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Abstract
Electronic medical record (EMR) systems have enabled healthcare providers to collect detailed
patient information from the primary care domain. At the same time, longitudinal data from EMRs
are increasingly combined with biorepositories to generate personalized clinical decision support
protocols. Emerging policies encourage investigators to disseminate such data in a deidentified
form for reuse and collaboration, but organizations are hesitant to do so because they fear such
actions will jeopardize patient privacy. In particular, there are concerns that residual demographic
and clinical features could be exploited for reidentification purposes. Various approaches have
been developed to anonymize clinical data, but they neglect temporal information and are, thus,
insufficient for emerging biomedical research paradigms. This paper proposes a novel approach to
share patient-specific longitudinal data that offers robust privacy guarantees, while preserving data
utility for many biomedical investigations. Our approach aggregates temporal and diagnostic
information using heuristics inspired from sequence alignment and clustering methods. We
demonstrate that the proposed approach can generate anonymized data that permit effective
biomedical analysis using several patient cohorts derived from the EMR system of the Vanderbilt
University Medical Center.

Index Terms
Anonymization; data privacy; electronic medical records (EMRs); longitudinal data

I. Introduction
Advances in health information technology have facilitated the collection of detailed,
patient-level clinical data to enable efficiency, effectiveness, and safety in healthcare
operations [1]. Such data are often stored in electronic medical record (EMR) systems [2],
[3] and are increasingly repurposed to support clinical research (see, e.g., [4]–[7]). Recently,
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EMRs have been combined with biorepositories to enable genome-wide association studies
(GWAS) with clinical phenomena in the hopes of tailoring healthcare to genetic variants [8].
To demonstrate feasibility, EMR-based GWAS have focused on static phenotypes; i.e.,
where a patient is designated as disease positive or negative (see, e.g., [9]–[11]). As these
studies mature, they will support personalized clinical decision support tools [12] and will
require longitudinal data to understand how treatment influences a phenotype [13], [14].

Meanwhile, there are challenges to conducting GWAS on a scale necessary to institute
changes in healthcare. First, to generate appropriate statistical power, scientists may require
access to populations larger than those available in local EMR systems [15]. Second, the
cost of a GWAS—incurred in the setup and application of software to process medical
records as well as in genome sequencing—is nontrivial [16]. Thus, it can be difficult for
scientists to generate novel, or validate published, associations. To mitigate this problem, the
U.S. National Institutes of Health (NIH) encourages investigators to share data from NIH-
supported GWAS [17] into the Database of Genotypes and Phenotypes (dbGaP) [18].

This, however, may lead to privacy breaches if patients’ clinical or genomic information is
associated with their identities. As a first line of defense against this threat, the NIH
recommends investigators deidentify data by removing an enumerated list of attributes that
could identify patients (e.g., personal names and residential addresses) prior to dbGaP
submission [19]. However, a patients’ DNA may still be reidentified via residual
demographics [20] and clinical information (e.g., standardized International Classification of
Diseases (ICD) codes) [21], as illustrated in the following example.

Example 1: Each record in Fig. 1(a) corresponds to a fictional deidentified patient and is
comprised of ICD codes, patient’s age when a code was received, and a DNA sequence. For
instance, the second record denotes that a patient was diagnosed with benign essential
hypertension (code 401.1) at ages 38 and 40 and has the DNA sequence GC … A. The
clinical and genomic data are derived from an EMR system and a research project beyond
primary care, respectively. Publishing the data of Fig. 1(a) could allow a hospital employee
with access to the EMR to associate Jane with her DNA sequence. This is because the
identified record, shown in Fig. 1(b), can only be linked to the second record in Fig. 1(a)
based on the ICD code 401.1 and ages 38 and 40.

Methods to mitigate reidentification via demographic and clinical features [22], [23] have
been proposed, but they are not applicable to the longitudinal scenario. These methods
assume the clinical profile is devoid of temporal or replicated diagnosis information.
Consequently, these methods produce data that are unlikely to permit meaningful
longitudinal investigations.

In this paper, we propose the first approach to formally anonymize longitudinal patient
records. Our work makes the following specific contributions.

1. We propose a framework to transform each longitudinal patient record into a form
that is indistinguishable from at least k – 1 other records. This is achieved by
iteratively clustering records and applying generalization, which replaces ICD
codes and age values with more general values, and suppression, which removes
ICD codes and age values. For example, applying our approach with k = 2 to the
data of Fig. 1(a) will generate the anonymized data of Fig. 1(c). Observe that Jane’s
record is now linked to two DNA sequences because the diagnosis code 401.1 in
the first pair of this record has been replaced by the more general code 401.

2. We evaluate our approach with several cohorts of patient records from the
Vanderbilt University Medical Center (VUMC) EMR system. Our results
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demonstrate that the anonymized data produced allow many studies focusing on
clinical case counts to be performed accurately.

The remainder of this paper is organized as follows. In Section II, we review related
research on anonymization and its application to biomedical data. In Section III, we
formalize the notions of privacy and utility and the anonymization problem addressed in this
paper. We present our anonymization framework and discuss its extensions and limitations
in Sections IV and VI, respectively. Finally, Section V reports the experimental results and
Section VII concludes the paper.

II. Related Research
Reidentification concerns for clinical data via seemingly innocuous attributes were first
raised in [24]. Specifically, it was shown that patients could be uniquely reidentified by
linking publicly available voter registration lists to hospital discharge summaries via
demographics, such as date of birth, gender, and five-digit residential zip code. The
reidentification phenomenon has since attracted interest in domains beyond healthcare, and
numerous techniques to guard against attacks have emerged (see [25] and [26] for surveys).
In this section, we survey research related to privacy-preserving data publishing, with a
focus on biomedical data. We note that the reidentification problem is not addressed by
access control and encryption-based methods [27]–[29] because data need to be shared
beyond a small number of authorized recipients.

A. Relational Data
We first review methods for preventing reidentification in relational data (e.g.,
demographics), where records have a fixed number of attributes and one value per attribute.

The first category of protection methods transforms attribute values so that they no longer
correspond to real individuals. Popular approaches in this category are noise addition, data
swapping, and synthetic data generation (see [30]–[32] for surveys). While such methods
generate data that preserve aggregate statistics (e.g., the average age), they do not guarantee
data that can be analyzed at the record level. This is a significant limitation that hampers the
ability to use these data in various biomedical studies, including epidemiological studies
[33] and GWAS [22].

In contrast, methods based on generalization and suppression preserve data truthfulness
[34]–[36]. Many of these methods are based on a principle called k-anonymity [24], [34],
which states that each record of the published data must be equivalent to at least k – 1 other
records with respect to quasi-identifiers (QI) (i.e., attributes that can be linked with external
resources for reidentification purposes) [37]. To enhance the utility of the anonymized data,
these methods employ various search strategies, including binary search [34], [35],
clustering [38], [39], evolutionary search [40], and partitioning [36]. There are methods that
have been successfully applied to biomedical data [35], [41].

B. Transactional Data
Next, we turn our attention to approaches that deal with more complex data. Specifically, we
consider transactional data, in which records have a large and variable number of values per
attribute (e.g., diagnosis codes assigned to a patient during a hospital visit). Transactional
data can also facilitate reidentification in the biomedical domain. For instance, deidentified
clinical records can be linked to patients based on combinations of diagnosis codes that are
additionally contained in publicly available hospital discharge summaries and EMR systems
from which the records have been derived [21]. As it was shown in [21], more than 96% of
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2700 patient records, collected in the context of a GWAS, would be susceptible to
reidentification based on diagnosis codes if shared without additional controls.

From the protection perspective, there are several approaches that have been developed to
anonymize transactional data. For instance, Terrovitis et al. [42] proposed km-anonymity, a
principle, and several heuristic algorithms to prevent attackers from linking an individual to
less than k records. This model assumes that the adversary knows at most m attribute values
of any transaction. To anonymize patient records in transactional form, Loukides et al. [22]
introduced a privacy principle to ensure that sets of potentially identifying diagnosis codes
are protected from reidentification, while remaining useful for GWAS validations. To
enforce this principle, they proposed an algorithm that employs generalization and
suppression to group semantically close diagnosis codes together in a way that enhances
data utility [22], [23]. Additionally, Tamersoy et al. [43] considered protecting data in which
a certain diagnosis code may occur multiple times in a patient record. They designed an
algorithm which preserves patients’ privacy through suppressing a subset of the replications
of a diagnosis code.

Our work differs from the aforementioned research along two principal dimensions. First,
we address reidentification in longitudinal data publishing. Second, contrary to the
approaches in [22] and [23] which group diagnosis codes together, our framework is based
on grouping of records, which has been shown to be highly effective in retaining data utility
due to the direct identification of records being anonymized [38], [39], [44].

C. Spatiotemporal Data
Spatiotemporal data are related to the problem studied in this paper. They are time and
location dependent, and these unique characteristics make them challenging to protect
against reidentification. Such data are typically produced as a result of queries issued by
mobile subscribers to location-based service providers, who, in turn, supply information
services based on specific physical locations.

The principle of k-anonymity has been extended to anonymize spatiotemporal data. Abul et
al. [45] proposed a technique to group at least k objects that correspond to different
subscribers and appear within a certain radius of the path of every object in the same time
period. In addition to generalization and suppression, Abul et al. [45] considered adding
noise to the original paths so that objects appear at the same time and spatial trajectory
volume. Assuming that the locations of subscribers constitute sensitive information,
Terrovitis and Mamoulis [46] proposed a suppression-based methodology to prevent
attackers from inferring these locations. Finally, Nergiz et al. [44] proposed an approach that
employs k-anonymity, enforced using generalization, together with reconstruction to protect
data against boundary-based attacks. Our heuristics are inspired from [44]; however, we
employ both generalization and suppression to further enhance data utility, and we do not
use reconstruction, so as to preserve data truthfulness.

The aforementioned approaches are developed for anonymizing spatiotemporal data and
cannot be applied to longitudinal data due to different semantics. Specifically, the data we
consider record patients’ diagnoses and not their locations. Consequently, the objective of
our approach is not to hide the locations of patients, but to prevent reidentification based on
their diagnosis and time information.

III. Background and Problem Formulation
This section begins with a high-level overview of the proposed approach. Next, we present
the notation and the definitions for the privacy and adversarial models, the data
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transformation strategies, and the information loss metrics. We conclude the section with a
formal problem description.

A. Architectural Overview
Fig. 2 provides an overview of the data anonymization process. The process is initiated
when the data owner supplies the following information: 1) a dataset of longitudinal patient
records, each of which consists of (ICD, Age) pairs and a DNA sequence, and 2) a
parameter k that expresses the desired level of privacy. Given this information, the process
invokes our anonymization framework. To satisfy the k-anonymity principle, our framework
forms clusters of at least k records of the original dataset, which are modified using
generalization and suppression.

B. Notation
A dataset D consists of longitudinal records of the form 〈T, DN AT〉, where T is a
trajectory1 and DN AT is a genomic sequence. Each trajectory corresponds to a distinct
patient in D and is a multiset2 of pairs (i.e., T = {t1,…, tm}) drawn from two attributes,
namely ICD and Age [i.e., ti = (u ∈ ICD, υ ∈ Age)], which contain the diagnosis codes
assigned to a patient and their age, respectively. |D| denotes the number of records in D and |
T| the length of T, defined as the number of pairs in T. We use the “.” operator to refer to a
specific attribute value in a pair (e.g., ti.icd or ti.age). To study the data temporally, we order
the pairs in T with respect to Age, such that ti − 1.age ≤ ti.age.

C. Adversarial Model
We assume that an adversary has access to the original dataset D, such as in Fig. 1(a). An
adversary may perform a reidentification attack in several ways.

1. Using identified EMR data: The adversary links D with the identified EMR data,
such as those of Fig. 1(b), based on (ICD, Age) pairs. This scenario requires the
adversary to have access to the identified EMR data, which is the case of an
employee of the institution from which the longitudinal data were derived.

2. Using publicly available hospital discharge summaries and identified resources:
The adversary first links D with hospital discharge summaries based on (ICD, Age)
pairs to associate patients with certain demographics. In turn, these demographics
are exploited in another linkage with public records, such as voter registration lists,
which contain identity information.

Note that in both cases, an adversary is able to link patients to their DNA sequences, which
suggests that a formal approach to longitudinal data anonymization is desirable.

D. Privacy Model
The formal definition of k-anonymity in the longitudinal data context is provided in
Definition 1. Since each trajectory often contains multiple (ICD, Age) pairs, it is difficult to
know which can be used by an adversary to perform reidentification attacks. Thus, we
consider the worst-case scenario in which any combination of (ICD, Age) pairs can be
exploited. Regardless, k-anonymity limits an adversary’s ability to perform reidentification
based on (ICD, Age) pairs, because each trajectory is associated with no less than k patients.

Definition 1 (k-Anonymity): An anonymized dataset D̃, produced from D, is k-anonymous if
each trajectory in D̃, projected over QI, appears at least k times for any QI in D.

1We use the term trajectory since the diagnosis codes at different ages can be seen as a route for the patient throughout his/her life.
2Contrary to a set, a multiset can contain an element more than once.
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E. Data Transformation Strategies
Generalization and suppression are typically guided by a domain generalization hierarchy
(DGH) (Definition 2) [47].

Definition 2 (DGH): A DGH for attribute  referred to as H , is a partially ordered tree
structure which defines valid mappings between specific and generalized values of  The
root of H  is the most generalized value of and is returned by a function root.

Example 2: Consider HAge in Fig. 3. The values in the domain of Age (i.e., 33, 34,…, 40)
form the leaves of HAge. These values are then mapped to two, to four, and eventually to
eight-year intervals. The root of HAge is returned by root(HAge) as [33 – 40].

Our approach does not impose any constraints on the structure of an attribute’s DGH, such
that the data owners have complete freedom in its design. For instance, for ICD codes, data
owners can use the standard ICD-9-CM hierarchy.3 For ages, data owners can use a
predefined hierarchy (e.g., the age hierarchy in the HIPAA Safe Harbor Policy4) or design a
DGH manually.5

According to Definition 3, each specific value of an attribute generalizes to its direct
ancestor in a DGH. However, a specific value can be projected up multiple levels in a DGH
via a sequence of generalizations. As a result, a generalized value i is interpreted as any
one of the leaf nodes in the subtree rooted by i in H .

Definition 3 (Generalization and Suppression): Given a node i ≠ root (H ) in H ,
generalization is performed using a function f: i → j which replaces i with its direct
ancestor j. Suppression is a special case of generalization and is performed using a
function g: i → r which replaces i with root(H ).

Example 3: Consider the last trajectory in Fig. 1(c). The first pair (401.1, [39 – 40]) is
interpreted as either (401.1,39) or (401.1,40).

F. Information Loss
Generalization and suppression incur information loss because values are replaced by more
general ones or eliminated. To capture the amount of information loss incurred by these
operations, we quantify the normalized loss for each ICD code and Age value in a pair based
on the Loss Metric (LM) (Definition 4) [40].

Definition 4 (LM): The information loss incurred by replacing a node i with its ancestor

j in H  is

(1)

where  and  denote the number of leaf nodes in the subtree rooted by i and j in
H , respectively, and |  denotes the domain size of attribute 

3More information is available at http://www.cdc.gov/nchs/icd.htm
4HIPAA Safe Harbor states all ages under 89 can be retained intact, while 90 or greater must be grouped together.
5We further note that our approach is extendible to other categorical attributes, such as SNOMED-CT and Date, provided that a DGH
can be specified for each of the attributes. Such extensions, however, are beyond the scope of this paper.
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Example 4: Consider HAge in Fig. 3. The information loss incurred by generalizing [33 – 34]

to [33 – 36] is  because the leaf-level descendants of [33 – 34] are 33 and 34,
those of [33 – 36] are 33, 34, 35, and 36, and the domain of Age consists of the values 33–
40.

To introduce the combined LM, which captures the total LM of replacing two nodes with
their ancestor, provided in Definition 6, we use the notation of lowest common ancestor
(LCA), provided in Definition 5.

Definition 5 (LCA): The LCA ℓ of nodes i and j in H  is the farthest node (in terms
of height) from root(H ) such that (1) i = ℓ or fn( i) = ℓ and (2) j = ℓ or fm ( j)
= ℓ, and is returned by a function lca.

Definition 6 (Combined LM): The combined LM of replacing nodes i and j with their
LCA ℓ is

(2)

Next, we define the LM for an anonymized trajectory (Definition 7) and dataset (Definition
8), which we keep separate for each attribute.

Definition 7 (LM for an Anonymized Trajectory): Given an anonymized trajectory T̃ and an
attribute  the LM with respect to is computed as

(3)

where  denotes the value t̃i. is replaced with.

Definition 8 (LM for an Anonymized Dataset): Given an anonymized dataset D̃ and an
attribute  the LM with respect to attribute is computed as

(4)

For clarity, we refer to an LM related to ICD and Age by ILM and ALM, respectively (e.g.,
we use ILM(D̃) instead of LM(D̃, ICD)).

G. Problem Statement
The longitudinal data anonymization problem is formally defined as follows.

Problem: Given a longitudinal dataset D, a privacy parameter k, and DGHs for attributes
ICD and Age, construct an anonymized dataset D̃, such that 1) D̃ is k-anonymous, 2) the
order of the pairs in each trajectory of D is preserved in D̃, and 3) ILM(D̃) + ALM(D̃) is
minimized.

IV. Anonymization Framework
In this section, we present our framework for longitudinal data anonymization.
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Many clustering algorithms can be applied to produce k-anonymous data [48], [49]. This
involves organizing records into clusters of size at least k, which are anonymized together.
In the context of longitudinal data, the challenge is to define a distance metric for
trajectories such that a clustering algorithm groups similar trajectories. We define the
distance between two trajectories as the cost (i.e., incurred information loss) of their
anonymization as defined by the LM. The problem then reduces to finding an anonymized
version T̃ of two given trajectories such that ILM(T̃) + ALM(T̃) is minimized.

Finding an anonymization of two trajectories can be achieved by finding a matching
between the pairs of trajectories that minimizes their cost of anonymization. This problem,
which is commonly referred to as sequence alignment, has been extensively studied in
various domains, notably for the alignment of DNA sequences to identify regions of
similarity in a way that the total pairwise edit distance between the sequences is minimized
[50], [51].

To solve the longitudinal data anonymization problem, we propose Longitudinal Data
Anonymizer, a framework that incorporates alignment and clustering as separate
components, as shown in Fig. 2. The objective of each component is summarized as follows.

Algorithm 1

Baseline(X, Y)

Require: Trajectories X = {x1, …, xm} and Y = {y1, …, yn},
  ILM(X) and ALM(X), DGHs HICD and HAge

Return: Anonymized trajectory T̃, ILM(T̃) and ALM(T̃)

1: T̃ ← Ø

2: i ← ILM(X); a ←- ALM(X)

3: s ← the length of the shorter of X and Y

4: for all j ∈ [1, s] do
  ▷Construct a pair containing the LCAs of xj and yj

5:   p ← (lca(xj.icd, yj.icd, HICD), lca(xj.age,yj.age, HAge))
  ▷Append the constructed pair to T̃

6:   T̃ ← T̃ ∪ p
  ▷Inf. loss incurred by generalizing xj with yj

7:   i ← i + ILM(xj + yj, p.icd)

8:   ← + ALM(xj + yj, p.age)

9: end for

10: Z ← the longer of X and Y

11: for all j ∈ [(s + 1), |Z|] do
  ▷Information loss incurred by suppressing zj

12:   i ← i + ILM(zj, root(HICD))

13:   a ← a + ALM(zj, root(HAge))

14: end for

15: return {T,̃ i, a}

1. Alignment attempts to find a minimal cost pair matching between two trajectories.

2. Clustering interacts with the Alignment component to create clusters of at least k
records.

Next, we examine each component in detail and develop methodologies to achieve their
objectives.
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A. Alignment
There are no directly comparable approaches to the method we developed in this study. So,
we introduce a simple heuristic, called Baseline, for comparison purposes. Given trajectories
X = {x1,…, xm} and Y = {y1,…, yn}, ILM(X) and ALM(X), and DGHs HICD and HAge,
Baseline aligns X and Y by matching their pairs on the same index.6

The pseudocode for Baseline is provided in Algorithm 1. This algorithm initializes an empty
trajectory T̃ to hold the output of the alignment and then assigns ILM(X) and ALM(X) to
variables i and a, respectively (steps 1 and 2). Then, it determines the length of the shorter
trajectory (step 3) and performs pair matching (steps 4–9). Specifically, for the pairs of the
trajectories that have the same index, Baseline constructs a pair containing the LCAs of the
ICD codes and Age values in these pairs (step 5), appends the constructed pair to T̃ (step 6),
and updates i and a with the information loss incurred by the generalizations (steps 7–8).
Next, Baseline updates i and a with the amount of information loss incurred by suppressing
the ICD codes and Age values from the unmatched pairs in the longer trajectory (steps 10–
14). Finally, this algorithm returns T ̃ along with i and a, which correspond to ILM(T̃) and
ALM(T̃), respectively (step 15).

To help preserve data utility, we provide Alignment using Generalization and Suppression
(A-GS), an algorithm that uses dynamic programming to construct an anonymized trajectory
that incurs minimal cost.

Before discussing A-GS, we briefly discuss the application of dynamic programming. The
latter technique can be used to solve problems based on combining the solutions to
subproblems which are not independent and share subsubproblems [52]. A dynamic
programming algorithm stores the solution of a sub-subproblem in a table to which it refers
every time the sub-subproblem is encountered. To give an example, for trajectories X = {x1,
…, xm} and Y = {y1,…, yn}, a subproblem may be to find a minimal cost pair matching
between the first to the jth pairs. A solution to this subproblem can be determined using
solutions for the following subsubproblems and applying the respective operations:

1. Align X = {x1,…, xj−1} and Y = {y1,…, yj−1}, and generalize xj with yj;

2. Align X = {x1,…, xj−1} and Y = {y1,…,yj}, and suppress xj;

3. Align X = {x1,…, xj} and Y = {y1,…, yj−1}, and suppress yj.

Each case is associated with a cost. Our objective is to find an anonymized trajectory T̃,
such that ILM(T̃) + ALM(T̃) is minimized, so we examine each possible solution and select
the one with minimum information loss.

A-GS uses a similar approach to align trajectories. The algorithm accepts the same inputs as
Baseline as well as weights wICD and wAge. The latter allow A-GS to control the
information loss incurred by anonymizing the values of each attribute. The data owners
specify the attribute weights such that wICD ≥ 0, wAge ≥ 0, and wICD + wAge = 1. The
pseudocode for A-GS is provided in Algorithm 2.

In step 1, A-GS initializes three matrices: i, a, and r. The first row (indexed 0) of each of
these matrices corresponds to a null value, and starting from index 1, each row corresponds
to a value in X. Similarly, the first column (indexed 0) of each of these matrices corresponds
to a null value, and starting from index 1, each column corresponds to a value in Y.
Specifically, for indices h and j, rh,j records which of the following operations incurs
minimum information loss: 1) generalizing xh and yj (denoted with <↖>), 2) suppressing xh

6ILM(X) and ALM(X) are provided as input because X may already be an anonymized version of two other trajectories.
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(denoted with <↑>), and 3) suppressing yj (denoted with <←>). The entries in ih,j and ah,j
keep the total ILM and ALM for aligning the subtrajectories Xsub = {x1,…, xh} and Ysub =
{y1,…, yj}, respectively.

In step 2, A-GS assigns ILM(X) and ALM(X) to i0,0 and a0,0, respectively. We include null
values in the rows and columns of i, a, and r because at some point during alignment A-GS
may need to suppress some portion of the trajectories. Therefore, in steps 3–7 and 8–12, A-
GS initializes i, a, and r for the values in X and Y, respectively. Specifically, for indices h
and j, ih,0 and i0,j keep the ILM for suppressing every pair in the subtrajectories Xsub = {x1,
…, xh} and Ysub = {y1,…,yj}, respectively. Similar reasoning applies to matrix a. The first
row and column of r holds <↑> and <←> for suppressing values from X and Y, respectively.

Algorithm 2

A-GS(X, ILM(X), ALM(X), Y)

Require: Trajectories X = {x1,…,xm} and Y = {y1,…, yn},
  ILM(X) and ALM(X), DGHs HICD and HAge, weights
  wICD and wAge

Return: Anonymized trajectory T̃, ILM(T̃) and ALM(T̃)

1: {i, a, r} ← generate (m + 1) × (n + 1) matrices

2: i0,0 ← ILM(X); a0,0 ← ALM(X)
▷Initialize i, a and r with respect to X

3: for all h ∈ [1, m] do

4:   ih,0 ← ih−1,0 + ILM(xh, root(HICD)) × wICD

5:   ah,0 ← ah−1,0 + ALM(xh, root(HAge)) × wAge

6:   rh,0← <↑>

7: end for
▷Initialize i, a and r with respect to Y

8: for all j ∈ [1, n] do

9:   i0,j ← i0,j−1 + ILM(yj, root(HICD)) × wICD

10:   a0,j ← a0,j−1 + ALM(yj, root(HAge)) × wAge

11:   r0,j ← <←>

12: end for

13: for all h ∈ [l, m] do

14:   for all j ∈ [1, n] do

15:     {c, g} ← generate arrays with indices <↖>, <←>, <↑>
  ▷Compute the ILM for the possible solutions

16:     c<↖> ← ih−1,j−1 + ILM(xh + yj, lca(xh.icd,yj.icd
      HICD)) × wICD

17:     c<←> ← ih, j−1 + ILM(yj, root(HICD)) × wICD

18:     c<↑> ← ih−1,j + ILM(xh, root(HICD)) × wICD
  ▷Compute the ALM for the possible solutions

19:     g <↖> ← ah−1, j−1 + ALM(xh + yj, lca(xh.age, yj.age
      HAge)) × wAge

20:     g<←> ← ah,j−1 + ALM(yj, root(HAge)) × wAge

21:     g<↑> ← ah−1,j + ALM(xh, root(HAge)) × wAge
  ▷Solution with the minimum overall LM

22:     w ← argminu∈{<↖>,<←>,<↑>} {cu + gu}

23:     ih,j ← cw; ah,j ← gw; ← w

24:   end for
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25: end for

26: T̃ ← Ø

27: h ← m; j ← n
▷Construct the anonymized trajectory T̃

28: while h ≥ 1 or j ≥ 1 do

29:   if rh,j = <↖> then

30:   p ← (lca(xh.icd,yj.icd,HICD), lca(xh.age,yj.age,HAge))

31:   T̃ ← T̃ ∪ p

32:   h ← h − 1; j ← j – 1

33:   end if

34:   ifrh,j = <←> then j ← j – 1 end if

35:   if rh,j = <↑> then h ← h – 1 end if

36: end while

37: return {T,̃ im,n, am,n}

In steps 13–25, A-GS performs dynamic programming. Specifically, for indices h and j, A-
GS determines a minimal cost pair matching of the subtrajectories Xsub = {x1,…, xh} and
Ysub = {y1,…, yj} based on the three cases listed previously. Specifically, in steps 15–21, A-
GS constructs two temporary arrays, c and g, to store the ILM and ALM for each possible
solution, respectively. Next, in steps 22 and 23, A-GS determines the solution with the
minimum information loss and assigns the ILM, ALM, and operation associated with the
solution to ih,j, ah,j, and rh,j, respectively. If there is a tie between the solutions, A-GS selects
generalization as the operation for the sake of retaining more information.

In steps 26–36, A-GS constructs the anonymized trajectory T̃ by traversing the matrix r.
Specifically, for two pairs in the trajectories, if generalization incurs minimum information
loss, A-GS appends to T̃ a pair containing the LCAs of the ICD codes and Age values in
these pairs. The unmatched pairs in the trajectories are ignored during this process because
A-GS suppresses these pairs. Finally, in step 37, Baseline returns T̃ along with im,n and am,n,
which correspond to ILM(T ̃) and ALM(T ̃), respectively.

Example 5: Consider applying A-GS to T1 and T4 in Fig. 1(a) using the DGHs shown in
Figs. 3 and 4 and assuming that wICD = wAge = 0.5. The matrices i, a, and r are illustrated in
Fig. 5. As T1 and T4 are not anonymized, we initialize i0,0 = a0,0 = 0. Subsequently, A-GS
computes the values for the entries in the first row and column of the matrices. For instance,
i0,3 keeps the ILM for suppressing all ICD codes from T1 and has a value of 1 + (1 * 0.5) =
1.5. This is computed by summing the ILM for suppressing the first two ICD codes (i.e., the
value stored in i0,2) with the weight-adjusted ILM for suppressing the third ICD code. Then,
A-GS performs dynamic programming. The process starts with aligning T1,sub = {(401.1,
33)} and T4,sub = {(401.9, 33)}. The possible solutions for this sub-problem are as follows.

1. Align T1,sub = {Ø} and T4,sub = {Ø}, and generalize 401.1 with 401.9 and 33 with
33.

2. Align T1,sub = {(401.1,33)} and T4,sub = {Ø}, and suppress 401.9 and 33.

3. Align T1,sub = {Ø} and T4,sub = {(401.9, 33)}, and suppress 401.1 and 33.
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Algorithm 3

MDAV′(D)

Require: Original dataset D, privacy parameter k, weights wICD
  and wAge

Return: Anonymized dataset D̃, ILM(D̃) and ALM(D̃)

1: D ̃← Ø; ĩ ← 0; ã ← 0; p ← ∑T∈D |T|

2: while |D| ≥ 3* k do

3:   F ← the most frequent trajectory in D
 ▷Find the most distant trajectory to F

4:   X ← argmaxT∈D{(i + a)|i, a ∈ A-GS(F, 0, 0, T)}

5:   {C, i′, a′} ← formCluster(X, k)

6:   D ̃← D̃ ∪ C; ĩ ← ĩ + i′; ã ← ã + a′

7:   Y ← argmaxT∈D{(i + a)|i, a ∈ A-GS(X, 0, 0, T)}

8:   {C, i′, a′} ← formCluster(Y, k)

9:   D ̃← D̃ ∪ C; ĩ ← ĩ + i′; ã ← ã + a′

10: end while

11: while |D| ≥ 2 * k do

12:   F ← the most frequent trajectory in D

13:   X ← argmaxT∈D{(i + a)|i, a ∈ A-GS(F, 0,0, T)}

14:   {C, i′, a′} ← formCluster(X, k)

15:   D ̃← D̃ ∪ C; ĩ ← ĩ + i′; ã ← ã + a′

16: end while

17: R ← select a trajectory from D uniformly at random

18: {C, i′, a′} ← formCluster(R, |D|)

19: D ̃← D̃ ∪ C; ĩ ← ĩ + i′; ã ← ã + a′

20: return {D̃, ĩ/(p * wICD), ã/(p*wAge)}

The ILM and ALM for the subsubproblem in the first solution are stored in i0,0 and a0,0,
respectively. Generalizing 401.1 with 401.9 has an ILM of (1 + 1) * 0.5 = 1, and
generalizing 33 with 33 has an ALM of 0. Therefore, the first solution has a total LM of 1.
The ILM and ALM for the subsubproblem in the second solution are stored in i0,1 and a0,1 ,
respectively. The suppression of 401.9 and 33 has an ILM and ALM of 1 * 0.5 = 0.5. It can
be seen that the second and third solutions each have a total LM of 2. The solution with the
minimum information loss is the first one; hence, A-GS stores 1, 0 and <↖> in i1,1, a1,1 and
r1,1, respectively. After the values for the remaining entries are computed, A-GS uses r to
construct the anonymized trajectory T̃. The process starts with examining the bottom-right
entry, which denotes a generalization. As a result, A-GS appends (401.1, 35) to T̃. The
process continues by following the symbols, such that A-GS returns T̃ = {(401.1, 33),
(401.1, 34), (401.1, 35)} along with i4,3 and a4,3, which correspond to ILM(T̃) and ALM(T̃),
respectively.

B. Clustering
We base our methodology for the clustering component on the maximum distance to
average vector (MDAV) algorithm [53], [54], an efficient heuristic for k-anonymity. The
pseudocode for MDAV′7 and its helper function, formCluster, are provided in Algorithms 3
and 4, respectively. MDAV′ iteratively selects the most frequent trajectory in a longitudinal
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dataset (steps 3 and 12), finds its most distant trajectory X (steps 4 and 13), and forms a
cluster of k trajectories around the latter trajectory (steps 5 and 6 and 14 and 15). Cluster
formation is performed by formCluster, a function that constructs a cluster C by aligning n
trajectories in a consecutive manner and returns C, along with ILM(C) and ALM(C) which
are the ILM and ALM for the anonymized trajectory resulting from the alignment,
respectively. MDAV′ minimizes intercluster similarity by constructing a cluster around a
trajectory Y that is most distant to X (steps 7–9). We define the distance between two
trajectories as the cost of their anonymization. As such, the most distant trajectory is the one
that maximizes the sum of ILM and ALM returned from A-GS.

Algorithm 4

formCluster(W, n)

Require: Original dataset D, trajectory W, integer n specifying the
  number of trajectories to be included in the cluster

Return: Cluster C, ILM(C) and ALM(C)

1: D ← D \ {W}; W̃ ← W; i′ ← 0; a′ ← 0

2: for all j ∈ [1, (n − 1)] do

3:   Z ← argminT∈D {(i + a)|i, a ∈ A-GS(W̃, i′, a′, T)}
  ▷Align W̃ with Z, the closest trajectory to W̃

4:   {T̃, i, a} ← A-GS(W ̃, i′, a′, Z)

5:   D ← D \ {Z}; W ̃← T; i′ ← i; a′ ← a

6: end for
▷Form a cluster of anonymized trajectories

7: C ← the set containing n copies of W̃

8: return {C, i′, a′}

A similar reasoning applies when we form a cluster. We add the trajectory that minimizes
the sum of ILM and ALM returned from A-GS. MDAV′ forms a final cluster of size at least
k using the remaining trajectories in the dataset (steps 17–19) and returns D̃, a k-anonymized
version of the longitudinal dataset, along with ILM(D̃) and ALM(D̃) (step 20).

V. Experimental Evaluation
This section presents an experimental evaluation of the anonymization framework. We
compare the anonymization methods on data utility, as indicated by the LM measure (see
Section V-B) and aggregate query answering accuracy (see Section V-C). Furthermore, we
show that our method allows balancing the level of information loss incurred by
anonymizing ICD codes and Age values (see Section V-D). This is important to support
different types of biomedical studies, such as geriatric and epidemiology studies that are
supported “well” when the information contained in Age and ICD attributes, respectively, is
preserved in the anonymized data.

A. Experimental Setup
We worked with three datasets derived from the Synthetic Derivative (SD), a collection of
deidentified information extracted from the EMR system of the VUMC [55]. We issued a
query to retrieve the records of patients whose DNA samples were genotyped and stored in
BioVU, VUMC’s DNA repository linked to the SD. Then, using the phenotype specification
in [56], we identified the patients eligible to participate in a GWAS on native electrical

7We refer to our algorithm as MDAV′ to avoid confusion.
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conduction within the ventricles of the heart. Subsequently, we created a dataset called 
by restricting our query to the 50 most frequent ICD codes that occur in at least 5% of the

records in BioVU. Next, we created a dataset called , which is a subset of ,
containing the following comorbid ICD codes selected for [43]: 250 (diabetes mellitus), 272
(disorders of lipoid metabolism), 401 (essential hypertension), and 724 (other and

unspecified disorders of the back). Finally, we created a dataset called , which is a

subset of , containing the records of patients who actually participated in the

aforementioned GWAS [57].  is expected to be deposited into the dbGaP repository
and has been used in [43] with no temporal information. The characteristics of our datasets
are summarized in Table I.

Throughout our experiments, we varied k between 2 and 15, noting that k = 5 tends to be
applied in practice [41]. Initially, we set wICD = wAge = 0.5. We implemented all algorithms
in Java and conducted our experiments on an Intel 2.8 GHz powered system with 4-GB
RAM.

B. Capturing Data Utility Using LM
We first compared the algorithms with respect to the LM.

Fig. 6 depicts the results with . The ILM and ALM increase with k for both algorithms,
which is expected because as k increases, a larger amount of distortion is needed to satisfy a
stricter privacy requirement. Note that Baseline incurred substantially more information loss
than A-GS for all k. In fact, Baseline failed to construct a practically useful result when k >
2, as it suppressed all values from the dataset. Similar trends were observed between A-GS

and Baseline for  and  (omitted for brevity).

Interestingly, A-GS, on average, incurred 48% less information loss on  than .
This is important because a relatively small number of ICD codes may suffice to study a
range of different diseases [11], [43]. It is also worthwhile to note that the information loss

incurred by our approach remains relatively low (i.e., below 0.5) for , even though it is,

on average, 55% more than that for . This is attributed to the fact that  is more

sparse than , which implies it is more difficult to anonymize [58]. The ILM and ALM
for different k values and datasets, which correspond to the aforementioned results, can be
found in Appendix A.

C. Capturing Data Utility Using Average Relative Error
We next analyzed the effectiveness of our approach for supporting general biomedical
analysis. We assumed a scenario in which a scientist issues queries on anonymized data to
retrieve the number of trajectories that harbor a combination of (ICD, Age) pairs that appear
in at least 1% of the original trajectories. Such queries are typical in many biomedical data
mining applications [59]. To quantify the accuracy of answering such a workload of queries,
we used the Average Relative Error (AvgRE) measure [36], which reflects the average
number of trajectories that are incorrectly included as part of the query answers. Details
about this measure are in Appendix B.

Fig. 7 shows the AvgRE scores of running A-GS on the datasets. The results for Baseline
are not reported because they were more than 6 times worse than our approach for k = 2, and
the worst possible for k > 2. This is because Baseline suppressed all values. As expected, we
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find an increase in AvgRE scores as k increases, which is due to the privacy/utility tradeoff.
Nonetheless, A-GS allows fairly accurate query answering on each dataset by having an
AvgRE score of less than 1 for all k. The results suggest our approach can be effective, even
when a high level of privacy is required. Furthermore, we observe that the AvgRE scores for

 are lower than those of , which are in turn lower than those of . This implies
that query answers are more accurate for small domain sizes and large datasets.

D. Prioritizing Attributes
Finally, we investigated how configurations of attribute weighting affect information loss.

Fig. 8 reports the results for  and k = 2 when our algorithm is configured with weights
ranging from 0.1 to 0.9. Observe that when wICD = 0.1 and wAge = 0.9, A-GS distorted Age
values much less than ICD values. Similarly, A-GS incurred less information loss for ICD
than Age when we specified wICD = 0.9 and wAge = 0.1. This result implies that data
managers can use weights to achieve desired utility for either attribute.

VI. Discussion
In this section, we discuss how our approach can be extended to prevent a privacy threat in
addition to reidentification and its limitations.

A. Attacks Beyond Reidentification
Beyond reidentification is the threat of sensitive itemset disclosure, in which a patient is
associated with a set of diagnosis codes that reveal some sensitive information (e.g., HIV
status). k-Anonymity does not guarantee prevention of sensitive itemset disclosure, since a
large number of records that are indistinguishable with respect to the potentially identifying
diagnosis codes can still contain the same sensitive itemset [59]. We note that our approach
can be extended to prevent this attack by controlling generalization and suppression to
ensure that an additional principle is satisfied, such as ℓ-diversity [60], which dictates how
sensitive information is grouped. This extension, however, is beyond the scope of this paper.

B. Limitations
The proposed approach is limited in certain aspects, which we highlight to suggest
opportunities for further research. First, our algorithm induces minimal distortion to the data
in practice, but it does not limit the amount of information loss incurred by generalization
and suppression. Designing algorithms that provide this type of guarantee is important to
enhance the quality of anonymized GWAS-related datasets, but is also computationally
challenging due to the large search spaces involved, particularly for longitudinal data.
Second, the approach we propose does not guarantee that the released data remain useful for
scenarios in which prespecified analytic tasks, such as the validation of known GWAS [22],
are known to data owners a priori. To address such scenarios, we plan to design algorithms
that take the tasks for which data are anonymized into account during anonymization.

VII. Conclusion and Future Work
This study was motivated by the growing need to disseminate patient-specific longitudinal
data in a privacy-preserving manner. To the best of our knowledge, we introduced the first
approach to sharing such data while providing computational privacy guarantees. Our
approach uses sequence alignment and clustering-based heuristics to anonymize longitudinal
patient records. Our investigations suggest that it can generate longitudinal data with a low
level of information loss and remain useful for biomedical analysis. This was illustrated
through extensive experiments with data derived from the EMRs of thousands of patients.
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The approach is not guided by specific utility (e.g., satisfaction of GWAS validation), but
we are confident it can be extended to support such endeavors.
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Appendix A

Information Loss Incurred by Anonymizing the Datasets Using A-GS

ILM ALM ILM ALM ILM ALM

k = 2 0.33 0.21 0.11 0.10 0.17 0.16

k = 5 0.54 0.35 0.21 0.22 0.33 0.34

k = 10 0.62 0.40 0.25 0.30 0.40 0.46

k = 15 0.64 0.42 0.28 0.34 0.44 0.51

Appendix B

Measuring Data Utility Using Query Workloads
The AvgRE measure captures the accuracy of answering queries on an anonymized dataset.
The queries we consider can be modeled as follows:

Q: SELECT COUNT(*)
FROM dataset
WHERE (u ∈ ICD, v ∈ Age) ∈ dataset, …

Let Q) be the answer of a COUNT() query Q when it is issued on the original dataset. The
value of Q) can be easily obtained by counting the number of trajectories in the original
dataset that contain the (ICD, Age) pairs in Q.

Let e(Q) be the answer of Q when it is issued on the anonymized dataset. This is an estimate
because a generalized value is interpreted as any leaf node in the subtree rooted by that
value in the DGH. Therefore, an anonymized pair may correspond to any pair of possible
ICD codes and Age values, assuming each pair is equally likely. The value of e(Q) can be
obtained by computing the probability that a trajectory in the anonymized dataset satisfies
Q, and then summing these probabilities across all trajectories.

To illustrate how an estimate can be computed, assume that a data recipient issues a query
for the number of patients diagnosed with ICD code 401.1 at age 39 using the anonymized
dataset in Fig. 1(c). Referring to the DGHs in Figs. 3 and 4, it can be seen that the only
trajectories that may contain (401.1, 39) are the last two since they contain the generalized
pair (401.1, [39 – 40]). Furthermore, observe that 401.1 is a leaf node in Fig. 4; hence, the
set of possible ICD codes is {401.1}. Similarly, the subtree rooted by [39 – 40] in Fig. 3
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consists of two leaf nodes, hence the set of possible Age values is {39,40}. Therefore, there
are two possible pairs: {(401.1, 39), (401.1,40)}, and the probability that one of the

trajectories was originally harboring (401.1, 39) is . Then, an approximate answer for the

query is computed as .

The Relative Error (RE) for an arbitrary query Q is computed as RE(Q) = |a(Q)−e(Q)|/a(Q).
For instance, the RE for the previous example query is |1 − 1|/1 = 0 since the original dataset
in Fig. 1(a) contains one trajectory with (401.1, 39).

The AvgRE for a workload of queries is the mean RE of all issued queries. It reflects the
mean error in answering the query workload.
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Fig. 1.
Longitudinal data privacy problem. (a) Longitudinal research data. (b) Identified EMR. (c)
2-anonymization based on the proposed approach.
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Fig. 2.
General architecture of the longitudinal data anonymization process.
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Fig. 3.
Example of the DGH structure for Age.

Tamersoy et al. Page 23

IEEE Trans Inf Technol Biomed. Author manuscript; available in PMC 2013 September 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 4.
Example of the hypertension subtree in the ICD DGH.
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Fig. 5.
Matrices i, a, and r for the subset of records from Fig. 1. This alignment uses the DGHs in
Figs. 3 and 4 and assumes that wICD = wAge = 0.5.
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Fig. 6.

Comparison of information loss for  using various k values.
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Fig. 7.

Comparison of query answering accuracy for , and  using various k values.
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Fig. 8.

A comparison of information loss for  using various wICD and wAge values.
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