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Several recent high-profile studies have
highlighted the potential impact of anti-
retroviral therapy (ART) initiation
during acute human immunodeficiency
virus type 1 (HIV-1) infection on viral
reservoirs and persistence. Exciting ob-
servations presented at this year’s “Con-
ference on Retroviruses and Opportunistic
Infections” [1] on a child in Mississippi
that started ART within hours of birth to
an infected mother suggested that imme-
diate treatment prevented HIV-1 from
establishing a foothold in the infant,
leading to lack of viral rebound after
ART cessation. Two additional studies
suggested that initiating early ART in
adults with acute HIV-1 infection might
limit seeding of key viral reservoirs, in-
cluding those found in specific types of
memory CD4+ T cells [2–4]. Although
the long-term significance of the obser-
vations in these provocative reports is not
yet known, they have invigorated the
field of HIV-1 curative strategies and per-
sistence research. In this issue of The

Journal of Infectious Diseases, 2 articles
add to the growing discussion regarding
the impact of early ART on reservoir size
and T-cell activation, and help elucidate
the composition of the HIV-1 reservoir
in CD4+ T-cell subsets in blood and gas-
trointestinal tissue.

Early ART and T-cell Activation
Patients treated during the chronic phase
of HIV-1 infection have abnormal levels
of immune activation as well as persis-
tence of virus in memory CD4+ T cells,
even after years of ART. To evaluate
whether treatment during acute infection
impacts immune activation and virus res-
ervoirs, Jain and colleagues [5] compared
T-cell activation and HIV-1 nucleic acid
levels in patients who started ART <6
months from the time of infection (early
ART) to those who started therapy ≥2
years after infection (later ART). Parti-
cipants had suppressed virus for a
minimum of 2 years prior to the final
study time point. Although ART led to
declines in T-cell activation in both
groups, the early ART group was found
to have significantly lower levels of acti-
vated CD4+ and CD8+ T cells when com-
pared with the later ART group. It was
unclear, however, whether activation
levels immediately before ART initiation
were similar between the early and later
ART groups, and intergroup differences
could have affected these observations.

Despite the clear-cut effect of ART
on reducing immune activation, CD8+

T-cell activation levels remained higher
in the early therapy group than in HIV-
seronegative controls; another recent
study showed similar findings [6]. Higher
levels of persistent T-cell activation may,
in part, be related to damage to the im-
mune system that occurs prior to ART
initiation. In the current study and a pre-
vious one from the AIDS Clinical Trials
Group [7], lower pre-ART CD4+ T-cell
count was associated with persistently el-
evated CD4+ T-cell activation in patients
on ART. One interpretation of these
studies is that early ART initiation limits,
but does not completely abrogate, damage
to the immune system. In this regard, the
impact of early ART on other measures
of immune activation and inflammation,
such as soluble biomarkers, is an impor-
tant area of investigation. For example,
monocyte-macrophage activation markers,
which are linked to arterial inflammation
and atherosclerosis [8, 9], normalize in
patients treated with early ART [6, 10].

Early ART and HIV-1 Reservoirs
Among the possible benefits of diminish-
ing T-cell activation is a reduction in
viral reservoirs, as higher proviral DNA
and cell-associated RNA levels are corre-
lated with increased frequencies of acti-
vated CD4+ and CD8+ T cells [11]. (An
alternative explanation is that higher HIV-1
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levels are driving T-cell activation; only
interventional studies will be able to sort
out the direction of causality.) Jain et al
[5] observed that the early ART group
had lower levels of HIV-1 DNA and cell-
associated RNA at the last available treat-
ment time point than those who initiated
ART later. However, it is unclear whether
HIV-1 DNA and RNA levels were
similar between the early and later treat-
ment groups just prior to ART initiation;
it is possible that pretreatment DNA levels
were higher in the later-ART group. Fur-
thermore, because this was not a random-
ized study, there may have been differences
between the early and later ART groups
that influenced the on-treatment reservoir
size independent of ART timing. Nonethe-
less, Jain et al [5] found significant associa-
tions with timing of ART and cellular
reservoir size in covariate-adjusted longitu-
dinal mixed-effects regression models.
Moreover, the results are consistent with
those of other studies finding that patients
treated during acute infection have smaller
HIV-1 reservoirs, at least by some mea-
sures, than those treated during chronic in-
fection [12–14].

Because establishment of the HIV-1
reservoir occurs soon after primary infec-
tion [15, 16], how quickly therapy is
started may make a substantial diffe-
rence. For example, in a study from Thai-
land [2, 4], levels of cell-associated HIV-1
DNAwere found to be significantly lower
during the earliest phase of acute infec-
tion when compared with later stages of
primary infection. In patients who initi-
ated therapy prior to seroconversion, there
was a positive correlation between extent
of pretreatment viremia and the frequen-
cy of latently infected resting CD4+ T
cells [15]. Similarly, Jain et al [5] found
that pre-ART cumulative viremia pre-
dicted on-ART cellular RNA levels. The
rapid seeding of reservoirs soon after
HIV-1 acquisition means that very early
ART will be required to limit widespread
establishment of latent infection in sus-
ceptible cells.

Moreover, whether reducing HIV-1
reservoir size by initiation of extremely

early therapy will prevent virologic re-
bound when treatment is stopped is an
open question. In a recent French study [3],
14 patients who initiated ART in the
early stages of acute infection had control
of viremia after treatment interruption
(posttreatment controllers). However, in
a previous study [17], viral control after
treatment interruption was not durable
in a majority of patients treated during
acute infection. The mechanism by which
sustained viral control was achieved in
the French posttreatment controllers is
not yet certain.

Memory CD4+ T-cell Subsets and the
HIV-1 Reservoir
One possible mechanism for post-treat-
ment viral control is that early ART may
impact the distribution of HIV-1 in
different memory CD4+ T-cell subsets
(Figure 1), which might affect viral per-
sistence and rebound. In the peripheral
blood of patients on ART, HIV-1 is
found predominantly in memory CD4+

T cells rather than in naive cells [12,
18, 19]. In those with high CD4+ cell
counts, much of the HIV-1 reservoir is
found in central memory CD4+ T cells
(TCM); by contrast, in those with low
CD4+ T-cell counts, infected transitional
memory (TTM) and effector memory
(TEM) CD4

+ T cells contribute to a larger
portion of the reservoir [12]. While TCM

cells are intrinsically long-lived, the TTM

viral reservoir appears to be replenished
by homeostatic proliferation of latently
infected cells [12]. Interestingly, in post-
treatment controllers, the shorter-lived
TTM subset appears to be the main con-
tributor to the HIV-1 reservoir [3]. In ad-
dition, early ART initiation in the Thai
study [4] led to restricted seeding of the
TCM reservoir and very low or undetect-
able levels of integrated HIV-1 DNA.
If persistence of HIV-1 is more stable

in TCM cells, then the skewing of the res-
ervoir into shorter-lived TTM cells might
explain the gradual decrease in the HIV-1
reservoir seen in posttreatment controllers
[3]. As memory CD4+ T cells are present
at lower levels in newborns [20], early

treatment may have prevented HIV-1
from gaining a foothold in the previously
described Mississippi child. Limited infec-
tion of TCM cells is also observed in pa-
tients with protective human leukocyte
antigen alleles and spontaneous viral
control [21].Whether TCM can be protect-
ed from infection by other interventions
or whether infected TCM can be eliminat-
ed through novel approaches are high-
priority questions for the field. However,
even if TCM infection can be limited, an
even more daunting obstacle to HIV-1
eradication may be infection of stem cell
memory lymphocytes (TSCM) [22], ex-
tremely long-lived cells with the capacity
for self-renewal and homeostatic prolifera-
tion.

Although there have been important
advances in our understanding of the dis-
tribution of HIV-1 in memory T-cell
subsets, much of our knowledge has been
limited to findings made in peripheral
blood. There is a growing realization that
we need more insight into the composi-
tion of the HIV-1 reservoir in tissues,
such as the gut, which is the site of
massive CD4+ T-cell depletion during
acute infection [23, 24], and of viral per-
sistence in patients on ART [25]. In this
issue of the Journal, Yukl and colleagues
[26] report a study of HIV-1 reservoirs in
memory T-cell subsets from blood and
gastrointestinal tissue in 8 HIV-infected
patients on suppressive ART who under-
went colonoscopy. Most of the patients
had high CD4+ T-cell counts at the time
of biopsy, although several had low
nadirs in the past. As in a previous study
by this group [25], HIV-1 DNA levels
were found to be higher in the rectum
and ileum than in the blood. In peripher-
al blood, the largest proportion of the
HIV-1 DNA and cell-associated RNA
was found in CCR7+ cells (which com-
prise naive T-cells, TCM, and other
memory cells). By contrast, in the ileum
and rectum, the largest proportion of
HIV-1 DNA and RNAwas found in TEM

cells. As expected, the TCM pool was the
most prevalent memory cell type in the
blood, but TEM constituted the main pool
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in the ileum and rectum. The relative
frequencies of T-cell subsets roughly cor-
related with the total contributions of
HIV-1 DNA and cell-associated RNA
reservoirs in those subsets to the gut res-
ervoir. HIV-1 DNA and RNA were also
found in non-CD4+ leukocytes, particu-
larly in the rectum and ileum, although it
is unclear exactly which cell types consti-
tuted this population.

This important study shows that
blood-based measurements of the HIV-1
reservoir do not always reflect events oc-
curring in tissues and suggests that dif-
ferences in blood and tissue cellular
environments may significantly impact
the size and distribution of the viral res-
ervoir in patients on suppressive ART.
For example, markers for lymphocyte ac-
tivation are higher in the gut than in the

blood, which may arise from microbial
translocation and potentially lead to in-
creased presence of infected TEM subsets,
as observed by Yukl et al [26, 27]. More
studies are needed to understand how
HIV-1 persists in tissues and, by exten-
sion, how best to target those reservoirs
for elimination.

What Is to Be Done?
There is accumulating evidence for the
benefits of treating patients during acute
HIV-1 infection [28]; the finding that
early ART is associated with lower T-cell
activation supports this view and points
to the need for studies of whether such
therapy improves end-organ function
and clinical endpoints. In addition, the
impact of early ART on limiting HIV-1
reservoir size suggests that patients treated

during acute infection might be an ideal
population for future eradication studies.
In addition to having smaller blood res-
ervoirs, patients treated during acute in-
fection have more limited virus diversity
[29–31] and may have a smaller propor-
tion of defective provirus than those
treated later in infection. These character-
istics may make latency-activating factors
and therapeutic vaccination strategies
more effective. Studies evaluating the
effects of such interventions in patients
treated during acute infection are a high
priority for advancing our knowledge of
HIV-1 reservoir size and function.

In addition, we need a more compre-
hensive understanding of what deter-
mines the distribution and persistence
of HIV-1 in differentmemory T-cells sub-
sets in blood and tissues, both in patients

Figure 1. The contributions of memory CD4+ lymphocyte subsets in gut and peripheral blood to the HIV-1 reservoir are heterogeneous. During the
course of a normal immune response, a fraction of antigen-activated CD4+ T cells differentiate into memory cells. Memory CD4+ T cells can be further
divided into central memory T cells (TCM), which have limited effector function and traffic to secondary lymphoid tissues, and effector memory T cells
(TEM), which actively express effector functions. TCM may be induced to become TEM after T-cell receptor triggering or in response to cytokines. Transitional
memory (TTM) T cells have characteristics intermediate between those of TCM and TEM. TCM are the most prevalent memory subset in peripheral blood and
the largest contributor to the DNA reservoir in blood in patients with higher CD4+ T-cell counts (TTM contribute significantly to the blood reservoir in pa-
tients with low CD4+ counts). TEM cells are most prevalent in the gut tissue and, as a result, are the predominate contributors to the HIV-1 DNA reservoir
in the ileum and rectum. *Stem cell memory lymphocytes (TSCM) [33], which self-renew and undergo homeostatic proliferation, have recently been shown
to harbor HIV-1 and may play a role in viral persistence [22]. **Reservoirs were measured combining all CCR7+ cells (naive and central memory subsets).
Abbreviation: TN, naive T cells.
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treated during chronic infection (as in
the study by Yukl et al [26]) as well as in
patients treated during acute infection.
We also need investigations of whether
interventions designed to purge latent
reservoirs, such as histone deacetylase in-
hibitors, have differential effects on latent
HIV-1 infection in various T-cell subsets.
Finally, studies to test the exciting possi-
bility that specific memory CD4 cell sub-
sets play a critical role in the stability of
the HIV-1 reservoir should be vigorously
pursued and rigorously assessed.

The field of HIV-1 eradication re-
search was jump-started 5 years ago with
the report of the first cure [32], and has
been accelerated in recent years by tanta-
lizing studies suggesting that very early
treatment may limit the size of HIV-1
reservoirs. Although the road ahead is
likely to be full of twist and turns, what is
certain is that pathogenesis-based investi-
gations on the determinants and composi-
tion of the viral reservoir—as exemplified
by these 2 studies—will improve the con-
ception, implementation, and targeting of
novel strategies designed to eradicate HIV-
1 infection.
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