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Abstract

Alzheimer’s disease (AD) progressively degrades the brain’s gray and white matter. Changes in white matter reflect changes in the
brain’s structural connectivity pattern. Here, we established individual structural connectivity networks (ISCNs) to distinguish
predementia and dementia AD from healthy aging in individual scans. Diffusion tractography was used to construct ISCNs with a fully
automated procedure for 21 healthy control subjects (HC), 23 patients with mild cognitive impairment and conversion to AD dementia
within 3 years (AD-MCI), and 17 patients with mild AD dementia. Three typical pattern classifiers were used for AD prediction.
Patients with AD and AD-MCI were separated from HC with accuracies greater than 95% and 90%, respectively, irrespective of
prediction approach and specific fiber properties. Most informative connections involved medial prefrontal, posterior parietal, and
insular cortex. Patients with mild AD were separated from those with AD-MCI with an accuracy of approximately 85%. Our finding
provides evidence that ISCNs are sensitive to the impact of earliest stages of AD. ISCNs may be useful as a white matter-based
imaging biomarker to distinguish healthy aging from AD.
© 2012 Elsevier Inc.
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1. Introduction

Alzheimer’s disease (AD), the most common cause of
age-related dementia, is a neurodegenerative disease char-
acterized by increasing cognitive and behavioral deficits
(Blennow et al., 2006). AD is neuropathologically charac-
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terized by amyloid plaques, neurofibrillary tangles, and the
loss of neurons, with changes starting regionally and spread-
ing out gradually across the brain’s gray matter (Braak and
Braak, 1991; Thal et al., 2002). In addition, postmortem
histological and in vivo imaging studies demonstrate wide-
pread alterations of patients’ white matter (Bozzali et al.,
002; Brun and Englund, 1986a; Rose et al., 2000). These
eports of spreading cell loss and white matter deterioration
ave motivated the hypothesis that the cognitive and behav-
oral symptoms of AD are the consequence of disconnection

etween brain regions (Brun and Englund, 1986b; Delbeuck
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et al., 2003; Lo et al., 2010; Sorg et al., 2009). Therefore, we
hypothesized that subject-specific patterns of changed white
matter connectivity reflect the emergence of observable
deficits in behavior and cognition.

To this end, we used diffusion-weighted magnetic reso-
nance imaging (DWI) to explore white matter microstruc-
ture in vivo (Johansen-Berg and Rushworth, 2009). During

WI, multiple brain images sensitive to different water
iffusion directions were acquired, and, subsequently, data
ere fitted to a mathematical diffusion tensor model for

ach voxel. The diffusion tensor model describes diffusion
s an ellipsoid and allows for both the identification of local
iffusion properties (such as fractional anisotropy [FA] or
ean diffusivity [MD]) and the diffusion-based reconstruc-

ion of fiber paths (Lazar et al., 2003; Mori et al., 1999).
ocal FA and MD values reflect the local density and

ntegrity of fiber bundles voxel by voxel. By contrast, fiber
aths reflect the density and integrity of long-range connec-
ions between cortical regions, possibly making them a
etter correlate of cortical information processing and,
ence, cognitive function (Johansen-Berg and Rushworth,
009).

DWI studies in AD have demonstrated aberrant FA and
D values in the white matter of the frontal, occipital, and

emporal lobes (Bozzali et al., 2002; Fellgiebel et al., 2004;
exton et al., 2010; Stahl et al., 2007), as well as in selected

racts such as the corpus callosum or cingulum bundle
Fellgiebel et al., 2005; Liu et al., 2009a; Sexton et al.,
010; Stahl et al., 2007). DWI-based studies in mild cog-
itive impairment (MCI), which is a high-risk state for AD,
ave demonstrated similarly distributed, but less severe,
A/MD changes (Fellgiebel et al., 2004, 2005; Stahl et al.,
007). Recently, DWI-based tractography (Lo et al., 2010)
as indicated that AD dementia leads to changes in the
opological organization of individual, fiber-based, struc-
ural connectivity networks, and that these changes correlate
ith cognitive deficits.
Here, we asked (i) whether individual structural connec-

ivity networks (ISCNs) based on DWI tractography are
lready changed in predementia forms of AD and (ii)
hether ISCNs can be used to distinguish individual pa-

ients with predementia or mild AD from healthy control
ubjects (HC). Patients with predementia AD were defined

Table 1
Demographical and neuropsychological scores of patients and healthy con

Group HC (n � 21)

emale 13
ale 8
ge 66.4 � 7.5
MSE score 29.4 � 0.8

Delayed recall (CERAD) 6.5 � 2.1

Key: AD, Alzheimer’s disease; HC, healthy controls; MCI, mild cognitiv
MMSE, Mini-Mental State Examination; CERAD, Consortium to Establis
For statistical evaluation of group differences, �2 (gender) and ANOVA (
y MCI at the time of the DWI scan and conversion to AD i
ementia within 3 years (AD-MCI) (Table 1). For each
ubject, diffusion tractography and 96 predefined cortical
egions were used to construct ISCNs. We then extracted
hree attributes (fiber density, FA, and MD) for each con-
ection. ISCN patterns were finally used to predict the
linical status of subjects by applying machine learning-
ased pattern recognition techniques (Klöppel et al., 2008;
lant et al., 2010).

. Methods

.1. Subjects

Seventeen patients with mild AD (range, 55 to 83 years
ith an average of 68.9 � 8.1 years; 7 female), 23 patients
ith AD-MCI (range, 59 to 79 years with an average of
7.6 � 5.4 years; 11 female), and 21 healthy control sub-
ects (range, 56 to 85 years with an average of 66.3 � 7.4
ears; 13 female) participated in this study (see Table 1). All
articipants provided informed consent in accordance with
he Human Research Committee guidelines of the Klinikum
echts der Isar, Technische Universität (Munich, Ger-
any). Patients were recruited from the Memory Clinic of

he Department of Psychiatry, and healthy control subjects
ere recruited by word-of-mouth advertising. Examination
f every participant included medical history, neurological
xamination, neuropsychological assessment (Consortium
o Establish a Registry for Alzheimer’s Disease [CERAD])
Morris et al., 1989), structural MRI, and (for patients only)
nformant interview (Clinical Dementia Rating [CDR])
Morris, 1993), as well as blood tests. Patients with mild AD
ulfilled criteria for dementia (CDR global score � 1) and
he National Institute of Neurological Disorders and Stroke–
lzheimer’s Disease and Related Disorders Association

NINCDS-ADRDA) criteria for AD (McKhann et al.,
984). Patients with AD-MCI met criteria for amnestic MCI
t baseline and converted to mild AD within 3 years. Am-
estic MCI criteria include reported and neuropsychologi-
ally assessed memory impairments, largely intact activities
f daily living, and excluded dementia (CDR � 0.5) (Gau-
hier et al., 2006). Conversion to AD was assessed during
nnual follow-up clinical assessments after baseline, includ-
ng medical history, neurological examination, informant

jects

D (n � 17) AD-MCI (n � 23) p

11 0.42
12

8.1 67.6 � 5.4 0.53
4.3 26.8 � 2.0 �0.01
1.8 3.1 � 2.0 �0.01

rment; AD-MCI, MCI at baseline with conversion to AD within 3 years;
stry for Alzheimer’s Disease; p, p value.
MSE, delayed recall) were used.
trol sub

Mild A

7
10
68.9 �
22.1 �

0.9 �

e impai
h Regi
nterview (CDR), and neuropsychological assessment
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(CERAD). Four patients converted to AD after 1 year, 7
after 2 years, and 12 after 3 years. Exclusion criteria for
entry into the study were other neurological, psychiatric, or
systemic diseases (e.g. stroke, depression, alcoholism) or
clinically remarkable MRI (e.g. stroke lesions) potentially
related to cognitive impairment. A total of 8/12/10 persons
with mild AD/AD-MCI/control subjects were treated for
hypertension (beta-blockers, ACE inhibitors, and calcium-
channel blockers), and 7/7/9 were treated for hypercholes-
terolemia (statins). In all, 3/1/0 individuals had diabetes
mellitus, 2/3/0 received antidepressant medication (mir-
tazapine, escitalopram), and all patients with mild AD re-
ceived cholinesterase inhibitors. None of the control sub-
jects were taking any psychotropic medication.

2.2. Data acquisition

On a 3-T MRI scanner (Achieva, Philips, The Nether-
lands), we acquired DWI using a pulsed gradient spin-echo
echo planar imaging sequence with a parallel imaging
(SENSE) factor of 2.5, echo time (TE) � 60 ms, and
epetition time (TR) � 6516 ms. Images were acquired for
112 � 112-matrix size of slice and subsequently recon-

tructed for a 128 � 128-matrix size, with a resolution of
.75 mm in plane and a slice thickness of 2 mm. A total of
0 contiguous slices were acquired to give complete brain
overage containing 128 � 128 � 60 voxels with a size of
.75 � 1.75 � 2 mm3. Diffusion gradients were applied in
5 noncollinear directions with b � 800 s/mm2. B0 image

without diffusion weighting, b � 0 s/mm2, was additionally
acquired.

2.3. Construction of ISCNs

To construct the structural connectivity network for
each participant, the procedure involved the following
steps (Fig. 1).

Cortical parcellation. For cortical parcellation, the whole
brain of each participant was segmented into 96 cortical
regions using the Harvard-Oxford cortical structural atlas
(http://www.fmrib.ox.ac.uk/fsl). This anatomical atlas is a
probabilistic population-based atlas; subregions were
thresholded in a way that only voxels, which are estimated
above 35% probability of being in that structure, are in-
cluded in the mask. We used 35% as a threshold value to
prevent overlap between regions of interest (ROIs) after
registering them to the B0 images of individual participants.
This also increased the likelihood of capturing fibers orig-
inating from the center of a region, where variability across
individuals is smallest. Each individual’s B0 image was first
affine-registered (with 12 degrees of freedom) to the ICBM
152 template of the Montreal Neurological Institute space
(MNI, http://www.bic.mni.mcgill.ca) to obtain the transfor-

mation matrix (T). The inverse transformation matrix (T�1) g
as then applied to the Harvard-Oxford atlas to generate
orresponding cortical regions in each individual’s DWI
B0) native space.

Diffusion tractography. To determine the connectivity
etween pair-wise regions, diffusion tractography was used.
istortion induced by motion for weighted MRI images was
rst corrected by aligning all DWIs to the non-DWI (B0)
sing a 2-D linear registration algorithm (automated image
egistration) (Woods et al., 1998). Maps of the diffusion
ensor elements, MD, and FA and major eigenvector direc-
ion were calculated for each voxel by using in-house soft-
are. Then the deterministic fiber tracking algorithm TEND

Lazar et al., 2003) was applied to investigate the brain’s
hite matter for each subject. Because voxels with high FA

re more likely to contain a high proportion of white matter,
ll voxels with FA � 0.3 were selected as seed points of

fiber tracking (Lazar et al., 2003; Liu et al., 2009b; Mori et
al., 1999). Selecting seed voxels with FA � 0.3 ensures the
trajectories originated from the white matter tissue, and
potential possible trajectories can be successfully recon-
structed. Tracking started from these seed points, using the
major eigenvectors of seed points as the original propaga-
tion directions. Then tracts are propagated by using the
entire diffusion tensor to deflect the estimated fiber trajec-
tory in both directions. Tracking stopped in voxels with
FA � 0.2 or physiologically implausible curvature of the
track (� 60°) (Lazar et al., 2003; Liu et al., 2009b; Mori et
al., 1999).

ISCN construction. The output of both cortical parcella-
tion and diffusion tractography was combined to construct
individual structural connectivity networks ISCNs for each
subject. Each atlas-based region was regarded as a network
node. Connectivity of each pair of nodes was measured by
fibers across two regions. If there exists at least one fiber
with end points in one pair of regions (e.g. region i and
region j), the two cortical regions are assumed to be con-
nected (Hagmann et al., 2007, 2008). To control for the
influence of this definition of connection, we performed the
same analyses also for connection definitions based on three
and five fibers (e.g. Lo et al., 2010) (Tables S4 and S5). For
each connection, three attributes were calculated: (a) fiber
density cdij of a connection was defined as proportion of all

bers connecting the two regions (nij) over the total number
of fibers of the subject (nall), that is, cdij � nij/nall (Hagmann
t al., 2007, 2008; Roberts et al., 2005). (b) FAij of a
onnection was defined as the mean value of FA across all
oxels of all connection fibers. (c) MDij of a connection was
efined as the mean value of MD across all voxels of
onnection fibers. Each attribute reflects the weighted edge
f a network, that is, finally three different ISCNs defined
y patterns of cdij, FAij, and MDij were obtained for each
ubject. Figures 2–4 display connectivity matrices that re-
ect connection attributes averaged across subjects for each

roup and attribute.

http://www.fmrib.ox.ac.uk/fsl
http://www.bic.mni.mcgill.ca


r
p
l
t

2759J. Shao et al. / Neurobiology of Aging 33 (2012) 2756–2765
2.4. Pattern classification of ISCNs

After construction of ISCNs, individual connectivity pat-
terns were classified by the use of three different machine
learning-based pattern classifiers together with a feature
selection procedure (Figs. 2–4). To reduce variability of
esults and to evaluate how results generalize to an inde-
endent data set, 10-fold cross-validation (Table 2) and
eave-one-out validation (Table S3) were applied (Mos-

Fig. 1. Flowchart of DWI image analysis. (1) Individual non-DWI (B0) im
Institute space to obtain the transformation matrix (T) for each partic
Harvard-Oxford brain atlas and (B0) image to generate corresponding cer
DWIs, the local properties of water diffusion (e.g. fractional anisotropy [F
model. (4) Whole brain tractography was performed providing an estima
connectivity networks (ISCNs) were constructed by combining the output o
(6) The most distinctive connections of ISCNs among groups were identifi
MD. (7) ISCNs of patients with mild cognitive impairment and mild Alzhe
three different pattern recognition algorithms.
eller, 1948). For each type of ISCN, for all possible be-
tween-group comparisons, and for each round of validation,
first feature selection (on the training data) using an infor-
mation gain criterion (Quinlan, 1993) was used to rate the
information-based interestingness of each connection and
attribute to distinguish groups (Supplementary Data [SD],
Table S2). After that, three classifiers, namely, support
vector machine (SVM), k-nearest neighbor (k-NN), and
naive Bayes (NB) (see later in the text), were used to

ere affine-registered to the ICBM 152 template of Montreal Neurological
2) The inverse transformation matrix (T�1) was then applied to both
gions in each individual’s DWI native space. (3) After preprocessing of
ean diffusivity [MD]) were derived from the voxel-wise diffusion tensor
onal trajectories across the entire white matter. (5) Individual structural
ortical parcellation and diffusion tractography for each individual subject.
feature selection criterion for different attributes of fiber density, FA, and

disease (AD), respectively, and healthy control subjects were classified by
ages w
ipant. (
ebral re
A] or m
te of ax
f both c
ed by a
imer’s
classify and predict subjects based on selected connections.
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Classification results were averaged over rounds of valida-
tion. In Figures 2–4, green dots indicate connections that

ere selected by information gain in more than five rounds
f validation, suggesting their relevance for group separa-
ion (Figs. 2–4).

Fig. 2. Selected connections in ISCNs for the comparison between patien
The three matrices represent the averaged structural connectivity netw
(FA), and (C) mean diffusivity. Each element of the matrix represents t
matrix indicates the averaged structural connectivity for patients wit
connectivity for healthy control subjects. Black dots indicate that there
average of connection attribute across all subjects of the group (yellow
of, for example, FA values across all voxels of fibers constituting the co
connections for group comparison selected by information gain criterio
TL, temporal lobe; PL, parietal lobe; OL, occipital lobe. For interpretat
Web version of this article.

Fig. 3. Selected connections in ISCNs for the comparison between patients
three matrices represent the averaged structural connectivity network based
mean diffusivity. Each element of the matrix represents the connection bet
averaged structural connectivity for patients with AD-MCI, and the lower
subjects. Black dots indicate that there is no connection for any subject of
all subjects of the group (yellow indicates higher scores). Note that connec
of fibers constituting the connection in one subject. Green dots in each m
information gain criterion in more than 5 rounds of 10-fold cross-validation

For interpretation of the references to color in this figure legend, the reader is re
The basic idea of SVM procedures (Vapnik, 1995) is
o construct a separating hyperplane between the training
nstances of both classes (groups). Among all possible
yperplanes, the one with the maximum margin between
lasses is selected. Given m training vectors xk�Rn (k �

mild AD and healthy control subjects using information gain criterion.
ed on different attributes: (A) fiber density, (B) fractional anisotropy
ection between two cortical regions. In each matrix, the upper triangle
AD, and the lower triangle matrix indicates the averaged structural

onnection for any subject of the group. Red to yellow dots indicate the
es higher scores). Note that connection attribute is defined by the mean
n in one subject. Green dots in each matrix indicate the discriminative
re than 5 rounds of 10-fold cross-validation. FL refers to frontal lobe;

he references to color in this figure legend, the reader is referred to the

D-MCI and healthy control subjects using information gain criterion. The
ferent attributes: (A) fiber density, (B) fractional anisotropy (FA), and (C)

o cortical regions. In each matrix, the upper triangle matrix indicates the
e matrix indicates the averaged structural connectivity for healthy control
up. Red to yellow dots indicate the average of connection attribute across
ribute is defined by the mean of, for example, FA values across all voxels
ndicate the discriminative connections for group comparison selected by
ers to frontal lobe; TL, temporal lobe; PL, parietal lobe; OL occipital lobe.
ts with
ork bas
he conn
h mild
is no c
indicat
nnectio
n in mo
ion of t
with A
on dif

ween tw
triangl
the gro
tion att
atrix i

. FL ref

ferred to the Web version of this article.
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1,. . ., m) of two classes, and a vector of labels y�Rm such
hat yk�{1, �1}, then SVM solves a quadratic optimi-
ation problem:

in
w,b,�

1

2
�T� � C�

k�1

m

�k with yk(�
T�(xk) � b) � 1 	 �k,

�k � 0, k � 1, ...., m,(1)

where � is a normal vector, b is a scalar, and �k are
non-negative variables, C is a penalty parameter on the
training error, yk is the class label, and �(·) is a map function

Fig. 4. Selected connections in ISCNs for the comparison between patients
represent the averaged structural connectivity network based on different att
element of the matrix represents the connection between two cortical reg
connectivity for patients with mild AD, and the lower triangle matrix indi
indicate that there is no connection for any subject of the group. Red to y
group (yellow indicates higher scores). Note that connection attribute is defi
the connection in one subject. Green dots in each matrix indicate the discri
in more than 5 rounds of 10-fold cross-validation. FL refers to frontal lob
the references to color in this figure legend, the reader is referred to the W

Table 2
Classification accuracy for individual structural connectivity networks
using 10-fold cross-validation

SVM k-NN Naive Bayes

Mild AD vs. HC
Fiber density 100.0% 94.74% 100.0%
FA 92.11% 94.74% 100.0%
MD 100.0% 94.74% 89.47%

Mild AD vs. AD-MCI
Fiber density 85.00% 85.00% 95.00%
FA 82.50% 75.00% 85.00%
MD 85.00% 82.50% 90.00%

AD-MCI vs. HC
Fiber density 97.73% 81.82% 95.45%
FA 84.09% 88.64% 97.73%
MD 93.18% 86.36% 100.0%

Key: SVM, support vector machine; k-NN, k-nearest neighbor; AD, Alz-
heimer’s disease; HC, healthy controls; AD-MCI, mild cognitive impair-
ment at time of scan with conversion to AD within 3 years; FA, fractional

anisotropy; MD, mean diffusivity.
to transfer the training data into a higher dimensional space.
For any testing instance x, the critical decision function
(predictor) then has the form:

f(x) � sgn(�T�(x) � b) (2)

where f (x) is the prediction function, sgn(·) is the sign
function, and �T is the transpose of normal vector �.

k-NN (Aha et al., 1991) is a method for classifying objects
based on closest training examples in the feature space. It is a
typical instance-based learning algorithm, where an object is
classified by a majority vote of its neighbors, with the object
being assigned to the class most common among its k-NNs.
Given an instance x, its k-NNs are found in terms of the
Pearson correlation coefficient, and then its label value is
determined by these k neighbors using the majority vote man-
ner principle. In this study, we specify k � 6 for all experi-
ments.

The NB classifier (Domingos and Pazzani, 1997) is a
simple probabilistic classifier based on applying Bayes’
theorem with strong (i.e. naive) independence assumptions.
A NB classifier assumes that the presence/absence of a
particular feature of a class is unrelated to the presence/
absence of any other feature. The fundamental idea of
Bayesian classification is to classify instances x based on a
probability model, which is defined as:

NB(x) � arg max
c�C

p(c
x1, . . . , xn) (3)

ith classes C and feature variables x1,. . ., xn constituting the

ild AD and AD-MCI using information gain criterion. The three matrices
(A) fiber density, (B) fractional anisotropy, and (C) mean diffusivity. Each
each matrix, the upper triangle matrix indicates the averaged structural

e averaged structural connectivity for patients with AD-MCI. Black dots
ots indicate the average of connection attribute across all subjects of the
the mean of, for example, FA values across all voxels of fibers constituting
e connections for group comparison selected by information gain criterion
temporal lobe; PL, parietal lobe; OL, occipital lobe. For interpretation of
rsion of this article.
with m
ributes:
ions. In
cates th
ellow d
ned by
minativ
e; TL,
components of x. Using Bayes’ theorem, it can be rewritten as:



B
t
p

2762 J. Shao et al. / Neurobiology of Aging 33 (2012) 2756–2765
NB(x) � arg max
c�C

p(c)p(x1, . . . , xn
c)

p(x1, . . . , xn)

� arg max
c�C

p(c)p(x1, . . . , xn
c) (4)

ecause NB assumes that the conditional probabilities of
he independent variables are statistically independent, the
rediction function of NB is finally defined as:

NB(x) � arg max
c�C

p(c)�
i

p(xi
c). (5)

3. Results

For each type of ISCN, different pattern classifiers and
validation methods were used to estimate individual clinical
group predictions. The following results are based on the
use of SVM, 10-fold cross-validation, and connections
based on at least one fiber between regions.

(i) AD-MCI vs. HC: AD-MCI subjects were distinguished
from healthy control subjects with an accuracy of
97.73% when using fiber density (Table 2). For FA and
MD, classification accuracies were 84.09% and
93.18%, respectively.

(ii) Mild AD vs. HC: SVM obtained fully correct predic-
tions of 100% based on the attributes fiber density and
MD; regarding FA, classification accuracy was 92.11%.

(iii) AD-MCI vs. mild AD: Between the patient groups of
AD-MCI and mild AD, classification accuracies were
85%, 82.5%, and 85% for fiber density, FA, and MD,
respectively.

Classification accuracy was comparably high for the
other pattern classifiers and validation methods (Tables 2
and S3). For connection definitions based on three and five
fibers, accuracies slightly decreased (on average about 5%)
but were consistent among each other (Tables S4 and S5). A
number of regions were commonly selected across analyses,
including the left and right insula, bilateral middle temporal
gyri, the superior parietal lobules and cuneus, and the fron-
topolar cortex (Table S6 and Fig. S5).

4. Discussion

In the current study, diffusion tractography-based ISCNs
and pattern recognition were used to study white matter
changes in very early stages of AD. Compared with healthy
control subjects, ISCN patterns of patients with AD-MCI
and mild AD were significantly altered with respect to fiber
density and fiber integrity. Based on individual scans,
ISCNs enabled the prediction of AD-MCI and mild AD
with accuracies of about 90% and 95%, respectively.

4.1. ISCN as a new tool to describe AD

Previous DWI-based studies in AD and MCI have dem-
onstrated widely distributed white matter changes (for re-

view, Sexton et al. [2010]). A meta-analysis of 41 DWI
studies (Sexton et al., 2010) revealed AD-related fiber de-
terioration (decreased FA or increased MD) in most cortical
lobes. These changes, although smaller, were already ap-
parent in MCI, suggesting that progressive damage to fiber
connections begins in predementia stages of AD. Most DWI
studies transformed FA or MD images into a standard space
(Damoiseaux et al., 2009; Medina et al., 2006; Stahl et al.,
2007), which tends to remove the large individual variabil-
ity of fibers (Hagmann et al., 2008; Johansen-Berg and
Rushworth, 2009; Van den Heuvel et al., 2009). This is
desirable when measuring local statistics such as FA, but
makes it harder to identify changes in specific fiber paths
within a bundle. However, AD leads to atrophy and cell
death in regionally specific populations and spreads in a
characteristic pattern. Thus, it is likely that, at least early on,
only fibers of specific connections are affected. Region-to-
region fiber connections may then be more meaningful in
characterizing a disconnection syndrome such as AD (Brun
and Englund, 1986b; Delbeuck et al., 2003; Lo et al., 2010;
Sorg et al., 2009), and are potentially more sensitive.

Using fiber tracts to describe AD is not entirely new. For
instance, a previous study (Lo et al., 2010) derived graph
theory-based topological scores from ISCNs to compare AD
dementia with healthy control subjects with univariate sta-
tistical methods, that is, they used graph theory to convert
ISCNs to a small set of values reflecting the systemic
organization of the whole brain. In contrast, here we used
the entire multivariate ISCN pattern to allow the use of
pattern recognition techniques. These techniques evaluate
the connectivity pattern as a whole instead of element by
element. We used canonical machine learning-based pattern
recognition procedures (SVM, k-NN, and NB), which have
been applied successfully in MRI data analysis (Klöppel et
al., 2008; Plant et al., 2010).

It is important to note that this multivariate pattern was
derived from a relatively coarse anatomical parcellation (by
dividing cortical gray matter into 96 anatomically separable
regions according to the Harvard-Oxford atlas). This puts
our parcellation on the same order as that of the AAL atlas
(which also uses about 100 regions; see Zalesky et al.
[2010]). It is difficult to extrapolate how classification
would be affected by the use of more fine-grained parcel-
lations (such as the �1000 regions used by Hagmann et al.
[2008]). In our case, more fine-grained parcellations are
unlikely to have improved classification, as the fiber net-
works provided by our imaging and fiber tracking approach
were already sparse (see Fig. 2). Furthermore, we were
interested in probing disruptions to long-range connectivity
in early AD, whereas fine-grained parcellations with high-
resolution imaging would most likely benefit the identifica-
tion of more local structural connectivity.

4.2. Disruption of ISCNs in very early AD

Concerning group differences between healthy control

subjects and AD-MCI and mild AD patients, all classifica-
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tion results for different ISCN-pattern types (fiber density,
FA, MD) were largely independent from selected classifiers,
evaluation methods, and connection definition, indicating
that results reflect real group differences in ISCN patterns
(Tables 2, S3–5). Furthermore, different ISCN features of
fiber density, FA, and MD produce largely comparable
accuracy scores for each possible group comparison, in line
with previous voxel-/ROI-based results of comparable FA
and MD changes in AD/MCI, and therefore suggesting that
AD does not selectively impact on diffusion tensor proper-
ties (Tables 2 and S3).

(i) Mild AD: Patients with mild AD were separated from
healthy control subjects with an accuracy of more than 95%.
Studies using similar pattern recognition methods, but gray
matter features (such as regional volume) instead of white
matter ones, observed comparable separation results (Da-
atzikos et al., 2008; Klöppel et al., 2008; Plant et al., 2010;
eipel et al., 2007). For example, Klöppel et al. (2008) used
1-weighted gray matter images and SVM to separate
athologically verified AD patients from healthy control
ubjects with an accuracy of 96%. The congruence of this
lmost perfect separation of AD patients from healthy con-
rol subjects based once on gray matter and once on white
atter features is in line with the disconnection hypothesis

Delbeuck et al., 2003). Our results complement these find-
ngs by demonstrating changes in local connectivity pat-
erns.

(ii) AD-MCI: Patients with AD-MCI were separated
rom healthy control subjects with an accuracy of more than
0%. Our result is in line with previous findings of widely
istributed FA decreases and MD increases in MCI (Sexton
t al., 2010). Studies of MCI patients using similar pattern
ecognition methods for gray matter features such as tissue
ensity found comparable separation results (Cuingnet et
l., 2011; Davatzikos et al., 2008; Teipel et al., 2007). For
xample, Davatzikos et al. (2008) used gray matter density
s well as a combination of both high-dimensional image
nalysis and pattern classification to separate MCI patients
rom healthy control subjects with 90% classification accu-
acy. In a recent study, Cuingnet et al. (2011) demonstrated
hat these high accuracy scores for the separation of prede-
entia AD from healthy aging by T1-weighted gray matter

roperties are replicable but strongly depend on preprocess-
ng procedures and applied classification methods. Interest-
ngly, our data based on white matter ISCNs seem to be
elatively independent of structural connectivity criteria and
lassification algorithms. Further studies are necessary to
upport this result in more detail and to relate explicitly
lassification of very early AD based on T1-weighted im-
ging and DWI.

The MCI patients assessed in our study all converted to
D dementia within 3 years. Because patients were not
iagnosed with any other disease at the time of scan and in
ollow-up assessments, their deficits and brain changes at

he time of scanning were very likely caused by AD. This u
ndicates that AD already alters ISCNs substantially in the
redementia stage. Furthermore, we found that groups of
D-MCI and mild AD patients were separated with an

ccuracy of about 85%, suggesting that ISCN changes in-
rease during the course of AD. Unfortunately, our study
ives no information how ISCNs of nonconverting MCI
atients separate from healthy control subjects and patients
ith AD-MCI. Future studies have to explore whether se-

ected tracts of ISCNs are preferentially affected along the
ourse of AD, whether ISCN changes are accompanied by
ncreasing changes of topological ISCN characteristics, and
hether ISCNs separate converters from nonconverters
ith MCI.
The connections, which most frequently distinguished

oth groups from the healthy control subjects, included
reas of the medial posterior occipito-parietal cortex (i.e. the
uperior parietal lobule and the cuneus), which have been
hown to exhibit signs of early functional disconnection as
ell (Sorg et al., 2007, 2009). Connections to the frontal
oles and middle temporal gyri were also selected often.
hese regions of the medial prefrontal and temporal cortex
ontribute to the default mode network, a set of regions that
as been implicated in early AD in numerous modalities
Sorg et al., 2009; Sperling et al., 2010). Other selected
eatures included the left and right insula, which may have
aptured fiber abnormalities originating in the anterior me-
ial temporal lobes (Acosta-Cabronero et al., 2010). Be-
ause this study focused on using all pertinent information
o identify patients, future studies will have to quantify how
uch these frequently selected regions contribute to classi-
cation.

.3. ISCN as imaging biomarker

Findings of the current study suggest that ISCNs may
ave the potential of providing an imaging- and white mat-
er-based biomarker for the distinction between healthy ag-
ng and very early AD. Our approach has three main fea-
ures desirable for any biomarker. (i) ISCN patterns were
irectly and automatically derived from individual subject
ata. (ii) The pattern classifiers we used have an appropriate
raining-test structure, which fulfills criteria of a diagnostic
ool and makes it possible to establish a large training set to
mprove diagnostic accuracy (Klöppel et al., 2008). (iii) The
canning protocol and data analysis of the current study
ere economical in many respects: scanning time of less

han 5 minutes, only 15 gradient images per data set, use of
he B0 image for cortical parcellation, and application of a
eterministic streamlining approach for fiber tracking al-
owing for both fast calculation of ISCNs and maximal
ontrol of single steps of data analysis. As ISCN definition
nd classification of new test data are performed within
everal minutes without any user interaction, the time for
he whole procedure is not a practically limiting factor for

sing ISCNs as a biomarker.
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Like any other biomarker, we suspect that clinicians
would use ISCN patterns in conjunction with existing bio-
markers for early detection of AD (such as Pittsburgh com-
pound B-positron emission tomography [PIB-PET], or am-
yloid-�-42 count in cerebrospinal fluid). In addition, ISCN
patterns could be joined with other measures for multimodal
classification (Ewers et al., 2011). Our focus on connectivity
patterns could become especially useful in distinguishing
incipient AD dementia from other dementias that affect
different brain networks, such as frontotemporal lobar de-
generation (Klöppel et al., 2008). Future studies need to
address this potential. In that context, one should consider
that clinical diagnosis standards for neurodegenerative de-
mentias include a significant risk for misdiagnosing in com-
parison with definitive neuropathological criteria. That is,
ISCNs might be optimally evaluated for their biomarker
potential in pathologically verified AD patients (Klöppel et
al., 2008). However, as we confirmed the diagnosis of AD
in our sample by several ways (such as careful exclusion of
other causes like vascular diseases or other neurodegenera-
tive diseases, AD compatibility of atrophy pattern in T1-
weighted images, and clinical follow-up assessments), we
suggest a high rate of valid diagnoses for our patient sample.
Therefore, we believe that obtained high accuracy scores of
AD classification based on ISCN patterns reflect the impact
of AD on brain’s white matter. As a last point to consider,
ISCNs’ biomarker potential and the replicability of our high
classification rate (�90%) need to be studied using larger
cohorts, different imaging protocols, and different MRI
scanners.
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