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Asthma and allergic lung disease occur as complex environmental
and genetic interactions. Clinical studies of asthma indicate a num-
ber of protective dietary factors, such as vitamin E, on asthma risk.
However, these studies have had seemingly conflicting outcomes. In
this perspective, we discuss opposing regulatory effects of tocoph-
erol isoforms of vitamin E, mechanisms for tocopherol isoform
regulation of allergic lung inflammation, association of vitamin E
isoforms with outcomes in clinical studies, and how the variation in
global prevalence of asthma may be explained, at least in part, by
vitamin E isoforms.

Keywords: asthma; a-tocopherol; g-tocopherol; human; mouse

Asthma and allergic lung disease occur as complex environmen-
tal and genetic interactions (1). The World Health Organization
has reported that the prevalence of asthma from 1950 to the
present has increased in many countries, including countries
with high rates of asthma, intermediate rates of asthma, or low
rates of asthma (2–4). The marked differences in rates of
asthma within countries, in migrating populations, and over rel-
atively short periods of time support an important role of the
local environment, such as diet, in asthma inception. Prospec-
tive epidemiological studies, observational cross-sectional stud-
ies, and some randomized prevention trials have demonstrated
the impact of a number of protective dietary factors, such as
vitamin E, on asthma risk. However, these studies have had
seemingly conflicting outcomes. We need to determine why
there are low rates of allergic disease in developing countries
and better understand the differences in diet and lifestyle that
may really underpin allergic disease. One environmental change
over the past 40 years has been an increase in the g-tocopherol
isoform of vitamin E in the diet and in infant formulas (5, 6).
We recently demonstrated that g-tocopherol increases allergic
lung inflammation in mice (6–8). In this perspective, we discuss
why we have yet to uncover the complex and potentially pro-
tective effects of isoforms of vitamin E on asthma in humans
and in animal models of lung inflammation. We also review
mechanisms for tocopherol isoform regulation of allergic lung
inflammation in animals and discuss how the variation in global
prevalence of asthma may be explained, at least in part, by
country-specific plasma g-tocopherol differences.

VitaminE consists of natural isoforms and synthetic racemic iso-
forms. The eight natural isomers are d-a-, d-b-, d-g-, d-d-tocopherol
and d-a-, d-b-, d-g-, d-d-tocotrienol. Plants synthesize the nat-
ural isoforms from tyrosine and chlorophyll (9). Then, these
tocols are consumed in the diet from plant lipids. Mammals do
not interconvert the tocopherol isoforms. The most abundant
isoforms are a-tocopherol and g-tocopherol, which differ by one
methyl group (Figure 1A). There are approximately 10-fold
higher tissue concentrations of a-tocopherol than g-tocopherol
due to preferential transfer of a-tocopherol in the liver by
a-tocopherol transfer protein and due to a higher rate of pro-
duction of g-tocopherol metabolites for excretion (10, 11). The
plasma levels of tocopherols correlate with lung tissue levels
of tocopherols in humans and mice (7, 8, 12). Other diet compo-
nents may influence tocopherol absorption. For example, it is re-
ported that dietary L-carnitine enhances absorption of a-tocopherol
in rats (13). a-Tocopherol levels are also affected by genetic var-
iants. Mutations in liver a-tocopherol transfer protein result in hu-
man a-tocopherol deficiency (14). It is also reported that human
plasma levels of a-tocopherol but not g-tocopherol are in-
creased in male adults and children by the apolipoprotein A5
1131T.C gene polymorphism (15, 16). In mice, apoE4 mice
have lower plasma a-tocopherol than apoE3 mice (17).

a-Tocopherol and g-tocopherol, at equal molar concentra-
tions, have a relatively similar capacity to scavenge reactive
oxygen species (ROS) during lipid peroxidation in vitro and in
cells (18, 19) and a relatively similar capacity to inhibit activa-
tion of protein kinase B (Akt) in cancer cells in vitro (20). Thus,
because a-tocopherol is 10-fold higher in tissues than g-tocopherol,
there is 10-fold more total ROS scavenging by a-tocopherol than
g-tocopherol. Besides scavenging ROS, g-tocopherol, in contrast
to a-tocopherol, also reacts with reactive nitrogen species, such
as peroxynitrite-forming 5-nitro-g-tocopherol (21). g-Tocopherol
scavenging of reactive nitrogen species may be beneficial for
inflammation with increases in reactive nitrogen species, such as
neutrophilic inflammation that is induced by ozone in mice (22).
Consistent with this, reports indicate that supplementation with
a mixture of tocopherols that are enriched for g-tocopherol
blocks acute endotoxin-stimulated or ozone-stimulated neutro-
phil inflammation in the rat and human lung (23–25). In another
study, g-tocopherol supplementation reduced antigen induction
of rat lung inflammation that was primarily neutrophils (26). It
is also reported that nebulized g-tocopherol reduces neutro-
philia in burn and smoke inhalation injury in sheep (27). There-
fore, g-tocopherol may be of benefit for acute neutrophilic
inflammation. Nevertheless, most research reports on vitamin E
focus on a-tocopherol, which is 10 times more abundant in tissues
than g-tocopherol.

Studies with vitamin E indicate seemingly inconsistent out-
comes for allergy and other inflammatory diseases. We have pre-
viously provided rationale to explain these conflicting outcomes
based on our observation of the differences of levels of vitamin E
isoforms present in the study supplements, vehicles, and diets (6,
28, 29). We have additionally demonstrated opposing regulatory
functions of a-tocopherol and g-tocopherol in mice and the
mechanisms for anti- and proinflammatory functions of these
tocopherols (7, 8, 28, 30, 31).
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We have demonstrated that the isoform a-tocopherol is anti-
inflammatory and blocks airway hyperreactivity and that the
isoform g-tocopherol is proinflammatory and increases airway hy-
perreactivity during eosinophilic allergic lung inflammation in mice
(6–8, 30, 31). In these studies, administration of a-tocopherol
or g-tocopherol to adult mice during allergen challenge effec-
tively raised lung and plasma concentrations of the tocopherol
isoform four- to fivefold (8). Moreover, g-tocopherol elevated
lung eosinophil recruitment by 175%, and a-tocopherol reduced
lung eosinophil recruitment by 65% (8). Interestingly, g-tocopherol
negated the antiinflammatory benefit of a-tocopherol (8, 28). In
these mice, a-tocopherol blocked and g-tocopherol increased
airway hyperresponsiveness (8). Furthermore, a-tocopherol
plus g-tocopherol resulted in an intermediate phenotype for

airway responsiveness similar to that of the vehicle control–
treated allergic mice, suggesting that these two tocopherols
have competing opposing functions (8). The proinflammatory
effects of g-tocopherol in mice were partially reversed by
switching supplements from g-tocopherol to a-tocopherol (7).
Thus, we have demonstrated opposing and competing functions
of a-tocopherol and g-tocopherol in vivo. Okamoto and col-
leagues (32) found that feeding mice a-tocopherol starting
2 weeks before antigen sensitization did not affect IgE levels but
did reduce the number of eosinophils in the bronchoalveolar
lavage. However, the form and purity of a-tocopherol were
not indicated. In addition, Mabalirajan and colleagues (33) re-
ported that oral administration of a-tocopherol in ethanol after
antigen sensitization blocked ovalbumin (OVA)-induced lung
inflammation and airway hyperresponsiveness. In a report by
Suchankova and colleagues (34), purified a-tocopherol was ad-
ministered in soy oil by gavage, and they found no major effect of
a-tocopherol on immune parameters or lung airway responsive-
ness in mice challenged with OVA. However, the soy oil vehicle
used in this study would contain an abundance of g-tocopherol
(Figure 1C), and neither tissue tocopherol levels nor vehicle
tocopherol levels were measured. Our interpretation of this
study is that high g-tocopherol in the soy oil negated the effect
of the a-tocopherol that was administered. Mice deficient in
liver a-tocopherol transfer protein (aTTP) exhibit severe defi-
ciency in tissue a- and g-tocopherol as well as reduced IgE after
OVA challenge to the lung (35). In these mice, it is not known
whether severe tocopherol deficiency during mouse development
alters leukocyte hematopoiesis or leukocyte responsiveness.
Therefore, differences among the reports for tocopherol regula-
tion of eosinophilic lung inflammation likely reflect differences in
the intake of tocopherol isoforms, tocopherol isoform plasma
concentrations, and time of administration of tocopherols.

We determined a mechanism for the opposing functions for
a-tocopherol and g-tocopherol on leukocyte recruitment in the
mouse lung. During allergic inflammation, leukocytes bind to
endothelium and are recruited from the blood. We demon-
strated in vitro that the migration of leukocytes across endothe-
lial cells is inhibited by pretreatment of the endothelial cells
with a-tocopherol and elevated by pretreatment of the endo-
thelial cells with g-tocopherol (8). Pretreatment of endothelial
cells with a-tocopherol plus g-tocopherol results in an interme-
diate phenotype similar to the vehicle-treated endothelial cells
(8). Thus, a-tocopherol and g-tocopherol have opposite regula-
tory functions during leukocyte recruitment and allergic lung
inflammation in mice.

The opposing functions of a-tocopherol and g-tocopherol on
endothelial cells during leukocyte migration across endothelial
cells can occur through direct regulation of mediators of signal
transduction. During allergic inflammation, the endothelial cell
adhesion molecules VCAM-1 and ICAM-1 regulate recruitment
of leukocytes, and these adhesion molecules signal through
protein kinase C a (PKCa) (8, 30). We demonstrated that
a-tocopherol inhibits VCAM-1 and ICAM-1 activation of PKCa
in endothelial cells and that this is opposed by pretreatment of
endothelial cells with g-tocopherol (8, 30). It is also reported that
a-tocopherol inhibits activation of PKCa in other cell systems or
cell extracts, but the mechanisms for inhibition were not know
(36). We demonstrated that a-tocopherol and g-tocopherol
directly bind to the regulatory domain of PKCa and that
g-tocopherol increases, whereas a-tocopherol decreases, recombi-
nant PKCa activity (31). Thus, g-tocopherol functions as an ago-
nist and a-tocopherol functions as an antagonist of PKCa (31). In
summary, tocopherol isoform regulation of PKCa in endothelial
cells regulates leukocyte recruitment, which is critical for aller-
gic lung inflammation and airway hyperresponsiveness.

Figure 1. a-Tocopherol and g-tocopherol. (A) a-Tocopherol differs

from g-tocopherol by one methyl group (arrow). (B) Plasma g-tocopherol

(g-T) and plasma a-tocopherol (a-T) in one to two reports per country

and publication dates are indicated (28, 73–83). Global asthma preva-
lence in 2004 (84) and 2012 (85). (C) Tocopherols were extracted from

dietary oils (sunflower oil from Spectrum Organic Products, LLC; saf-

flower oil from Spectrum; olive oil from Colavita; soybean oil from Crisco;
corn oil from Mazola; grapeseed oil from Kusha, Inc; sesame oil from

Lavita; peanut oil from Essentials by Supervalu; canola oil from Crisco;

Sacha Inchi from Olivar). Extracted tocopherols were measured by HPLC

with an electrochemical detector as previously described (8). ND ¼ not
determined.
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Clinical studies indicate that higher intake of a-tocopherol
may confer a modest protective effect on adult-onset asthma
and beneficial effect on lung function (FEV1) or wheeze in
studies in Finland and Italy but not in the United States or the
Netherlands (37–41). In contrast, a very high dose of an acetate-
conjugated d-a-tocopherol (1,500 IU, which is 1,006 mg) to
subjects with mild atopic asthma in the United States for 16 weeks
resulted in increased plasma a-tocopherol, decreased plasma
g-tocopherol, and improved airway responsiveness to metha-
choline challenge (42). In a study in England, dietary supple-
mentation with a-tocopherol in soy oil to subjects with asthma
had no impact on FEV1, asthma symptom scores, or broncho-
dilator use, but in our interpretation, the g-tocopherol in the
soy oil may oppose the benefit of the a-tocopherol (43). In
a Scottish cohort, reduced maternal intake of vitamin E (likely
referring to a-tocopherol) is associated with increased inci-
dence of asthma and wheezing in children up to 5 years old
(44, 45). In Devereux’s review of these data and changes in the
environment in Scotland (45), it is discussed that from 1967 to
2004 there was a significant increase in vegetable oil intake by
the Scottish, and we suggest that this would at least result in an
increase in g-tocopherol, because vegetable oil (soybean oil) is
rich in g-tocopherol (Figure 1C). A metaanalysis of reports on
vitamin E and asthma concludes that dietary vitamin E intake
is not generally associated with asthma status, although vita-
min E was significantly lower among those with severe asthma
(46). Our alternative interpretation is that this lack of association
could occur if data on dietary intake were combined across stud-
ies that included marked variation of vitamin E isoforms that are
present in diets, supplements, and supplement vehicles. Most
clinical studies on vitamin E include mixed forms of natural and
synthetic tocopherols from supplementation or diet. Therefore,
differences in outcomes from clinical reports on the associations
of vitamin E and asthma may, in part, reflect the opposing
regulatory effects of a-tocopherol and g-tocopherol in the sup-
plements, the tocopherol isoforms in vehicles for the supple-
ments, and the plasma g-tocopherol levels in the individuals
in these countries.

It is reported that there are low plasma a-tocopherol levels in
adults or children with asthma (38, 39, 47–50). Because a-tocopherol
levels are low in subjects with asthma, and because a-tocopherol can
reduce inflammation, then an increase in a-tocopherol in the pres-
ence of low g-tocopherol may be beneficial in combination with
other regimens to either prevent or improve control of allergic
disease and asthma. Further intervention studies are necessary
to examine tocopherol isoform regulation of allergic lung in-
flammation and asthma. Although we know that a-tocopherol
supplementation raises plasma a-tocopherol levels in humans
(51) and that plasma and tissue tocopherols correlate (7, 8, 12),
information about the clinical impact and the mechanisms
whereby tocopherols differentially modulate inflammation will
be important in designing interventions to prevent asthma or
decrease prevalence of asthma morbidity.

The prevalence rate of asthma is higher in the United States,
Netherlands, and Scotland than several European and Asian
countries (Figure 1B). Interestingly, countries with the highest
prevalence rate for asthma also tend to have high average hu-
man plasma levels of g-tocopherol (Figure 1B). In contrast to
the report of 1.4 mM plasma g-tocopherol in China (Figure 1B),
another report indicates an average of 2.4 mMplasma g-tocopherol
for a small group of tin miners in China (52), but it is not
known whether tocopherol levels in this group of individuals
differ from other areas in China. In the United States, the av-
erage human plasma g-tocopherol levels are two to five times
higher than those of many European and Asian countries (Fig-
ure 1B), whereas the average human plasma a-tocopherol levels

are relatively similar among these countries (28). This fivefold
higher level of human plasma g-tocopherol is similar to the
fivefold increase in plasma g-tocopherol in mice that increased
allergic lung inflammation with g-tocopherol administration (8).
The high human plasma g-tocopherol levels in the United States
are consistent with soybean oil, which is high in g-tocopherol
(53, 54) (Figure 1C), as the predominant food oil in the United
States (55, 56). It is reported that dietary oils influence plasma
tocopherol levels in humans. In studies with soybean oil admin-
istration, plasma g-tocopherol is elevated two- to fivefold in
humans and hamsters (57, 58). Also, in a study in which olive
oil or soybean oil was administered to preterm human infants
starting 24 hours after birth, there was a significant 1.5-fold in-
crease in plasma a-tocopherol after feeding with olive oil as
compared with feeding with soybean oil, but unfortunately
g-tocopherol was not reported (59). It is reported that as coun-
tries assume western lifestyles, diets change, including increased
consumption of soybean oil (60). In contrast to high levels of
g-tocopherol in soybean oil, g-tocopherol is low in other oils,
such as sunflower oil, safflower oil, and olive oil, that are used
in several European and Mediterranean countries (Figure 1C)
(8). In addition to differences in tocopherol isoforms in diets
and human plasma among these countries, there may be other
environmental differences among these countries, such as intake
of the antiinflammatory omega-3 fatty acid from fish oil con-
sumption (61–63). Dietary unsaturated fatty acids may also mod-
ulate asthma (40, 64). There are also differences in asthma
prevalence among racial and ethnic groups (65). However, stud-
ies examining vitamin E association with clinical outcomes gen-
erally adjust for several known confounding factors, such as sex,
age, body mass index, race, and smoking. Although there may be
other differences regarding the environment and genetics of the
people in these countries, the outcomes for tocopherol isoforms
and asthma in clinical studies are consistent with the studies
demonstrating opposing functions of the tocopherol isoforms on
leukocyte recruitment and allergic inflammation in mice (8).

In addition to conflicting outcomes in asthma for vitamin E,
there are conflicting outcomes for vitamin E in other inflamma-
tory diseases, including arthritis and cardiovascular disease. For
example, it has been reported that human plasma g-tocopherol
is positively associated with osteoarthritis, whereas plasma
a-tocopherol is negatively associated with osteoarthritis (66).
In contrast, in another report on knee osteoarthritis, vitamin E
supplementation (a-tocopherol) did not relieve symptoms, but
the authors did not measure patient a-tocopherol or g-tocopherol
levels (67). In coronary heart disease and stroke, studies of
tocopherols and heart disease are complex, because different
dietary oils not only contain different forms of tocopherols
but also contain different lipids that affect heart disease. Nev-
ertheless, plasma g-tocopherol levels are either not associated
with heart disease or are associated with an increase in relative
risk for myocardial infarction (68). In contrast, a-tocopherol
intake is either not associated with heart disease or is associ-
ated with reduced death from heart disease (69–72). There-
fore, although the clinical reports on vitamin E association
with heart disease are inconsistent, for those reports with an
effect on heart disease, g-tocopherol is associated with an in-
crease in heart disease, whereas a-tocopherol is associated
with a decrease in heart disease. In summary, the opposing
functions of a-tocopherol and g-tocopherol in animal models
(8) are consistent with the different outcomes for the clinical
studies of tocopherol isoforms in heart disease and asthma.

Understanding both the epidemiology and the biology of
vitamin E isoforms on asthma inception and control suggest that
we should rethink how we study and supplement this nutrient.
Analysis of associations of tocopherol isoforms with outcomes
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using the ratio of concentration of g-tocopherol/concentration of
a-tocopherol does not reflect the magnitude of the tocopherols.
For example, a low concentration of g-tocopherol/low concentra-
tion of a-tocopherol may have the same ratio as high g-tocopherol
concentration/high a-tocopherol concentration, but they could
have quite different effects. We suggest that vitamin E isoforms
should be measured in the supplements, vehicles, and patient
plasma. Then, the analysis of opposing functions of tocopherol
isoforms should include quartiles of plasma tocopherols with
determination of whether there is an association of a tocopherol
isoform with the clinical outcome when the concentration of the
opposing tocopherol is low and causing the least competing
opposing effects. Using this approach, we recently demon-
strated in a study with 4,500 individuals (20% with asthma) that
plasma g-tocopherol is inversely associated with lung function
(FEV1) and that plasma a-tocopherol is positively associated
with lung function (FEV1) in subjects without and with asthma
(unpublished observation).

The marked differences in rates of disease across the world,
changes over short periods, and changes with migrating popula-
tions mean that asthma and allergic diseases are not inevitable
consequences of a genetic predisposition. This is profoundly im-
portant, as the ability to modify diet and lifestyle means that
lower rates of these diseases can be attained without medications
or sophisticated medical infrastructures and could be achieved
worldwide.

Author disclosures are available with the text of this article at www.atsjournals.org.
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