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Abstract

In an implicit-solvent description of molecular solvation, the electrostatic free energy is given 

through the electrostatic potential. This potential solves a boundary-value problem of the Poisson–

Boltzmann equation in which the dielectric coefficient changes across the solute-solvent interface

—the dielectric boundary. The dielectric boundary force acting on such a boundary is the negative 

first variation of the electrostatic free energy with respect to the location change of the boundary. 

In this work, the concept of shape derivative is used to define such variations and formulas of the 

dielectric boundary force are derived. It is shown that such a force is always in the direction 

toward the charged solute molecules.
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1 Introduction

We consider electrostatic interactions in the solvation of molecules within the framework of 

widely used implicit-solvent or continuum-solvent modeling [9, 19, 24, 45, 53]. In such a 

model, the solvent molecules and ions are treated implicitly and their effects are coarse 

grained. Most of the existing implicit-solvent models are based on various kinds of fixed 

solute-solvent interfaces, such as the van der Waals surface, solvent-excluded surface, or 

solvent-accessible surface [17, 18, 35, 43, 44]. Such a predefined interface is used to 

compute the solvation free energy as the sum of two separate parts. One is the surface 

energy, proportional to the area of interface. The other is the electrostatic contribution 

determined by the Poisson–Boltzmann (PB) [1, 7, 20, 25–27, 30, 31, 36, 37, 39, 49, 58] or 

generalized Born (GB) [2, 3, 52] approach in which the solute-solvent interface is used as 

the dielectric boundary.
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In recent years, a new class of implicit-solvent models, termed variational implicit-solvent 

models (VISM), have emerged [22, 23]. Coupled with the robust level-set numerical method 

[41, 42, 46], such models allow an efficient and quantitative description of molecular 

solvation [12, 13, 15]. Central in the VISM is a free-energy functional of all possible solute-

solvent interfaces, or dielectric boundaries, that separate the continuum solvent from all 

solute atoms. In a simple setting, such a free-energy functional consists of surface energy of 

solute molecules, solute-solvent van der Waals interaction energy, and continuum 

electrostatic free energy, all coupled together and depending solely on a given solute-solvent 

interface. Minimizing the functional determines the solvation free energy and stable 

equilibrium solute-solvent interfaces. Initial applications of the level-set VISM to nonpolar 

molecular systems have demonstrated its success in capturing the hydrophobic interaction, 

multiple equilibrium states of hydration, and fluctuation between such states [12, 14, 15, 47, 

57], all of which are difficult to be captured by a fixed-surface implicit-solvent model. See 

[4, 9, 10, 24, 56] for other related models and methods.

In this work, we study the dielectric boundary force—the normal component of such a force, 

to be more precisely—acting on a dielectric boundary or solute-solvent interface. Such a 

force is the negative variation of the electrostatic free energy with respect to the location 

change of the dielectric boundary. It is the electrostatic part of the total boundary force 

associated with the VISM free-energy functional, determining the conformation and 

dynamics of an underlying molecular system with an implicit solvent. Practically, it is also 

the electrostatic part of the “normal velocity” in the level-set relaxation of the free-energy 

functional.

For a given solvation system with a fixed charge density and dielectric coefficient, any 

given, possible dielectric boundary Γ determines the electrostatic potential ψ = ψΓ as the 

unique solution to the nonlinear PB equation, which in turn determines the electrostatic free 

energy G[Γ]. Appealing the notion and method of shape derivatives, we give a precise 

definition of the dielectric boundary force and derive formulas for such a force. We notice 

that in [57] the dielectric boundary force with the Coulomb-field approximation of 

electrostatic free energy is derived and implemented in the level-set VISM for charged 

molecules. In this approach, there is no need to estimate the GB radii as usually done in a 

GB model which is also based on the Coulomb-field approximation in a simple setting. In 

[11], the Yukawa-field approximation of the electrostatic free energy is proposed and the 

formula of the corresponding dielectric boundary force is derived. These approaches require 

no solutions to any partial differential equations. In comparison, our current approach is 

more accurate analytically but can be less efficient computationally. Related work on 

electrostatic forces in molecular systems can be found in [29, 32, 38].

We assume that the entire solvation system occupies a bounded region Ω ⊂ ℝ3. It is divided 

into three disjoint parts: the region of solute Ω− (e.g., charged biomolecules such as 

proteins), the region of solvent Ω+ (e.g., salted water), and the solute-solvent interface or the 

dielectric boundary Γ that separates Ω− and Ω+. See Figure 1, where n denotes the unit 

normal to the boundary Γ pointing from Ω− to Ω+ and also the exterior unit normal to ∂Ω, the 

boundary of Ω. The solute region Ω− is completely contained in the entire system region Ω, 
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i.e., , where an over-line denotes the closure. The solute region Ω− contains all the 

solute atoms located at X1, …, XN, carrying charges Q1, …, QN, respectively.

In the PB theory, the electrostatic part of the solvation free energy—the electrostatic free 

energy—is given by

(1.1)

through the electrostatic potential ψ : Ω → ℝ [8, 20, 29, 37, 49]. Here, εΓ : Ω → ℝ is the 

dielectric coefficient defined by

(1.2)

where ε− and ε+ are two positive constants. We have  and , respectively, 

where ε0 is the vacuum permittivity, and  and  are the temperature-dependent relative 

permittivities. Typically, the value of  is in between 1 and 10 for proteins and that of  is 

close to 80 for water at normal conditions. The function f : Ω → ℝ is the fixed charge 

density of charged solute molecules. It is usually the sum of the point charges Qi located at 

Xi (i = 1, …, N). Here we assume that f is an integrable function that approximates these 

point charges. The function χ+ is the characteristic function of Ω+ defined by χ+(X) = 1 if X 

∈ Ω+ and χ+(X) = 0 otherwise. The parameter β > 0 is the inverse thermal energy, M ≥ 2 is 

the number of ionic species in the solvent, and qj ∈ ℝ and  are the charge and bulk 

concentration, respectively, of the jth ionic species with j = 1, …, M. Note that all ε+, ε−, f, β, 

and qj and  are input data. We use the SI units of electrostatics. The 

electrostatic potential ψ is the unique solution of a boundary-value problem of the nonlinear 

PB equation [1, 20, 25, 37, 48]

(1.3)

See also [5, 34, 36, 37, 54, 55, 58] for generalized PB equations to include ionic excluded-

volume effects. Eq. (1.3) is the Euler–Lagrange equation of the right-hand side of (1.1) 

viewed as a functional of ψ. Note that this functional is concave in ψ.

Let V : ℝ3 → ℝ3 be a smooth map vanishing outside a small neighborhood of the dielectric 

boundary Γ. Let x = x(t, X) be the solution map of the dynamical system [6, 21, 33, 51]

The shape derivative of the electrostatic free energy G[Γ] in the direction of V : ℝ3 → ℝ3 is 

defined to be
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where Γt(V) = {x(t, X) : X ∈ Γ} and G[Γt(V)] is defined similarly using Γt(V) instead of Γ. It 

will be shown that δΓ,V G[Γ] is an integral of the product of V · n and some function on Γ 

that is independent of V, where n is the unit normal along Γ (cf. Theorem 4.1). We identify 

that function on Γ as the shape derivative of G[Γ] and denote it by δΓG[Γ]. We define the 

dielectric boundary force, or more precisely the normal component of the dielectric 

boundary force, to be −δΓG[Γ] and denote it by Fn. Notice that it is only the normal 

component, not the tangential components of the boundary force, that determines the motion 

of the boundary.

Our main result is the following formula of the shape derivative δΓG[Γ] : Γ → ℝ of the 

electrostatic free energy G[Γ] with respect to the dielectric boundary Γ:

(1.4)

where ψ is the electrostatic potential, a superscript + or − denotes the restriction onto Ω+ or 

Ω−, respectively, and

(1.5)

Note that ε+∇ψ+ · n = ε−∇ψ− · n on Γ and this common value is denoted by εΓ∇ψ · n. The 

dependence on the direction of n is in V · n in the integral over Γ. See Theorem 4.1 for the 

details. A different but useful form of the shape derivative δΓG[Γ] : Γ → ℝ is

(1.6)

where I is the identity matrix. See Corollary 4.1. The vector (I − n ⊗ n)∇ψ is the tangential 

component of ∇ψ. It is continuous across the boundary Γ. The corresponding term, the 

middle term, in the boundary force (1.6), may not be small compared with the first term in 

(1.6), since a solute-solvent interface can be rough.

We remark that our results hold true for the function B : ℝ → ℝ that is more general than 

that defined in (1.5). Our formula (1.4) corrects that in [8] (cf. (3.13) in [8]). If we define E 

= −∇ψ and

then it is easy to verify by the formula (1.4) that
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The quantity T is the Maxwell stress tensor of our underlying charged molecular system [29, 

38, 40].

A direct consequence of our result (1.6) is that, under the assumption ε− < ε+ which is true in 

general, we always have

(1.7)

See Corollary 4.1. This gives a quantitative interpretation, in the framework of implicit 

solvent, of the following phenomenon described by Debye in 1960s [16]: “Under the 

combined influence of electric field generated by solute charges and their polarization in the 

surrounding medium which is electrostatic neutral, an additional potential energy emerges 

and drives the surrounding molecules to the solutes.” A significant consequence of our 

mathematical statement (1.7) is as follows: A neutral cavity close to a charged solute (e.g., a 

protein) will move away from the solute due to the dielectric boundary force. This important 

charge effect to the hydrophobic interaction in biomolecules has been observed in the recent 

level-set variational implicit-solvent modeling of BphC, a two-domain protein [57].

In the proof of our main results, we use some uniform bounds of the potential ψ. Such 

bounds are obtained in the proof of the existence and uniqueness of the solution to the 

boundary-value problem of the PB equation. We also use the variational principle that the 

electrostatic free energy G[Γ] maximizes a corresponding functional of ψ for a fixed 

boundary Γ. In deriving the formula of boundary force, we do not use an abstract lemma as 

usually done [21,51]. Rather we give a direct and simpler derivation using the definition of 

shape derivatives. Notice that we assume in this work that the fixed charge density f is a 

compactly supported smooth function that approximates point charges. Numerically such 

approximation can be made by that of the Dirac delta function [50]. Our analysis does not 

directly extend to the case of point charges which can be in general more difficult to treat. In 

fact, with point charges in the PB model, a rigorous definition of the electrostatic free energy 

must be given with caution. This will be our future work.

The rest of the paper is organized as follows: In Section 2, we recall the boundary-value 

problem of the PB equation and the related electrostatic free energy. In Section 3, we define 

the dielectric boundary force using the notion of shape derivative. Finally, in Section 4, we 

derive our main formula of the dielectric boundary force and show that the force is always 

attractive to solutes.

2 The Poisson–Boltzmann Equation and Electrostatic Free Energy

We make the following assumptions throughout the rest of the paper:

A1. All Ω, Ω−, and Ω+ are non-empty, bounded, and open subsets of ℝ3 with 

and . The boundary . Both ∂ Ω and Γ are of C2. The unit 
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normal at Γ pointing from Ω− to Ω+ is denoted by n. The unit exterior normal at the 

boundary of Ω is also denoted by n. See Figure 1.

A2. M ≥ 2 is an integer. All β > 0, qj ∈ ℝ and , ε− > 0, and ε+ > 0 are 

constants. The function εΓ ∈ L∞(Ω) is defined in (1.2). The parameters qj and 

 satisfy the condition of charge neutrality: .

A3. The fixed charge density f : Ω → ℝ satisfies that f ∈ L2(Ω) and supp (f) ⊂ Ω−. The 

boundary data in the Dirichlet boundary condition that we use is given by a function g ∈ 

W2,∞(Ω). Moreover, we use the notation

Here and below we use the standard notation for the Sobolev space Wk,p(Ω) which, for 

any fixed integer k ≥ 1 and any extended real number p : 1 ≤ p ≤ ∞, consists of all k-

times (weakly) differentiable functions u : Ω → ℝ with the pth power of u or any of its 

derivatives of order ≤ k integral over Ω if 1 ≤ p < ∞ or with u and all its derivatives of 

order ≤ k essentially bounded in Ω.

A4. There exists a smooth function B : ℝ → ℝ that satisfies B(s) > B(0) = 0 for all s ≠ 0, 

B′(0) = 0, infℝ B″ > 0 and hence B is strictly convex, B(±∞) = ∞, and B′(∞) = ∞ and 

B′(−∞) = −∞.

In the usual PB theory, the function B : ℝ → ℝ is given by (1.5). One easily verifies using 

the charge neutrality and Jensen’s inequality that for this specific form of B, all the 

properties listed in A4 are satisfied. A general function B : ℝ → ℝ as we assumed in A4 

above covers other cases such as those including ionic size effects [5, 34, 36, 37, 54, 55].

We define G[Γ, ·] : H1(Ω) → ℝ ∪ {±∞} by

(2.1)

We consider the maximization of the functional G[Γ, ·] and the boundary-value problem of 

the Poisson–Boltzmann (PB) equation

(2.2)

(2.3)

Theorem 2.1. (1) The functional  has a unique maximizer 

, defined by
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Moreover, this maximum value is finite and

for some constant C1 > 0 depending on ε−, ε+, f, g, B and Ω but not on Γ.

(2) The maximizer ψ0 is the unique solution to the boundary-value problem of the PB 

equation (2.2) and (2.3).

We define the electrostatic free energy corresponding to the dielectric boundary Γ to be

(2.4)

Proof of Theorem 2.1. Let  be such that

(2.5)

Standard regularity theory implies that u0 ∈ L∞(Ω) and there exists a constant Ĉ1 > 0, 

depending possibly on ε−, ε+, f, g, and Ω but not on Γ, such that

(2.6)

cf. [28] (Chapter 8). Let  and . By (2.1), we have

where

Hence the maximization of G[Γ, ϕ] over all  is equivalent to the minimization of 

I[Γ, u] over all .

By the Poincaré inequality and the fact that B : ℝ → ℝ is non-negative, there exists a 

constant C > 0 such that

Thus  I[Γ, u] is finite. Let  (k = 1, 2…) be such that

Li et al. Page 7

SIAM J Appl Math. Author manuscript; available in PMC 2013 September 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Then {uk} is bounded in H1(Ω) and hence it has a subsequence, not relabeled, that weakly 

converges to some . Since the embedding H1(Ω) ↪ L2(Ω) is compact, up to a 

further subsequence, again not relabeled, uk → u∞ a. e. in Ω. Therefore, since B : ℝ → ℝ is 

continuous and non-negative, Fatou’s lemma implies

Since

is convex and H1(Ω)-continuous, it is sequentially weakly lower semi-continuous. 

Consequently,

Thus u∞ is a minimizer of  and the minimum value is clearly finite. 

The uniqueness of such a minimizer follows from the strict convexity of I[Γ, ·]. Therefore 

 is the unique maximizer of G[Γ, ·] over  and the maximum 

value is finite.

We show now the boundedness of the minimizer u∞ of I[Γ, ·] over  and hence that of 

the maximizer ψ0 = u0 + u∞ of G[Γ, ·] over . By (2.6) and the assumption that B′(∞) 

= ∞ and B′(−∞) = −∞, there exists λ > 0 depending on Ĉ1 and B such that

Define uλ : Ω → ℝ by

Clearly  and hence I[Γ, u∞] ≤ I[Γ, uλ]. This and the fact that |∇uλ| ≤ |∇u∞| a.e. 

in Ω imply
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Consequently, we have by the convexity of B : ℝ → ℝ imply that

Hence the last integral is 0. This implies that the Lebesgue measure of the set {X ∈ Ω+ : |

u∞(X)| > λ} is 0. Therefore |u∞| ≤ λ a.e. Ω+.

Since  is a minimizer of , it is a weak solution of the 

corresponding Euler–Lagrange equation, which can be rewritten as

The right-hand side of this equation is bounded in Ω by a constant depending only on Ĉ1 and 

B but not on Γ. Thus, by the regularity theory, both the H1(Ω) and L∞(Ω) norms of u∞ and 

hence those of ψ0 = u∞ + u0 are bounded by a constant that only depends on Ĉ1 and B but 

not on Γ. This proves the desired boundedness of ψ0.

Now routine calculations lead to
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Hence ψ0 is a weak solution to the boundary-value problem of PB equation (2.2) and (2.3).

If  is another weak solution to the boundary-value problem of PB equation (2.2) 

and (2.3), then

for any . Choosing  and using the convexity of B : ℝ → ℝ, 

we obtain ψ0 = ϕ0, proving the uniqueness.

We remark that the boundary-value problem of the PB equation (2.2) and (2.3) is equivalent 

to the elliptic interface problem

(2.7)

where 〚u〛 = u|Ω+−u|Ω− denotes the jump across Γ of a function u from Ω+ to Ω−. See [37] for 

a proof. In particular, this equivalence implies the continuity of εΓ∂ψ/∂n across the boundary 

Γ.

3 Dielectric boundary forces as shape derivatives

Let V ∈ C∞(ℝ3,ℝ3). Assume that V (x) = 0 if dist (x, Γ) > d for some d > 0 such that

(3.1)

Let X ∈ ℝ3 and consider the dynamical system for x = x(t):

(3.2)

The solution of this dynamical system defines a smooth map from ℝ3 to ℝ3 at each t ≥ 0. 

We shall denote this map by x = x(t, X) = Tt(X) for all t ≥ 0 and X ∈ ℝ3. Each Tt : ℝ3 → ℝ3 

is a homeomorphism with both Tt and  being smooth. Clearly T0 is the identity map.

Notice that for t > 0 small we have by Taylor’s expansion that
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This means that the perturbation of identity defined by X ↦ X + tV (X) and the map Tt(X) = 

x(t, X) agree with each other up to the leading order term in t. Notice also that we only 

consider V = V (x) instead of a more general V = V (t, x), since the shape derivative defined 

via V = V (t, x) only depends on V (0, ·) by the Structure Theorem [21, 51].

For each t ≥ 0, we denote

Clearly, all Ωt, Ωt−, and Ωt+ are open sets, and . To indicate the 

dependence on V, we also write Γt = Γt(V). Note that each Tt perturbs Γ locally: Tt(X) = X if 

dist (X, Γ) > d. Since d > 0 satisfies (3.1), we have Tt(X) = X if f(X) ≠ 0 or X ∈ ∂Ω. In 

particular, Ωt = Tt(Ω) = Ω and Tt(∂Ω) = ∂Tt(Ω) = ∂Ω.

We recall that the electrostatic free energy G[Γ] is given by (2.4), where the functional G[Γ, 

·] is given in (2.1) and ψ0 is the weak solution to (2.2) and (2.3). For t > 0, we define

(3.3)

where εΓt : Ω → ℝ is defined by

(3.4)

and χt+ is the characteristic function of Ωt+. By Theorem 2.1 there exists a unique 

 that maximizes G[Γt, ·] over . The maximum is finite and is 

given by

(3.5)

This is the electrostatic free energy corresponding to Γt. In addition, ψt is the unique weak 

solution to the corresponding boundary-value problem of the Poisson–Boltzmann equation

(3.6)

(3.7)

Finally,

(3.8)

where C1 is the same constant in Theorem 4.1. In particular, C1 does not depend on Γt.

Definition 3.1. Let V and Γt(V) (t ≥ 0) be given as above. The shape derivative of G[Γ] in 

the direction of V is
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if the limit exists.

In general, there exists w : Γ → ℝ such that

where n is the unit normal to Γ. We shall define

and call it the shape derivative of G[Γ].

We recall some properties of the transformation Tt(X) defined by V = V (X). These properties 

can be proved by direct calculations, cf. [21] (Chapter 8 and Chapter 9).

1. Let X ∈ ℝ3 and t ≥ 0. Let ∇Tt(X) be the Jacobian matrix of Tt at X defined by 

, where  is the ith component of Tt (i = 1, 2, 3). Let

Then for each X the function t → Jt(X) is in C∞ and at X

(3.9)

where ◦ denotes the composition of functions or maps. Clearly, ∇T0 is the identity 

matrix and J0 = 1. The continuity of Jt at t = 0 then implies that Jt > 0 for t > 0 

small enough.

2. Define A(t) : Ω → ℝ for t ≥ 0 small enough by

(3.10)

where a superscript T denotes the matrix transpose. We have at each point in Ω that

(3.11)

3. For any u ∈ L2(Ω) and t ≥ 0, u ◦ Tt ∈ L2(Ω) and . Moreover,

(3.12)

Li et al. Page 12

SIAM J Appl Math. Author manuscript; available in PMC 2013 September 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4. Let t ≥ 0 and u ∈ H1(Ω). Then both u ↦ u◦Tt and  are one-to-one and 

onto maps from H1(Ω) (resp. ) to H1(Ωt) = H1(Ω) (resp. ). Moreover, 

for any u ∈ H1(Ω),

(3.13)

5. For any u ∈ H1(Ω) and t ≥ 0,

(3.14)

4 Formulas of the dielectric boundary force

Let V ∈ C∞(ℝ3,ℝ3) be such that V (X) = 0 if dist (X, Γ) > d for some d > 0 that satisfies 

(3.1). Let the transformations Tt (t ≥ 0) be defined by (3.2). For t > 0, the electrostatic free 

energy G[Γt] is given by (3.5), where the functional G[Γt, ·] is given in (3.3) and ψt is the 

weak solution to (3.6) and (3.7), respectively. For t = 0, the electrostatic free energy G[Γ] is 

given by (2.4), where the functional G[Γ, ·] is given in (2.1) and ψ0 is the weak solution to 

(2.2) and (2.3).

Theorem 4.1. Assume f ∈ H1(Ω). Then the shape derivative of the electrostatic free energy 

G[Γ] in the direction of V is given by

(4.1)

Proof. We divide our proof into four steps.

Step 1. Let t ≥ 0. Since each  corresponds uniquely to , 

we have by (3.5) that

Let ϕ ∈ H1(Ω) ∩ L∞(Ω) and t ≥ 0, and denote

(4.2)

We prove that ∂tz(t, ϕ) exists for t ≥ 0 small and derive a formula for this derivative.

Recall that Jt(X) = det∇Tt(X). By the continuity of t ↦ Jt(X) and the fact that J0(X) = 1 at 

each X ∈ Ω, there exists τ > 0 such that Jt(X) > 0 for all t ∈ [0, τ] and all X ∈ Ω. Now let t ∈ 

[0, τ] and ϕ ∈ H1(Ω) ∩ L∞(Ω). By the definition of G[Γt, ϕ] (cf. (3.3)), the change of 

variable x = Tt(X), and (3.13), we obtain
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(4.3)

where A(t) is given in (3.10). By the properties of the transformations Tt (t ≥ 0), cf. (3.9), 

(3.11), and (3.14), each term in the above integral is differentiable with respect to t, and

(4.4)

Step 2. Let t ∈ (0, τ]. Since  and  maximize 

G[Γt, ·] and G[Γ, ·], respectively, over  (cf. (3.5) and (2.4)), we have

Hence

Consequently, we obtain by (4.2) that
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From Step 1, there exist ξ(t), η(t) ∈ [0, t] for each t ∈ (0, τ] such that

(4.5)

Step 3. We prove

(4.6)

(4.7)

We only prove (4.7). The proof of (4.6) is similar and in fact simpler.

Since V ∈ C∞(ℝ3,ℝ3) is compactly supported in Ω, it is easy to see that

uniformly on Ω as t → 0 which implies η(t) → 0 as t → 0. By (3.12), we also have as t → 0 

that

We shall prove at the end of this step

(4.8)

Notice by Theorem 2.1 that ψt is uniformly bounded in L∞(Ω) with respect to t ∈ [0, τ], cf. 

(3.8). Thus

as t → 0, where λ(t) : Ω → ℝ is in between ψt ◦Tt and ψ0 at each point in Ω and hence λ(t) is 

uniformly bounded in L∞(Ω) with respect to t ∈ [0, τ]. Applying all these convergence 

results, we obtain by (4.4) that
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proving (4.7).

We now prove (4.8). Fix t > 0. Since  maximizes G[Γt, ·] over , ψt ◦Tt 

maximizes  over all . Since ψt is bounded in Ω by (3.8), we 

obtain from (4.3) and

that

Since  maximizes G[Γ, ·] over ,

Subtracting one of these two equations from the other and choosing , we deduce by 

rearranging the terms that

Li et al. Page 16

SIAM J Appl Math. Author manuscript; available in PMC 2013 September 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Notice by the convexity of B that

Therefore, applying the Poincaré inequality to  and using the Cauchy–

Schwarz inequality, we obtain that

Here and below we denote by C > 0 a generic constant that can depend on ε−, ε+, Ω, B but 

not on t or ψ0. Note that

Consequently, the uniform boundedness of ψt in L∞(Ω) and in H1(Ω) for small t > 0 (cf. 

(3.8)), the uniform convergence A(t) → A(0) = I and Jt → 1 as t → 0, and the convergence f 

◦ Tt → f in L2(Ω) (cf. (3.12)) imply that

Li et al. Page 17

SIAM J Appl Math. Author manuscript; available in PMC 2013 September 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



This is (4.8).

Step 4. It follows from (4.5)–(4.7) that

We now show that ∂tz(0, ψ0) is the right-hand side of (4.1).

It follows from (4.4) with t = 0 and ϕ = ψ0, and (3.11) with t = 0 that

Denote by Vi and ni the ith components of V and n, respectively. Recall that the unit normal 

n to Γ points from Ω+ to Ω−. By integration by parts and the fact that V vanishes in a 

neighborhood of ∂ Ω, by (2.7) with ψ = ψ0, and using the summation convention, we 

continue to have

(4.9)

Since  along Γ,

By (2.7),
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(4.10)

We thus have

This and (4.9) imply that ∂tz(0, ψ0) is the right-hand side of (4.1).

Corollary 4.1. Under the assumption of Theorem 4.1 we have

(4.11)

In particular, if ε− < ε+ then the dielectric boundary force in the normal direction from Ω− to 

Ω+ is always negative: Fn = −δΓG[Γ] < 0 on Γ.

Proof. We have the orthogonal decomposition

Moreover, since ψ0 is continuous, its tangential derivatives along Γ are continuous. Hence

We denote this common value by (I − n ⊗ n)∇ψ0. Notice that
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We thus have by (4.10) that

This and (4.1) imply (4.11). If ε− < ε+ then (4.11) implies Fn = −δΓG[Γ] < 0.
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Figure 1. 
The geometry of a solvation system with an implicit solvent. Dots represent solute atoms at 

Xi carrying charge Qi (i = 1, …, N). The solute-solvent interface Γ separates the solute 

region Ω− and the solvent region Ω+. The corresponding dielectric coefficients are denoted 

by ε− and ε+, respectively. The unit normal at the interface Γ pointing from Ω− to Ω+ and the 

exterior unit normal at the boundary of the entire solvation region Ω are both denoted by n.
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