. Similarly, the effects of the variants on
the wrong trait (of the 2 traits, the one that the
variants did not affect) were centered at ---0.02.
In a situation in which it is important to
distinguish miniscule effects from 0, a spurious
effect of 0.02 cannot be considered trivial.
Although more thorough numerical and ana-
lytical investigations are certainly worthwhile,
this example illustrates that researchers per-
forming GWAS of behavioral traits should be
aware of the consequences of selection bias.

Table 2 includes the sample statistics for
the Multidimensional Attribute Battery---II
(MAB---II) and the NEO---PI---R, 2 instruments
used in our study that have detailed population

norms. Compared with the norming samples
for the MAB---II, our participants showed much
higher means and smaller standard deviations,
suggesting that cognitively able individuals
were more likely to participate in the study.
The relationship between the NEO---PI---R per-
sonality traits and study participation was more
complex. Our study participants showed con-
spicuously higher levels of openness than the
norming samples. The trait of openness is
defined by a willingness to examine new ideas

and try new activities, and thus higher levels of
this trait may plausibly be a cause of volun-
teering for scientific research. Our study par-
ticipants also showed consistently lower levels
of neuroticism and higher levels of agreeable-
ness. (Of interest is that our study participants
were more variable than the norming samples,
perhaps because people with higher cognitive
ability are more variable in their responses to
personality questionnaires.49) Furthermore,
the fact that students were overrepresented

TABLE 2—Sample Age, Gender, General Cognitive Ability Characteristics, and Personality

Traits: Genome-Wide Association Study; Harvard University, Cambridge, MA, and Union

College, Schenectady, NY; July 2007–June 2009.

Tralit Sample Statistics, Mean 6SD Population Norms, Mean 6SD

Age, y 25.2 66.44

MAB–II

Arithmetic 0.797 60.836 0 61

Similarities 1.054 60.601 0 61

Vocabulary 1.386 60.891 0 61

NEO–PI–R neuroticism

College, female 21.90 68.38 25.83 67.59

Adult, female 18.71 69.13 20.54 67.61

College, male 18.53 610.04 22.49 67.92

Adult, male 18.84 610.46 17.60 68.61

NEO–PI–R extraversion

College, female 30.10 66.89 31.27 65.64

Adult, female 29.19 67.55 28.16 65.82

College, male 29.08 66.10 29.22 65.97

Adult, male 29.70 68.64 27.22 65.85

NEO–PI–R openness

College, female 34.02 66.57 27.94 65.72

Adult, female 34.42 65.57 26.98 65.87

College, male 31.79 66.57 27.62 66.08

Adult, male 31.36 67.04 27.09 65.82

NEO–PI–R agreeableness

College, female 33.80 65.51 31.00 65.33

Adult, female 34.42 64.71 33.76 64.74

College, male 31.46 66.05 28.76 65.24

Adult, male 32.00 65.70 31.93 65.03

NEO–PI–R conscientiousness

College, female 33.64 67.40 31.02 66.53

Adult, female 32.29 67.15 35.04 65.78

College, male 30.17 66.54 30.21 67.19

Adult, male 33.33 68.04 34.10 65.95

Note. MAB–II = Multi-Aptitude Battery–II; NEO–PI–R = Revised NEO Personality Inventory. The sample was 67.6% female. MAB–
II scores were scaled as standard normal using the tables in the MAB–II manual.47 We calculated NEO–PI–R summary
statistics for participants aged between 18 and 22 for purposes of comparison with the college norms in the NEO–PI–R
manual48 and for participants aged 30 and older for comparison with the adult norms.
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among our participants indicates that the
selection bias may already have operated
extensively at an earlier point. That is, even if
we could have taken a random sample of all
students attending the top 200 colleges, for
example, the process of college admissions
would still have exerted considerable selection
bias distinguishing this special population from
its larger age cohort. As a reasonable attempt
to control for selection bias, then, we used
general cognitive ability, openness, neuroticism,
and agreeableness as additional covariates
whenever a novel SNP---trait association showed
a significant P value. Without doing this, we
might have spuriously found, for example, that
a gene associated with greater openness was
also negatively associated with all the traits that
are correlated with openness, such as political
liberalism (see the Results section).

RESULTS

As can be seen in Table 3, we found at least
a marginal signal for all SNPs previously found
to be associated with eye color, hair color,
freckling, and skin color28,46,50---53 (with the
exception of SNPs identified in a study that
digitally quantified eye color54) and that were
either present in our cleaned set of genotyped
SNPs or represented by a proxy SNP with
an r2 > 0.60. Note that despite our relatively
small sample size, the effects of the intronic
SNP rs12913832 in HERC2 on eye and hair
color were statistically significant at the
stringent, standard GWAS threshold.

A meta-analysis has identified more than
180 genomic regions containing a variant
affecting height.55 Because of the weak effect
of each individual variant, however, we did not
replicate any of these loci with genome-wide
significance. However, of the 94 loci either
present in our set of SNPs or represented by
a proxy, 65 had estimated effects with the
correct sign, and 29 did not (binomial test
P< .001). We also found an enrichment of low
P values; whereas only 9 or 10 P values less
than .1 were expected under the null distribu-
tion, we observed 16 (significantly more,
according to a binomial test P< .05). These
trends were consistent with most of these loci
being true positives despite our inability to
extract a strong signal from them. A selection
of the height variants showing marginal

significance in our data are shown in Table 4,
along with the nonsynonymous SNP
rs1815739 in ACTN3 that has been found to
affect athletic performance.56

Another recent meta-analysis57 has identi-
fied 32 genomic regions containing a variant
affecting BMI. BMI, even more than height,
seems to be affected by many loci of small
effect. Consistent with this view, 11 of the 17
known BMI loci represented in our data had
estimated effect sizes of the correct sign;
however, the wrong-signed loci were the most
statistically significant.

Table 4 shows our results for a selection of
SNPs previously reported to be associated with
general cognitive ability,58---62 personality,63,64

working memory,65 and episodic memory,66

all of which we measured extensively. We
observed little evidence for these associations
in our own data. In concordance with

a previous study,67 we did not replicate
a reported association between a common SNP
in the gene KIBRA and episodic memory,
despite a putative functional validation in the
original study both by an analysis of gene
expression and by functional MRI,66 which
suggests that most of the SNPs reported in
earlier association studies of behavioral traits
may either have been false positives or have
overestimated effect sizes. Applying a threshold
of 5 · 10–8, we did not observe any loci
significantly associated with the traits in
Table 4.

We did find a significant association be-
tween political conservatism and rs10952668
(Table 5). This SNP lies in LOC642355,
a pseudogene on chromosome 7. Not surpris-
ingly, the SNP also showed an association
with the highly correlated trait of Democrat
versus Republican (b = 0.260, P < .02).

TABLE 3—Association Results for Pigmentation Phenotypes: Genome-Wide Association

Study; Harvard University, Cambridge, MA, and Union College, Schenectady, NY;

July 2007–June 2009.

Trait and Reported SNP Proxy SNP r2 Minor Allele Sample MAF HapMap MAF Effect Size P Gene

Eye color

rs12913832 A 0.222 0.208 0.998 2 · 10–68 HERC2

rs12896399 rs1075830 0.615 A 0.460 0.308 0.167 .003 SLC24A

rs1393350 A 0.266 0.192 –0.154 .02 TYR

rs1408799 T 0.313 0.300 0.095 .11 TYRP1

rs12913832 A 0.223 0.208 0.840 1 · 10–13 HERC2

rs12896399 rs1075830 0.640 A 0.460 0.308 0.372 9 · 10–5 SLC24A4

rs12821256 C 0.095 0.142 –0.352 .03 KITLG

Red hair

rs1805007 T 0.076 0.147 7.44 2 · 10–6 MC1R

rs1015362 T 0.278 0.233 0.507 .09 ASIP

Freckling

rs1805007 T 0.076 0.147 0.613 6 · 10–6 MC1R

rs1042602 A 0.346 0.417 –0.223 .005 TY R

rs2153271 rs1416742 0.949 G 0.384 0.373 –0.139 .07 BNC2

rs619865 A 0.098 0.108 0.178 .15 ASIP

Skin darkness

rs1805007 T 0.076 0.147 –0.267 .005 MC1R

rs1042602 A 0.346 0.417 –0.118 .03 TY R

rs619865 A 0.098 0.108 –0.156 .07 ASIP

Note. MAF = minor allele frequency; SNP = single-nucleotide polymorphism. Eye darkness was reported on a 3-point scale.
Hair darkness was recorded on 9-point scale. Red hair was recorded as a dichotomous trait, and its effect size is reported as
an odds ratio. Freckling and skin darkness were recorded on 5-point scales. All effect sizes for nondichotomous traits are
reported as the expected change in trait value per each additional copy of the minor allele. All alleles are coded according to
National Center for Biotechnology Information build 36 coordinates on the forward strand.
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We also observed a significant association
between rs1402494, which lies in a gene
desert on chromosome 4, and gambling fre-
quency. These novel associations are the only
2 that reached genome-wide significance;
besides these, only eye color and hair color
also produced significant associations.

An interesting finding was that the SNP
associated with political conservatism,
rs10952668, also showed marginal evidence
for association with the personality traits
openness (b = 0.142, P< .06) and agreeable-
ness (b = 0.130, P < .08), which are positively
correlated with political liberalism.68 Because
the correlation is positive, contrary to findings
from political psychology that conservatives
tend to be less open and agreeable (in the
sense of compassionate69), these results raise
the possibility that the association between

rs10952668 and conservatism may be at-
tributable to selection bias rather than the
gene causing the personality traits typical of
conservatives. (Because to our knowledge this
potential selection artifact has not been

discussed in the genetic epidemiology litera-
ture—although it has parallels in the effects of
natural selection on linkage disequilibrium—

we explore it at some length in the Discussion
section.) After we added general cognitive

TABLE 4—Association Results for Physical Phenotypes and Behavioral Phenotypes with Previously Reported SNPs: Genome-Wide Association

Study; Harvard University, Cambridge, MA, and Union College, Schenectady, NY; July 2007–June 2009

Trait and Reported SNP Proxy SNP r2 Minor Allele Sample MAF HapMap MAF Effect Size P Gene

Physical Phenotypes

Standing height

rs7460090 C 0.134 0.117 –.188 .07 SDR16C5

rs237743 A 0.231 0.308 0.175 .04 ZNFX1

rs6439167 T 0.201 0.183 –.191 .03 C3orf47

rs889014 T 0.347 0.375 –.124 .1 BOD1

rs7274811 rs3213183 0.692 A 0.304 0.267 –140 .07 ZNF341

rs7759938 rs369065 1 C 0.332 0.364 .0172 .02 LIN28B

rs3764419 rs9890032 0.982 G 0.401 0.375 –188 .009 ATAD5/RNF135

rs3791675 T 0.228 0.275 –.305 4 · 10–4 EFEMP1

rs724016 G 0.428 0.483 0.121 .1 ZBTB38

rs1351394 rs7968682 0.983 T 0.499 0.517 –.120 .1 HMGA2

Strength: rs1815739 rs540874 1 A 0.428 0.458 0.252 .006 ACTN3

Behavioral Phenotypes

General cognitive ability

rs2760118 rs7775073 0.982 G 0.316 0.317 0.062a .42 ALDH5A1

rs324650 T 0.464 0.467 0.026 .72 CHRM2

rs363050 G 0.444 0.475 –.027 .72 SNAP-25

rs17571 rs17834326 0.781 A 0.083 0.083 –.051a .7 CTSD

rs760761 rs2619545 1 C 0.196 0.192 –.033a .72 DTNBP1

Conscientiousness: rs2576037 rs7233515 0.879 A 0.400 0.408 –.038 .6 KATNAL2

Neuroticism: rs12883384 A 0.410 0.317 –.014a .85 MAMDC1

Paired-associate recognition: rs17070145 T 0.338 0.267 0.065 .37 KIBRA

3-back accuracy: rs4680 A 0.449 0.517 0.027 .72 COMT

Note. MAF = minor allele frequency; SNP = single-nucleotide polymorphism. Effect sizes for height are reported in standard deviation units. Note that these effect sizes tend to be inflated because of
the winner’s curse. Strength was reported on a 5-point scale.
aThe estimated effect in our study had a sign opposite to what had been previously reported.

TABLE 5—Novel Association Results for Behavioral Phenotypes: Genome-Wide Association

Study; Harvard University, Cambridge, MA, and Union College, Schenectady, NY;

July 2007–June 2009

Trait Reported SNP Minor Allele Sample MAF HapMap MAF Effect Size P

Liberal vs conservative rs10952668 T .458 .392 .552 (.478) 2 · 10–8 (1 · 10–6)

Gambling frequency rs1402494 G .206 .241 .278 (.276) 3 · 10–8 (6 · 10–8)

Note. MAF = minor allele frequency; SNP = single-nucleotide polymorphism. Liberal versus conservative was reported on a 7-
point scale. Gambling frequency was reported on a 5-point scale. Effect sizes and P values after adjustment for general
cognitive ability, Openness, Neuroticism, and Agreeableness are given parenthetically. Note that effect estimates may be
inflated as a result of the winner’s curse.
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ability, openness, neuroticism, and agreeable-
ness as covariates in an attempt to control for
selection bias, the association of rs10952668
and conservatism diminished and fell short of
significance. The association of rs1402494
and gambling frequency appears robust
against our attempts to control for selection
bias. We conclude that both of these associa-
tions must be replicated in much larger sam-
ples before they are accepted as true positives.

DISCUSSION

The contrast between pigmentation and the
other phenotypes examined in this study is
striking (Tables 3---4). Given a significance
threshold of 5 · 10–8, our study had statistical
power approaching 0.80 to detect any locus
accounting for more than 10% of the variance
in any trait. We retained some power (0.12) for
loci accounting for as little as 5% of the
variance. The fact that we measured so many
phenotypes implies that we should have
obtained several hits if a large proportion of the
phenotypes were indeed affected by such
loci. Because we only obtained at most 2 new
hits, however, loci with effects of this magni-
tude on the nonpigmentation traits we studied
(see Table A, available as a supplement to
the online-only version of this article at http://
www.ajph.org) must be uncommon. In agree-
ment with previous studies,11,64,70,71 we con-
clude that cognitive ability, personality dimen-
sions, social attitudes, and most other traits
of interest to behavioral scientists are affected
by numerous loci of small effect. In this respect,
the behavioral traits we studied resemble
height and BMI rather than pigmentation.

How can we explain the differences in
genetic architecture between the pigmentation
traits and the other physical and behavioral
traits? One possibility is that the architecture
hinges on the length of the causal chain
between gene and phenotype. Pigments, after
all, are molecules, and one can change a mole-
cule, thereby giving a person a different eye
color, by changing a single gene. It is not as easy
to make a person more intelligent, utilitarian,
altruistic, or impulsive by changing one gene,
owing to the greater complexity in the mecha-
nisms that lead a person to be intelligent or
altruistic in the first place. With gross physical
traits such as BMI and height, the problem may

be that genes can directly affect the phenotype
in too many ways; indeed, it may be hard for
a genetic change not to affect them, just as
most changes to the features of, say, a car or
laptop computer have consequences for its size
and weight, which engineers have to trade
off with many minute compensations.

The other explanation invokes the evolu-
tionary model of the causes of genetic archi-
tectures we outlined earlier, which relates the
effect size of genetic polymorphisms to the
magnitude and recency of changes in the
adaptively optimal level of the trait. After the
loss of body hair in our lineage, pigmentation
probably came under strong stabilizing selec-
tion in our ancestors, who needed protection
from the African sun. More recently, the out-of-
Africa migrants ancestral to Europeans and
East Asians experienced a sudden and drastic
shift in the optimal level of pigmentation,
perhaps because of the need to sustain cuta-
neous synthesis of vitamin D in northern
climates,72 although others have implicated
sexual selection or as-yet unidentified evolu-
tionary pressures.73---75 In any event, the result
was that several depigmenting mutations of
large effect increased rapidly in frequency.76---78

No such recent environmental change—with
clear consequences for the direction and mag-
nitude of the optimum—is apparent for other
phenotypes such as height, BMI, and the
behavioral traits we examined. Although dif-
ferences in climate and food availability may
select for different optima in body size and
shapes, they fluctuate rapidly across space and
time and may not show the consistent selection
pressure that changes in latitude, altitude, and
cloud cover apparently exerted on pigmenta-
tion. Intelligence is a highly general and uni-
versally adaptive trait that can translate into
fitness benefits (via successful problem solving)
in any environment. If human populations
have long been at the optimum, then existing
variants are likely to be small in effect. Such
variants are likely to be small in effect even if
the optimum has changed over time—as may
have happened in the cases of intelligence79,80

and religiosity81—so long as the change oc-
curred very gradually. In particular, intelli-
gence may respond more to coevolutionary
pressures exerted by language and sociality
than to any sudden change in the physical
environment. Personality traits, too, are far less

predictably correlated with physical environ-
ments than are pigmentation traits. Evolution-
ary game theory has established theoretical
rationales for the persistence of multiple be-
havioral phenotypes (e.g., hawk-and-dove
strategies) in the same population.82,83 Analo-
gously, the selective environment for person-
ality may consist of the local distributions of the
personalities of other people,83 and the mixture
is unlikely to have changed in a systematic way
with recent shifts in the human population.

Even if selection has acted on these traits
since the dispersal ofHomo sapiens from Africa,
the new optima could have quickly been
reached by small shifts in allele frequency at
many minor loci, leaving any major mutants
at the low frequencies determined by the
interaction of mutation, drift, and stabilizing
selection.84 As discussed earlier, the result
of such dynamics would be the observed
absence of common variants with large effects.

Our 2 proposals for explaining the pattern in
Tables 3 to 5 lead to the following suggestions
for future GWAS of behavioral traits. First, to
understand the causal chain between genetic
and phenotypic variation, researchers should try
to narrow the chasm from both sides. Doing so
requires seeking and validating endophenotypes
that lie closer on the causal chain to genetic
variation than the coarse and easily measured
phenotypes researchers are used to. Second,
researchers seeking variants of large effect
should ideally study populations in which di-
rectional selection may recently have produced
a phenotypic change that is large relative to the
initial standing variation. Recent studies of alti-
tude adaptation in Tibetans exemplify both of
these suggestions.85---87 The genes successfully
associated with red blood cell count and hemo-
globin concentration in these studies would have
been more difficult to identify if the phenotype
had been characterized at a level as abstract as
altitude tolerance. Moreover, the recent and
rapid divergence of Han Chinese and Tibetans in
altitude tolerance after the latter began to occupy
a highland environment was plausibly driven
by a selection differential large enough to pull
variants of large effect away from the boundary
of frequency zero. How many social science
traits can be studied by looking for recent di-
rectional selection, however, is an open question.

As for traits with more typical evolutionary
histories, the expectation of small effect sizes
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requires that much larger samples be ascer-
tained than are common in social science
genetics research. We see 2 promising ap-
proaches. One is for researchers to take ad-
vantage of the potential for large sample sizes
by allying with the burgeoning field of personal
genomics, in which a large base of volunteers
or consumers provides genotype and pheno-
type information.46,88,89 It is crucial, though, to
check these samples for selection biases, be-
cause many phenotypes of interest are likely
to be causes of participation in personal geno-
mics itself. For example, an individual with a
liability to a particular disease may be strongly
motivated to participate in a personal genomics
study by self-interest or altruism; participants
must also be wealthy enough to afford the
service. We conjecture that our findings of
elevated cognitive ability and intellectual
openness among research volunteers will gen-
eralize to future studies. If so, it is prudent to
collect reliable measurements of these traits in
all GWAS that are not based on population
samples and to note any unusual sample
distributions of these traits when reporting
SNP---trait associations.

The other approach is the traditional epide-
miological study, which attempts to minimize
the impact of personal characteristics on study
participation by recruiting a population-based
sample. This type of study will remain an
important complement to volunteer- and
consumer-driven approaches. Recall that
Chabris et al.11analyzed data from 3 population-
based studies and found that only 1 of 12
published genetic associations with general
intelligence could be replicated within them,
and that was replicated only 1 of 3 times. One
explanation is that the original associations
came from small convenience samples similar
to the one we studied here.

The Trade-off Between Sample Size and

Phenotype Quality

There is an inherent trade-off, however, in
using large population-based studies for gene
discovery. Most of these projects are directed
toward medical outcomes rather than social
science traits (with some notable exceptions,
such as the Health and Retirement Study, the
Wisconsin Longitudinal Study, and the English
Longitudinal Study of Aging; the first of these
now has GWAS data available, and the others

may soon). Data collection in these surveys,
although often face-to-face and longitudinal,
distributes time and effort across many phe-
notypes that are measured with short ques-
tionnaires (or even single questions). The dis-
advantage of such studies is that whenever
the underlying trait of interest is continuous,
quick or brief measures are inherently less
reliable (i.e., are subject to more measurement
error) than are more detailed ones.

Genetic association studies, then, present
researchers with a trade-off between using
high-quality or high-technology (e.g., neuro-
imaging) measures of each phenotype, which
are often only feasible for small samples, and
having a large sample in which the phenotype
is measured poorly. In social science research,
this dilemma is commonly resolved in favor of
smaller samples with higher-quality measures—
and perhaps for this reason, that has been the
strategy in most of the social science genetic
association studies conducted to date, including
the one we reported here. Because the genetic
architecture of behavioral traits is likely to
feature very weak genetic associations, however,
our intuitions regarding the appropriate

research strategy may not be correct when
carried over from nongenetic social science
research, in which effect sizes are typically much
larger. As yet, no straightforward way exists to
calculate an expected effect size for genetic
associations in social science, so the best we can
do is to assume that effects will be similar to
those found for other complex (polygenic) traits
—tiny.

Figure 3 displays the results of a set of power
calculations that quantify the trade-off. The
phenotype is assumed to be normally distrib-
uted. The y-axis shows effect sizes in terms of
R2, the fraction of variance in the phenotype
explained by variation in a single genotype,
ranging from 0 to 0.01 (1%) in increments of
0.001 (one tenth of 1%). The x-axis is the
sample size. Each curve graphs the locus of
effect-size and sample-size pairs that gives 50%
power to detect the association at P= 5 · 10–8

for a given phenotype reliability. The pheno-
type reliability is measured in terms of the test---
retest correlation, that is, the correlation be-
tween 2 independent measurements of the
phenotype. We consider the cases in which
reliability is equal to 1.0, 0.8, 0.6, 0.4, and 0.2.
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Note. For example, if one expects a genotype to explain 0.4% of the variance in a trait (R2 = 0.004), then a sample of about

10 000 participants is required to achieve 50% power when reliability is 0.80, but a sample of 20 000 participants is

required if reliability is 0.40. That is, with a sample of 20 000 instead of 10 000, instruments that are only one quarter as

reliable provide the same power to detect the effect.

FIGURE 3—Effect of the reliability (measurement error; Rho) of a phenotype on the

relationship between effect size of a genetic association and the sample size required to

achieve 50% statistical power to detect the effect at the genome-wide significance

threshold of 5 · 10–8.
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For the very small effect sizes that can be
expected for behavioral traits, Figure 3 in-
dicates that it will generally be better to
sacrifice phenotype quality in favor of larger
sample sizes. For example, consider an effect
size of R2 = 0.001 (0.1% of the variance),
which is the size of the association found in
a meta-analysis of the association between
cognitive ability and variation in the COMT
gene in 67 independent samples, and it is likely
to be biased upward because the meta-analysis
found evidence of publication bias.90 Because
cognitive ability is among the most reliably
measured social science traits and because the
meta-analysis found evidence of publication
bias, such an effect size is likely to be repre-
sentative of the largest associations we can ex-
pect for a behavioral trait. Given R2 = 0.001, for
a perfectly measured phenotype (reliability =
1.0) 50% power requires a sample size of 30 000
individuals. This is far too large a sample to
obtain high-quality measures of behavioral
traits, which generally requires bringing the
research participants into a laboratory and
conducting repeated tests spanning many
minutes or hours. In contrast, for a phenotype
with test---retest reliability of 0.6—which is
typical of behavioral phenotypes measured by
brief questionnaires—50% power requires
a sample size of 50 000 individuals. Samples at
least this large have recently become feasible.
Medical data sets that have already collected
GWAS data could much more easily add brief
behavioral questionnaires to their ongoing data
collections than onerous laboratory sessions.
Because such medical data sets are in aggregate
made up of hundreds of thousands of partici-
pants, such a research strategy should be
possible.4 An important caveat, however, is that
psychometric errors of measurement often
represent stable characteristics of the study
participants; unreliable measurements may
therefore lead to spurious associations that do
not replicate in studies that measure the chief
phenotype of interest more accurately (in the
sense of internal consistency). This potential
problem might be addressed by using multiple
parallel forms of a brief instrument across
different studies.

Conclusions

We conducted a GWAS of more than 100
carefully measured phenotypes among more

than 400 participants but found very few
loci of large effect associated with any trait
other than the pigmentation of eyes and skin,
including a substantial proportion of the traits
that have been of theoretical interest to
behavioral scientists in recent decades. Four
points emerge from our analysis:

1. The genetic architecture of trait variation
cannot be taken as constant across traits,
particularly the expectation that a single
gene or a small number of genes will have
a noticeable effect on the trait. First, the
shortness of the causal chain between the
DNA and the trait matters a great deal, with
single-gene effects being more likely for
traits generated by a single protein or regu-
latory shift. Second, the genetic architecture
of a trait is intimately intertwined with its
evolutionary history. The implications flow
in both directions: the discovery of an
association between a gene and a trait can
illuminate the evolution of our species, and
the evolutionary process determines which
associations can most readily be discovered.
In particular, stabilizing selection of moder-
ate strength, which permits a substantial
background of small-effect variants, supplies
the fuel for polygenic adaptation and may
obviate the need for mutations of large effect
to arise after a sudden environmental change.

2. Many psychological traits of interest to
researchers are themselves plausible causes
of participation in scientific research, which
raises the potential of spurious associations.
Measuring such traits (e.g., cognitive ability
and personality) and incorporating them
into analyses is one strategy for dealing with
this issue.

3. If there are 2 ways to measure a trait—a
high-reliability measure that can be per-
formed only on a small sample because of
the required time, effort, and resources
versus a lower reliability brief measure that
can be administered to a large sample—
power analyses suggest that using the
lower-reliability measure with the larger
sample size is likely to be the best strategy.
Researchers interested in the genetic archi-
tecture of behavioral traits should therefore
consider working with large-scale survey
data sets such as the Health and Retirement
Study, Wisconsin Longitudinal Study, and

English Longitudinal Study of Ageing, as
well as medical---genetic studies that are
willing to conduct social science surveys
among their participants.

4. Genetic associations with behavioral traits
have proven notoriously difficult to repli-
cate, not because the relevant traits are not
heritable or the original studies were poorly
designed or knowingly underpowered, but
because researchers at the time lacked the
resources to conduct more genotyping and
assemble larger samples, and they were
hoping to find common alleles with large
effect size. Our discussion of Fisher’s model,
and the empirical experience accumulated in
the first 15 years of social science genetics,
suggest that individual gene effect sizes for
traits not under strong directional selection
are likely to be extremely small and there-
fore require extremely large data sets to be
detected.

The fact that faster, cheaper, and more
powerful methods of genotyping have led to
fewer, smaller, and less reliable findings on
the connection between genes and behavior,
despite the near-certainty that such connec-
tions exist, stands as a disappointment of
21st-century science. To make progress, re-
searchers should shift away from the tradi-
tional model of epidemiology via statistical
significance testing, in which large significant
correlations are the standards of success and
worthy of newspaper headlines and negative
results are considered a failure and destined for
the file drawer. It has become increasingly clear
that this practice has led to mischief both in
epidemiology and in social science,91,92 and it
may also be preventing the discovery of im-
portant scientific insights. If we have learned
that behavioral genetic variation is caused by
many genes with effects that are too small to
currently measure, then we have also learned
something important about the physiology
and evolutionary history of such traits. With
nature as with people, the Yiddish expression
“No answer is also an answer” may apply. j
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