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Family-based association tests for sequence data, and
comparisons with population-based association tests

Iuliana Ionita-Laza*,1, Seunggeun Lee2, Vladimir Makarov1, Joseph D Buxbaum3,4,5 and Xihong Lin*,2

Recent advances in high-throughput sequencing technologies make it increasingly more efficient to sequence large cohorts for

many complex traits. We discuss here a class of sequence-based association tests for family-based designs that corresponds

naturally to previously proposed population-based tests, including the classical Burden and variance-component tests. This

framework allows for a direct comparison between the powers of sequence-based association tests with family- vs population-

based designs. We show that for dichotomous traits using family-based controls results in similar power levels as the

population-based design (although at an increased sequencing cost for the family-based design), while for continuous traits

(in random samples, no ascertainment) the population-based design can be substantially more powerful. A possible

disadvantage of population-based designs is that they can lead to increased false-positive rates in the presence of population

stratification, while the family-based designs are robust to population stratification. We show also an application to a small

exome-sequencing family-based study on autism spectrum disorders. The tests are implemented in publicly available software.
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INTRODUCTION

Recent advances in high-throughput sequencing technologies and the
availability of large study populations for many complex traits
promise to lead to significant progress in understanding the genetic
basis of common diseases.1,2 Such progress is critically dependent on
choice of efficient study design and statistical methods. In genome-
wide association studies (GWAS), the population-based design has
been widely used due to the intrinsic ease of collecting large data sets
needed to identify disease susceptibility variants of small effects.3

The family-based design has, therefore, been less popular. However,
family-based designs have important advantages, including
well-known robustness to population stratification, and ability to
identify technological artifacts in the data. Furthermore, family-based
designs allow testing of hypotheses that are difficult to test with
unrelated individuals.4 For example, they are indispensable in the
study of de novo variation, and can, therefore, be a powerful design
for complex traits that have an important de novo component, as it is
believed to be the case for autism spectrum disorders (ASDs) and
schizophrenia.5,6 They also allow testing of parent-of-origin effects.7

Many tests have been proposed for population-based designs,8–22

and among them two main classes of tests can be distinguished: the
Burden test12 and the variance-component test.19 Comparatively, for
family-based designs there has been relatively little development. An
extension of the family-based association test (FBAT23) to sequence
data has been recently proposed, and corresponds naturally to the
population-based Burden test (De et al24).

We introduce here a class of FBATs that includes the Burden and
the variance-component tests as particular cases, and have natural

correspondence to existing tests for population-based designs.25 Both
the Burden and the variance-component tests test the null hypothesis
of no genetic variant in the region being associated with disease.
However, they make different assumptions on the distribution
of effect sizes, and, therefore, their performance depends on the
underlying disease model. In particular, the Burden test tends to
be more powerful when a large proportion of genetic variants in the
region are associated with disease, while the variance-component test
tends to be more powerful when the proportion of disease associated
variants in a region is small, and/or there are both risk and protective
variants in the region being tested. These tests are applicable to
different family structures, including nuclear families and sibships.

METHODS

SKAT for family-based designs
Although the methods we present are applicable to more general family

structures (including nuclear families), for the sake of simplicity we choose to

show the theoretical derivations for the simplest family design, namely the trio

design. We assume that n trios (one offspring and the two biological parents)

have been sequenced in a region of interest, G, such as a gene. For the ith trio,

we assume the offspring trait is denoted by Yi and the offspring genotype at the

jth variant in G is coded as Xijð1 � j � mÞ. We assume a generalized linear

model that relates the trait value Y to the genotype data:

h EðYiÞ½ � ¼ a0þ a1Ci1þ � � � þ apCipþb1Xi1 þ � � � þ bmXim;

where h( � ) is the corresponding link function, and can be the identity function

when traits are continuous, or the logistic function when traits are dichot-

omous; a¼ða1; . . . ; apÞ0 are regression coefficients for the covariates

Ci¼ðCi1; . . . ;CipÞ0 that we want to adjust for. Let b¼ b1; . . . ;bmð Þ0.
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To test the null hypothesis of no genetic effects

H0 : b¼ 0

we assume that each bj follows an arbitrary distribution with mean 0 and

variance w2
j t, that is, E(bj)¼ 0 and VarðbjÞ¼w2

j t. Then to test H0 : t¼ 0 we

can use the variance-component score statistic proposed in Zhang and Lin:26

Q¼ðY � l̂0Þ
0 ~KðY � l̂0Þ;

where for continuous traits l̂0 ¼ â0 þCâ, and for dichotomous traits

l̂0 ¼ logit� 1ðâ0 þCâÞ; C is the n�p covariate matrix; Y is the vector of

phenotype values for all the offspring in the data set. Also, for the weighted-

linear kernel:

~K ¼ X�E X j Xp

� �� �
WW X�E X j Xp

� �� �0
where X is the (n,m) genotype matrix, Xp is the parental genotype data, and

W ¼ diagðw1; . . . ;wmÞ: wjðj¼ 1 . . . mÞ represent variant weights that can be

chosen to depend on the data, or can be external weights, for example,

reflecting functional predictions. As in Wu et al19 we take wj¼Betaðf̂j ; 1; 25Þ;
where f̂j is the estimated variant frequency based on parental genotypes alone.

Under the null hypothesis, E(X|Xp) can be calculated using the laws of

Mendelian transmission. When parental genotypes are not completely known,

and other family structures such as sibships are available, Rabinowitz and

Laird27 have developed an algorithm that specifies the distribution of offspring

genotypes conditional on the sufficient statistic for the parental genotypes.

Q has a simple expression:

Q¼
Xm

j¼ 1

w2
j

XN

i¼ 1

Yi� m̂i;0

� �
Xij� E Xij j X

p
ij

� �� �" #2

;

where X
p
ij is the parental data for family i at variant j.

The main difference between this family-based test and its population-based

counterpart comes from the specification of the null distribution of Q. Unlike

the case for population-based tests, for the family-based test we condition on

the parental genotypes Xp (or the sufficient statistic, when parental genotypes

are not available) and on the trait values Y and treat the offspring genotypes X

as random. If the assumption that ðX�EðX j XpÞÞ0ðY � l̂0Þ is multivariate

normal holds, then it can be shown that the null distribution of Q can be

approximated by a mixture of w2-distributions as follows:

Xm

j¼ 1

ljw2
1;j;

where ðl1; . . . ; lmÞ are the eigenvalues of matrix A1=2L0WWLA1=2 with

CovððX�EðX j XpÞÞ0ðY � l̂0Þ j Xp;YÞ¼ LAL0:

To estimate the variance-covariance matrix CovððX� EðX j XpÞÞ0ðY � l̂0Þ j Xp;YÞ,
we can use an empirical estimator (as in Rakovski et al28). In general, Davies’

method29 can be used to approximate the distribution of a linear combination

of independent w2
1.

However, in our case when variants are rare (eg, MAF � 0:01) and sample

sizes are small to modest, the normality assumption at each variant does not

necessarily hold, and the above approximation can be very conservative.

Therefore, to calculate the P-value for Q we use a moment matching approach.

More precisely, as in Lee et al25 the P-value is calculated as

1� F Q�mQ

� � ffiffiffiffiffiffiffi
2df

p
=
ffiffiffiffiffi
vQ
p þ df

� �
, where F is the distribution function for

w2
df . Here, df ¼ 12=g where g is the sample kurtosis. The mean, variance and

kurtosis of Q can be estimated empirically by performing Monte Carlo

simulations as follows. For each family i, under the null hypothesis of no

association at any of the variants in a region, we replace Xi�EðXi j XpÞ with

fXi� EðXi j XpÞg or �fXi�EðXi j XpÞg with equal probability 1/2 (under

the null hypothesis and assuming an additive model, the transmitted and

untransmitted haplotypes are interchangeable). Although the P-value

calculation involves Monte Carlo simulations, we note that only a modest

number of such simulations are needed (eg, 10 000) to estimate the three

moments of Q, regardless of the magnitude of the P-value.

More general class of FBATs
In the previous section we have assumed that all effects bj’s are independent,

and we have derived the extension of the original SKAT method19 to family-

based designs. To allow for possible correlation among effects at different

variants, we introduce the following family of kernels (as in Lee et al25):

~Kq ¼ X�EðX j XpÞ
� �

WRqW X� EðX j XpÞ
� �0

;

where Rq¼ð1� rÞIþ r110 specifies an exchangeable correlation matrix. As

before, the test statistic is:

Qr ¼ Y � l̂0ð Þ0 ~Kq Y � l̂0ð Þ: ð1Þ

When r¼ 0 we get the formulation in the previous section when all effects

bj are assumed independent. When r¼ 1, we get

Qr ¼
Xm

j¼ 1

wj

XN

i¼ 1

ðYi� m̂i;0ÞðXij�EðXij j XpÞÞ
" #2

;

which is equivalent to the test statistic in FBAT (De et al; a Burden test).

As before, for a fixed value of r, the null distribution of Qr can be

approximated by moment matching. When r¼ 1, Davies’ analytical method

also works well.

Connection to population-based tests
The class of sequence-based association tests above for family-based designs

has a natural correspondence to recently proposed tests for population-based

designs.25 The score test statistic for the population-based design takes a

similar form as Qr as in equation (1) above (for more details, see Lee et al25)

Because of this direct connection, a comparison of family-based tests and

population-based tests is very natural.

Software
Software implementing the family-based tests discussed is available at (http://

www.columbia.edu/ ii2135/).

RESULTS

Simulated data
We simulated one genomic region of length 1 Mb under a coalescent
model using the software package COSI.30 The model used in the
simulation was the calibrated model for the European population.
A total of 10 000 haplotypes were generated in this region. We then
randomly sampled subregions of the size of individual genes,
representative of real exonic regions.

We simulate both trio and population-based data, with both
dichotomous and continuous traits. We compare the two types of
tests, Burden and SKAT, for both designs. Note that we are mainly
interested in comparing the power of using family-based controls in a
family-based design with the power of a population-based design, and
for this purpose the trio design is a natural family design to compare
against a population design. All variants (common and rare) are
included in the analyses, and a weighting scheme that up-weights rare
variants and down-weights common variants is used (see Methods
section).

Type 1 error
No population stratification. To evaluate the type 1 error of the
proposed tests, we have simulated data sets under the null hypothesis
of no association between the offspring trait and the offspring
genotypes. For dichotomous traits we simulate n¼ 500 trios, and
n¼ 500 cases and an equal number of controls. For continuous traits
we simulate n¼ 500 trios with a normally distributed N(0,1) offspring
trait, and similarly for the population-based design we simulate
n¼ 500 unrelated individuals. The results are shown in the quantile–
quantile plots in Figure 1a and Supplementary Figure S1a. Both the
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family-based and the population-based tests result in correct type 1
error when there is no population substructure.

Population stratification. With population stratification, we assume
that our sample contains individuals from two different populations.
The ancestral population is simulated in COSI (as above). The two
populations are simulated following the Balding-Nichols model31

such that the distance between the two populations, FST, is 0.01,

as would be encountered for closely related populations. More
precisely, for each variant that has allele frequency p in the ancestral
population, the allele frequencies in the two populations are drawn
from a beta distribution with parameters pð1� FSTÞ=FST and
ð1� pÞð1� FSTÞ=FST. For dichotomous traits, we assume the
disease prevalence is 5% for population 1 and 1% in population 2.
For continuous traits, Y1 � Nð0; 1Þ and Y2 � Nðd; 1Þ, where
d¼ 0:5. The results are shown in Figure 1b and Supplementary
Figure S1b. While the family-based tests maintain proper control of
the type 1 error, the population-based tests show substantially inflated
type 1 error rates in the presence of population substructure.

To adjust for population stratification in case–control and popula-
tion-based designs, principal component analysis (PCA) has been
proposed as an efficient approach in the context of common genetic
variants in GWAS.32 We have applied such a PC analysis to our
simulated data as well. PCs were calculated based on over 80 000
variants (rare and common) that were generated across four
independent chromosomes, each of size 1 Mb. The top 10 PCs were
then used as covariates in our tests. We found the PCA adjustment to
work well in our scenarios with a small number of discrete
populations (Figure 1c and Supplementary Figure S1c), although
such an adjustment may not be sufficient in more subtle scenarios,
when the substructure is less discrete and the risk has a sharp spatial
distribution.33

Power comparison of family- and population-based designs
We compare the power of the two tests, Burden and SKAT, for
family- and population-based designs on data simulated according to
the following models. For a dichotomous trait, we assume the logistic
model:

logit P Yið Þ¼ 1½ � ¼ a0þ b1Xi1þ � � � þ bmXim:

For the trio design, we assume n¼ 500 trios, and n¼ 500 cases and
an equal number of controls for the case–control design. The disease
prevalence in the population is 0.05.

Similarly, for a continuous trait, we assume the linear model:

Yi¼ a0þ b1Xi1þ :::þ bmXimþ ei

where ei � Nð0; 1Þ. For the trio design, we assume n¼ 500 trios, and
n¼ 500 unrelated individuals for the population-based design.

We assume that 10–30% of all variants are disease susceptibility
variants. The bj’s are defined as

bj¼ c j log10 MAFj j ;

where c¼ 0.4 is chosen such that when MAF¼ 0:0001, b¼ 1:6
(ie, OR¼ 4:9). We also simulate a scenario with only rare disease
susceptibility variants and assume a constant OR of 4 for all disease
susceptibility variants with MAF � 0:01.

As SKAT is particularly advantageous in the presence of both risk
and protective variants, we also simulate a scenario when 30% of the
disease variants are protective (with bj¼ � c j log10 MAFj j ).

Only risk variants. When all disease variants in a region are assumed
to be risk variants, results for the two types of designs for both the
Burden and SKAT tests are shown in Figure 2a. For dichotomous
traits, the family-based design and the population-based design have
similar power in the simulated scenarios, although at an increased
sequencing cost for the family-based design. However, for continuous
traits (with random ascertainment), the population-based design
tends to be more powerful than the family-based design. For both
types of designs, the SKAT test is more powerful than the Burden test
when a small proportion of the variants in a region are in fact disease
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Figure 1 Type 1 error, dichotomous trait. Results for the SKAT test and for

the Burden test are shown, for both the trio design with n¼500 trios

and the case–control design with n¼500 cases and n¼500 controls.

Ninety-five percent CI is also shown. (a) No population stratification, (b) in

the presence of population stratification, (c) with Eigenstrat correction for

population stratification.
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susceptibility variants (eg, 10%). The Burden test becomes slightly
more powerful than the SKAT test when the percentage of causal
variants in the region gets larger (eg, 30% or larger). When only rare
disease susceptibility variants are assumed with a common OR of 4,
the results are qualitatively the same (Supplementary Figure S2).

Mixture of risk and protective variants. With 30% of disease variants
assumed protective, the SKAT test performs better than the Burden
test for both the family- and population-based designs (Figure 2b).
As before, for continuous traits the population-based design is more
powerful than the family-based design. For dichotomous traits
the family and population-based designs have similar power when
the Burden test is applied; however, the family-based design is more
powerful when the SKAT test is applied, suggesting that the family-
based design with dichotomous traits has reduced sensitivity to the
presence of protective variants compared with the population-based
design (due to the reduced likelihood that parents of affected
offspring carry protective variants).

Effect of PC adjustment on power. We have evaluated the effect of
adjusting for population stratification using PCA on the power of the
population-based test. We simulated two populations as above, with

an FST¼ 0:01 between the two populations, and different baseline
risks as well. In particular, for dichotomous traits, the two disease
prevalences are 0.05 and 0.01, while for continuous traits e in the
linear model above is � Nð0; 1Þ for population 1, and e � Nð0:5; 1Þ
for population 2. The effect of the PC adjustment on power was
rather small in our simulations (Supplementary Figure S3).

Application to exome-sequencing study of 50 trios
To illustrate these tests on real exome data, we have applied the two
family-based tests to a small ongoing study of ASD. In total, 50 ASD
children and their parents have been exome-sequenced (see
Supplementary Material for more details on the data). Before analysis,
we filtered out variants with Mendel error rate above 5%. A total of
18 303 genes were tested. Results are shown in Figure 3 for both tests,
with no weighting scheme. Although the small number of trios
precludes us from reporting experiment-wide significant results, it is
reassuring that the observed distribution of gene P-values agrees well
with the expectation.

DISCUSSION

We have proposed a class of FBATs that includes as particular
cases the Burden test and the variance-component test (SKAT).
Furthermore, these family-based tests correspond directly to existing
population-based tests.

We show via simulations that the SKAT test is more powerful than
the Burden test when the proportion of disease susceptibility variants
in a region is small, and also when there is a mixture of risk and
protective variants in the region being tested. The Burden test
becomes more powerful than SKAT as the proportion of
disease susceptibility variants in a region increases. We have also
compared the power of using family-based controls in a family (trio)
design vs the power of a pure population-based design. Comparing
family-based and population-based designs for dichotomous traits we
find they have similar power, while for continuous traits the

Figure 2 Power at a¼0.05. T is the trio design (n¼500 trios) and P is the
population-based design (n¼500 cases and n¼500 controls for the

dichotomous trait, and n¼500 unrelated individuals for the continuous

trait).TS is the SKAT test and TB is the Burden test for the trio design.

Similar notations for the population-based design. (a) All disease

susceptibility variants are risk variants and (b) 30% of the disease

susceptibility variants are protective.

Figure 3 QQ plots, n¼50 exome-sequenced trios. Results are shown for

the SKAT and Burden tests, with MAF threshold (0.05) and no MAF

threshold. Ninety-five percent CI is also shown.
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population-based design can be more powerful. Although the number
of individuals that need to be sequenced is higher for the family
designs, the main advantage of the proposed family-based tests is
robustness to population stratification. Family-based designs also
allow the possibility to test for important biological hypotheses
(such as the role of de novo variation, and parent-of-origin effects).
The population-based design is not robust to population stratification
and popular methods for adjustment such as PCA, although effective
when there is a small number of discrete sub-populations, can fail to
do a proper adjustment in more subtle scenarios. In a recent study,
Mathieson and McVean33 have shown that PCA can fail to correct for
population stratification at rare variants when the underlying
population substructure is continuous, and the risk has a sharp
spatial distribution.

The proposed FBATs can be improved in numerous ways. As with
the classical FBATs for common variants, these tests only use the
within-family information. For common variants, it has been shown
that great increases in power can be achieved for continuous traits by
making use of the between-family information.34–36

The possibility that rare variants have larger effect sizes than more
common variants has recently generated a lot of interest in investigat-
ing the usefulness of families enriched in affected individuals to
identify such high-risk rare genetic variants. This question has been
studied elsewhere.37 We showed there that, under a genetic
heterogeneity disease model, for complex traits with small values
for the sibling risk ratio (Risch’s lS), as it is the case for most complex
traits, affected individuals that have a close affected relative can be
much more advantageous than affected individuals randomly selected
from the population in detecting associations with high-risk, rare
variants. For the purpose of this paper, we mainly focused on family-
based designs that gain robustness to population stratification
through the use of family-based controls.
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