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Background. Because effective prediction of survival
time can be highly beneficial for the treatment of glioblas-
toma patients, the relationship between survival time and
multiple patient characteristics has been investigated. In
this paper, we investigate whether the predictive power
of a survival model based on clinical patient features im-
proves when MRI features are also included in the model.
Methods. The subjects in this study were 82 glioblastoma
patients for whom clinical features as well as MR imaging
exams were made available by The Cancer Genome Atlas
(TCGA) and The Cancer Imaging Archive (TCIA).
Twenty-six imaging features in the available MR scans
were assessed by radiologists from the TCGA Glioma
Phenotype Research Group. We used multivariate Cox pro-
portional hazards regression to construct 2 survival models:
one that used 3 clinical features (age, gender, and KPS) as
the covariates and 1 that used both the imaging features
and the clinical features as the covariates. Then, we used
2 measures to compare the predictive performance of
these 2 models: area under the receiver operating character-
istic curve for the 1-year survival threshold and overall con-
cordance index. To eliminate any positive performance
estimation bias, we used leave-one-out cross-validation.
Results. The performance of the model based on both
clinical and imaging features was higher than the perfor-
mance of the model based on only the clinical features,
in terms of both area under the receiver operating char-
acteristic curve (P , .01) and the overall concordance
index (P , .01).
Conclusions. Imaging features assessed using a con-
trolled lexicon have additional predictive value compared
with clinical features when predicting survival time in
glioblastoma patients.
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G
lioblastoma (GBM) is the most commonly occur-
ring type of malignant primary brain tumor and
the second most common type of primary brain

tumor in general.1 It is characterized by very poor sur-
vival rates: a 1-year survival rate of 35.2% and a
5-year survival rate of only 4.7%.1

Accurate prognosis for individual patients could be
of high benefit to them, and thus multiple studies have
been published examining the impact of various
factors on time to death. Lacroix et al2 have shown
that a high (≥98%) extent of tumor resection gives
a significant survival advantage compared with a low
(,98%) extent of resection. The dependence of survival
on complete resection of the enhancing tumor was
further confirmed by Stummer et al.3 Regarding clinical
features, it has been demonstrated that age2,4 and
Karnofsky Performance Status (KPS)2,4,5,6 are significant
predictors of survival. Multiple recent studies focus
on genomic predictors of survival in GBM patients.
One among the most prominent studies is that of
Verhaak et al,7 who found a gene expression–based
classification for GBM patients that relates well to
their clinical outcomes.

Although notably less attention has been given to
the predictive value of pre- and postoperative medical
imaging scans, some studies on the topic are available.
Lacroix et al2 examined 7 different features based on
pre- and postoperative MRI scans and showed that 4
of them were significant predictors of survival: tumor
functional grade (proximity to eloquent brain), necro-
sis grade, edema grade, and enhancement grade. Pope
et al8 evaluated the impact of 15 MRI variables
on survival in GBM patients and found that
noncontrast-enhancing tumor (nCET), edema, satellites,
and multifocality were significant predictors of survival.
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Park et al6 identified that tumor involvement in prespec-
ified eloquent brain regions and tumor volume were as-
sociated with poor postoperative survival. Recently,
Zinn et al9 also showed that a model using KPS and
age along with tumor volume (as determined by MRI)
both predicts patient survival time well and correlates
well with patient gene expression. These studies illus-
trate that particular features, or their combinations,
are capable of classifying patients into groups that
relate to survival. However, to our knowledge, there
is limited scientific evidence in the literature10 that
adding imaging features to popular clinical predictors
such as KPS, age, and gender will improve the quality
of survival predictions.

In this study, we evaluated the difference in perfor-
mance (ie, how well survival can be predicted) of 2
models: one using only clinical features and one using
both clinical and imaging features. In our study, we
used a recently proposed set of controlled MRI features
called VASARI (Visually Accessable REMBRANDT
[Repository for Molecular Brain Neoplasia Data]
Images). To date, only preliminary data on effectiveness
of these features are available.

Materials and Methods

Patient Population

In this study, we used data provided by The Cancer
Genome Atlas (TCGA) that contained clinical as well
as genomic information for patients. The data in the
TCGA set were collected according to appropriate insti-
tutional review board approval (TCGA Research
Network 2008).11 For the subset of the GBM patients
from TCGA, the MRI exams were made available by
The Cancer Imaging Archive (TCIA) through a collabo-
rative effort between the National Cancer Institute
(NCI) and multiple clinical institutions in the United
States. For this study, out of these we identified 82
GBM subjects for whom both the clinical information
of interest (age, gender, and KPS) and imaging features
extracted from the MRI exams by radiologists were
available. Each of these cases was scrutinized and as-
signed MRI features by a panel of radiologists using
the standardized VASARI lexicon (http://cabig.cancer.
gov/action/collaborations/vasari/). For each case, a con-
sensus rating was established by summarizing the radiolo-
gists’ ratings. Each case was assigned to at least 3
radiologists for rating, and 76/82 cases were in fact
rated by at least 3 radiologists. For the majority (68/82),
the consensus was based on ratings by exactly 3 radiolo-
gists per case. Of the remaining 14 cases, 5 were rated by
6 radiologists, 3 were rated by 4 radiologists, 3 were
rated by 2 radiologists, and 3 were rated by 1 radiologist.
The reason for a case being rated by fewer than
3 radiologists (6 total cases) is that, 1 or 2 radiologists
were not able to identify all necessary exams in the data-
base (eg, 1 of the 3 MRI modalities) or deemed the case
exams unsuitable for rating. In such situations, an addi-
tional arbiter investigated the case to resolve the conflict.

The image annotations were collected through an NCI-
coordinated multi-institutional effort by members of the
TCGA Glioma Phenotype Research Group and were
made available to us by the group.

Patient Features

Each patient was characterized by a set of clinical and
imaging (ie, VASARI) features. Specifically, the clinical
features were age (in days), gender, and KPS. The
VASARI lexicon for MRI annotation contains 26
imaging descriptors based on different MRI modalities,
including T1 and T2/fluid attenuated inversion recovery
(FLAIR). The exact description of all the features can
be found at the National Cancer Institute’s Cancer
Imaging Archive (https://wiki.cancerimagingarchive.net/
display/Public/VASARI+Research+Project).

The following MRI features were used: major axis
length, minor axis length, tumor location, side of
lesion center, eloquent brain, enhancement quality, pro-
portion enhancing, proportion nCET, proportion necro-
sis, cysts, multifocal or multicentric, T1/FLAIR ratio,
thickness of enhancing margin, definition of the enhanc-
ing margin, definition of the nonenhancing margin, pro-
portion of edema, edema crosses midline, hemorrhage,
diffusion characteristics, pial invasion, ependymal
invasion, cortical involvement, deep white matter inva-
sion, nCET tumor crosses midline, enhancing tumor
crosses midline, satellites, and calvarial remodeling.
Additionally, for each patient, time to death or time to
last follow-up (for censored patients) was available.

Statistical Modeling

The modeling goal was to predict patients’ time to death
(dependent variable) based on their clinical and/or
imaging features (independent variables). Two imaging
features (tumor location and eloquent brain) were split
into dummy binary variables representing each value of
these features. To achieve this goal, we used a multi-
variate Cox proportional hazards regression model12

preceded by feature selection using univariate Cox pro-
portional hazards regression models. Specifically, in the
feature selection step, we first removed any features
where the value of that feature across all subjects was
constant. Such features have no predictive power. Then,
we constructed a univariate Cox regression model for
each remaining feature. Our feature selection algorithm,
selected the features such that the P-value was significant
for the feature in the univariate Cox regression model,
which was P . .05. Finally, a multivariate Cox regres-
sion model was constructed using only the selected
features. The survival prediction for each subject of inter-
est was generated by a linear combination of the features,
where the feature weights were determined by the
multivariate Cox model.

For these calculations, we used the Cox proportional
hazards regression function (coxphfit) in MATLAB’s
Statistical Toolbox.
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Statistical Model Evaluation

To evaluate the models, we used leave-one-out cross-
validation along with the receiver operating characteris-
tic (ROC) methodology.13 Specifically, we divided the
available dataset of subjects into a training set of all
but 1 subject and a testing set containing the 1 remaining
subject. Then, we conducted feature selection and model
construction using only the training set and used the con-
structed model to calculate the survival prediction for
the subject in the test set. The feature selection, model
construction, and survival prediction are described in
the Statistical Modeling section. Finally, we repeated
this procedure multiple times so that each subject was
excluded exactly once from training and received
exactly 1 survival prediction.

To calculate the performance of the models, we
pooled the predictions for all the subjects and computed
an ROC curve. In this calculation, binary ground truth
labels were assigned to each patient based on his/her
survival time. Patients with a survival time .1 year
were labeled positive and those with a survival time
≤1 year were labeled negative. The censored subjects
with a follow-up time of ≤1 year were excluded from
the ROC calculation because it could not be determined
whether such patients survived .1 year. The censored
subjects with a last follow-up time .1 year were
labeled positive in the calculation because it is known
that they survived .1 year. For both models, we calcu-
lated the area under the ROC curve using the trapezoi-
dal rule. We calculated the confidence intervals (CIs)
according to Delong et al.14 To statistically compare
the models, we used the nonparametric comparison
method proposed by DeLong et al.14 The ROC analysis
was performed in R using the popular pROC
package.15 Specifically, we used the roc and auc func-
tions to calculate the areas under the curves, the
ci.auc function to calculate CIs, and the roc.test func-
tion (with the DeLong method) to compare the 2
areas under the curves.

Additionally, we compared the 2 models of interest
using the concordance (C) index16,17 measure, which
allows for comparing 2 models over all applicable time
thresholds rather than 1 selected threshold, as is done
in ROC analysis. The C index is the proportion of all
usable pairs of subjects such that the prediction of sur-
vival time and the actual survival time are in agree-
ment.13 The C index has been previously used in the
context of brain tumor survival analysis.18,19 We used
the Student t-test for dependent samples for statistical
comparison of the 2 C indices.20

To calculate and compare C indices, we used the
SurvComp package20 for R; specifically we used the
function concordance.index (using the Noether
method) to calculate C indices with CIs, and the function
cindex.comp for statistical comparison of the C indices.

Finally, as an additional, exploratory analysis, we
evaluated the individual predictive power of each of
the variables by calculating the area under the ROC
curve for a classifier where the variable is the predictor
of the survival class (as noted, positive was .365

days, negative was ≤365 days). The ROC calculation
for this analysis was also done in R using the pROC
package. The variables that had the same value for all
the patients were excluded as having no predictive
power in this context.

Results

The ROC curves for the model using only clinical
features and the model using both clinical and imaging
features are presented in Fig. 1. The area under the
ROC curve for the model using only clinical features
was 0.62 (CI: 0.49–0.74). The area under the ROC
curve for the model using clinical and imaging features
was 0.81 (CI: 0.71–0.9). The area under the curve for
the latter model was statistically significantly higher
(P , .01), which demonstrates the added value of
imaging descriptors for survival prognosis.

This result was confirmed using analysis based on the C
index. The C index for the model combining clinical and
imaging features was 0.69 (CI: 0.63–0.75). The C index
for the model using clinical features only was 0.58 (CI:
0.5–0.66). The difference was statistically significant
(P , .01). This confirms that imaging features improve
the predictive power of survival models for GBM patients.

The results of our exploratory analysis regarding
the importance of individual variables are presented in
Fig. 2. Our analysis confirms the importance of some
imaging features previously identified as important,
such as tumor functional grade (proximity to eloquent
brain), necrosis grade, edema grade, and enhancement
grade, while identifying some imaging features that
were previously not commonly identified as important
(see Fig. 2. for details). Out of the 3 clinical features
analyzed in this study, KPS was confirmed to have

Fig. 1. ROC curves for multivariate Cox proportional hazards

regression model using clinical features only (blue), and both

clinical and imaging features (black). The areas under these ROC

curves (AUC) are significantly different (P , .01).
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relatively high predictive power, while the power of age
and gender in survival analysis is more limited.

Discussion

Most previous studies on survival in GBM have focused
on whether one or more patient features are a significant
predictor of survival. Those studies, while undoubtedly
important, do not offer insight into the added value of
including additional covariates. Please note that even
though presenting hazard ratios in univariate or multi-
variate Cox models is suggestive of the importance of in-
dividual covariates, most often it is insufficient for
answering the question of whether adding a new set of
features will improve the prediction of survival because
such statistical analysis is simply not designed for that.
Furthermore, detecting small improvements in predictive

power of different sets of predictors is typically difficult
and requires a large sample size.

In this study, for the first time, we present statistical
evidence that imaging features improve the prediction
of survival in GBM patients over clinical features
alone. This has a potential of improving patient manage-
ment. Our ability to detect this difference with only a
moderate sample size (82 patients) was due to the high
magnitude of the difference (ie, the effect of interest
was very strong). Such a large improvement over the
clinical features is potentially the result of using con-
trolled imaging features (ie, VASARI). This hypothesis,
however, needs additional experiments.

The benefit of using a controlled set of imaging fea-
tures extends beyond the potential improvement in sur-
vival prediction. It also has a potential of reducing
inter- and intraobserver variability. Additionally, with
more controlled features, the results of different studies
using MRI descriptors in GBM could be much more

Fig. 2. Predictive power of individual features when predicting survival. The values of the bars are areas under the ROC curve where the

individual feature is the predictor of the survival class (1-y threshold).
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comparable to each other. This is very difficult in the
current state where the definitions of imaging features
are left to the interpretation of each individual reader.
A controlled lexicon will in turn facilitate the creation
of a more concrete body of knowledge regarding the re-
lation of imaging features with clinical, genomic, and
other features, rather than a set of loosely related hy-
potheses. A controlled lexicon can also improve the clin-
ical management of GBM patients through improved
interreader agreement and easier communication of
results among clinicians. The benefits of controlled lexi-
cons have been appreciated in breast imaging in the form
of the Breast Imaging-Reporting and Data System,
BI-RADS.21 While VASARI is only a very recent devel-
opment, it has the potential of providing similar benefits
to patient care and research.

There are some limitations of our study as well as
potential future investigation that should be discussed.
First, in this study we used the popular leave-one-out
cross-validation technique for model evaluation, which
generally provides an accurate estimate of model test
performance. However, an independent dataset would
be beneficial in order to further validate the hypothesis
of this study.

Furthermore, this study focuses on the added value
provided by presurgical imaging features when they are
combined with standard clinical features. Therefore, it
was important that our study includes 2 clinical features
that are commonly studied and accepted as good predic-
tors of survival: age and KPS. Gender was included
because it was available in the dataset and is also a po-
tentially useful feature. In the future, though, other less
commonly studied but potentially predictive features
could also be evaluated. Such features might include
neurologic signs and symptoms, especially seizure
history. Future studies could also include surgical fea-
tures such as the extent of tumor resection, which has
generally been shown to correlate with survival time. It
also remains to be seen whether some relatively easy to
obtain features might replace features more difficult to
assess (eg, extent of tumor resection could replace

some preoperative imaging features) and whether com-
bining all these features could result in an even better
survival model than the one presented in this paper.

Finally, due to the limited sample size available for
this study, we limited the hypotheses tested in this
paper to comparing the 2 multivariate Cox proportional
hazards regression models with the features selected in a
simple automatic feature selection step. To get some
insight into the importance of individual features, we
evaluated their predictive values, but no statistical anal-
ysis is presented for these additional exploratory results.
Other combinations of features (eg, combinations of
2 features) could potentially yield models with improved
predictive value or simplicity. However, a larger sample
size would be needed for such analysis due to the neces-
sity of repeated statistical tests (to statistically compare
different combinations). Such analysis could be part of
future work when more data of this type are available.
Following the acceptance of this manuscript, another
study10 was published using the VASARI feature set
with a subset of features. Our study is complementary
to10 in that our study focuses on cross validation-based
comparison of the predictive power of a model that uses
standard clinical variables and a model that uses both:
clinical and imaging variables. The other study10, in
addition to evaluating the association between some
VASARI features and survival also investigates the rela-
tionship between imaging and genomic features in GBM
patients.
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