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Abstract
Cerebral amyloid angiopathy (CAA) is pathologically defined as the deposition of amyloid
protein, most commonly the amyloid β peptide (Aβ), primarily within the media and adventitia of
small and medium-sized arteries of the leptomeninges, cerebral and cerebellar cortex. This
deposition likely reflects an imbalance between Aβ production and clearance within the brain and
leads to weakening of the overall structure of brain small vessels, predisposing patients tolobar
intracerebral haemorrhage (ICH), brain ischaemia and cognitive decline. CAA is associated with
markers of small vessel disease, like lobar microbleeds and white matter hyperintensities on
magnetic resonance imaging. Therefore, it can be now be diagnosed during life with reasonable
accuracy by clinical and neuroimaging criteria. Despite the lack of a specific treatment for this
condition, the detection of CAA may help in the management of patients, regarding the prevention
of major haemorrhagic complications and genetic counselling. This review discusses recent
advances in our understanding of the pathophysiology, detection and management of CAA.
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Cerebral amyloid angiopathy (CAA) is a disorder of the central nervous system
characterised by the deposition of amyloid proteins in the wall of small- to medium-sized
vessels, most frequently arteries, within the leptomeninges and cortex of the brain.1 In
vessels affected by CAA, local muscle and elastic elements of the arterial wall are lost and
replaced by amyloid fibrils, primarily the amyloid-β (Aβ) peptide. Since the first description
of neurovascular amyloid deposition in 1909 by Gustav Oppenheim, sound scientific
evidence has supported the concept that the associated disruption of the overall structure of
those small vessels predisposes to both ischaemic small vessel disease and cerebral
haemorrhage.2–4
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Sporadic CAA is a major cause of lobar intracerebral haemorrhage (ICH) and cognitive
decline in the elderly, including the normotensive population.5,6 Hereditary forms of CAA
are generally rare, usually more severe and earlier in onset. Rare non-Aβ familial CAAs can
also present clinically with lobar ICH.7 Regarding sporadic CAA, two major challenges
persist:

• a definitive diagnosis requires a neuropathological exam; and8

• no treatment or preventive strategy for CAA or CAA-ICH has been firmly
established.

Nevertheless, in the last decades of research, there has been remarkable progress in our
understanding of this condition. CAA pathology has been associated with markers of small
vessel disease, including lobar cerebral microbleeds (CMB) and white matter
hyperintensities on magnetic resonance imaging (MRI).9–11 The availability of MRI
sequences that are particularly sensitive to susceptibility effects like the T2* gradient-
recalled echo (GRE) and susceptibility weighted imaging (SWI) now allow reliable
assessment of an individual’s haemorrhagic burden over time and reasonable accuracy by
clinical and neuroimaging diagnostic criteria.10–13 As our understanding of CAA
pathophysiology evolves, specific targets have been identified as candidates for the
prevention and treatment of this condition.14 As new research tools such as the Pittsburgh
Compound B (PiB) or other amyloid-imaging agents for positron emission tomography
(PET) scan become incorporated into clinical practice, it may also be possible to detect
vascular amyloid deposition in the brain noninvasively in living patients, perhaps before an
ICH or significant cognitive decline.15

This article focuses on our current understanding of the pathophysiology of sporadic CAA,
the new imaging modalities and laboratory biomarkers that may aid in its detection and the
currently available evidence that could guide the management of patients with this
condition.

Pathophysiology and Genetics of Sporadic Cerebral Amyloid Angiopathy
Sporadic CAA is the most frequent form of the disease, mostly occurring in the elderly and
defined by the accumulation of Aβ in the vessel walls of capillaries, arterioles and small and
medium-sized arteries of the cerebral cortex, leptomeninges, and cerebellum. Sporadic CAA
is not associated with other systemic, primary or secondary, amyloidosis.

The Aβ peptide is the normal proteolytic product of the integral membrane protein Aβ
precursor protein (APP), encoded by the APP gene on chromosome 21.16–19 Aβ occurs as 40
or 42 amino acid species (Aβ40, Aβ42) and its generation from APP requires two enzymatic
events: a proteolytic cleavage at the amino terminus of the Aβ sequence by β-secretase; and
a cleavage at the carboxyl terminus by γ-secretase.16–19 Via mechanisms that remain still
unknown, soluble Aβ forms undergo a change in conformation, resulting in a predominantly
β-sheet structure, highly prone to oligomerisation, fibrillisation and deposition. These
deposits can trigger a secondary cascade of events that include release of inflammatory
components, activation of the complement system, oxidative stress, alteration of the blood–
brain barrier (BBB) permeability and cell toxicity.20–22

Aβ in CAA is structurally similar to the peptide that constitutes senile plaques in
Alzheimer’s disease (AD). In contrast to Alzheimer plaques, however, a substantial
proportion of vascular deposits in CAA is of the shorter Aβ40 species.20 Increases in the
Aβ40/42 ratio appears to favour vascular over parenchymal amyloid deposition.22 The
cascade of events that promotes cerebrovascular Aβ accumulation is still not fully
understood but an imbalance between Aβ production and clearance is likely to play a key
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role.22 Deposited Aβ appears to derive from neurons although circulating Aβ may play a
seeding function for brain deposition, since intraperitoneal inoculation with Aβ-rich extracts
can induce CAA in transgenic mice over expressing APP.22–25 Recent data from animal
models indicate that ischaemic strokes may trigger accelerated amyloid build-up, most likely
through interference with clearance pathways.26

The mechanism of blood vessel rupture in CAA is still under debate. Amyloid deposition
has been associated with reduced vascular compliance, cracking and weakening of the vessel
wall that predispose to vascular rupture and subsequent extravasation of blood to brain
parenchyma.27,28 The reason why some vessel ruptures lead to major lobar haemorrhage in
CAA patients while others lead to microhaemorrhage may be related to differences in
thickness of small vessel walls. Apparently, CAA patients with thicker vessel walls have
more CMB and those with thinner walls are more prone to develop symptomatic lobar
ICH.29

Pathology of Cerebral Amyloid Angiopathy
Pathological studies of CAA show that Aβ vascular deposits infiltrate the media and
adventitia of the microvasculature, resulting in loss of smooth muscle cells with replacement
of the vascular media and acellular thickening of the vessel wall.30,31 Advanced CAA is
characterised by severe disruption of the vascular architecture, that includes the distinctive
‘vessel-within-vessel’ appearance, microaneurysm formation, fibrinoid necrosis, hyaline
degeneration, obliterative intimal changes and perivascular leakage of blood products.30–32

CAA distribution is characteristically patchy and segmental, involving predominantly the
lobar areas.8 For unknown reasons, CAA is most frequent in the occipital lobes. This
contrasts with hypertensive arteriopathy, which is characterised by lipohyalinosis and
fibrinoid necrosis of small deep perforating arteries and therefore typically affects deep
brain structures including the basal ganglia, brain stem and thalamus.33 Nevertheless, since
over 30 % of patients with CAA-related ICH have documented arterial hypertension (HTN),
some patients exhibit both hypertensive and CAA microvascular alterations.3

CAA pathology is common in the elderly, with a prevalence from 10–50 % of the general
elderly population, in autopsy series.34,35 Some CAA pathology is also present in nearly all
brains with AD and advanced CAA is present in approximately 25 % of AD brains.35,36

However, fewer than 50 % of CAA cases meet the pathological criteria for AD.3

Genetics of Sporadic Cerebral Amyloid Angiopathy
The apolipoprotein E (APOE) ε4 and ε2 alleles are genetic risk factors associated with risk
of developing sporadic CAA-related ICH.37,38 APOE ε2 exerts a protective effect on AD
risk but increases risk of ICH in CAA patients.39,40 The ε2 allele is predominantly
associated with vasculopathic changes that predispose to rupture of the diseased vessels,
whereas ε4 is related to the severity of amyloid deposition within the vessel wall.41,42

Interestingly, recent studies have found that possession of APOE ε2 predisposes individuals
with lobar ICH to haematoma expansion.43,44 This effect was more pronounced in patients
with amyloid angiopathy-related ICH, consistent with the ε2 allele’s role in vascular
amyloid deposition and vessel fragility. More recently, the CR1 gene has also been linked to
risk of CAA-related ICH, recurrent CAA and CAA pathology burden.45

Detection of Cerebral Amyloid Angiopathy
Approximately 50 % of patients over 80 years of age display some pathological evidence of
CAA, mostly without clinical symptoms. Among individuals with more advanced CAA, the
clinical presentation can vary from incidental asymptomatic microbleeds on MRI to

Pontes-Neto et al. Page 3

Eur Neurol Rev. Author manuscript; available in PMC 2013 September 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



catastrophic lobar ICH. Dementia, cognitive impairment and transient neurological
symptoms or signs are also increasingly recognised.46

Primary lobar ICH is the most common clinical presentation leading to the diagnosis of
CAA. HTN and CAA are responsible for most primary ICHs in the elderly. The clinical
manifestations of CAA-related ICH are similar to other types of ICH. The signs and
symptoms depend on the size and location of the bleed and may include headache, focal
neurological deficits, seizures and altered level of consciousness.45

In a retrospective analysis of consecutive patients with non-traumatic SAH, CAA was found
to be a common cause of SAH in the elderly and clinically presents with single or recurrent
focal transient neurological events of short duration.47 CAA has also been recognised as a
probable cause of ischaemic small vessel disease.48,49 Indeed, amyloid deposits can narrow
the vessel lumen, impair cerebral blood flow regulation, cause alterations in endothelial
structure and function and influence vessel dilation in response to physiologic stimuli.50–52

Progression of CAA ischaemic burden may lead to cognitive decline and ultimately to
vascular dementia.53

A subset of patients with CAA-related inflammation may present with subacute cognitive
decline, seizures and diffuse radiographic white matter abnormalities attributed to vasogenic
oedema.54,55 The APOE ε4/ε4 genotype has been associated with CAA-related
inflammation and evidence of CAA-related vasculitis or perivascular inflammation on
pathologic examination.56

Histological Diagnosis
Definitive diagnosis of CAA requires histopathological exam. Congo red staining for
amyloid under light microscopy (see Figure 1A) has been the classical method for amyloid
staining, although its sensitivity is relatively low.57 Immunohistochemistry with fluorescent
antibodies specific for Aβ (see Figure 1B) is increasingly used to identify amyloid
accumulation in the brain.

Neuroimaging
MRI sequences that are particularly sensitive to susceptibility effects like GRE and SWI can
identify not only major bleeding in the brain but also CMBs, which may not be visible on
other imaging modalities (see Figure 2).12,58 CMBs have hypointense signal on GRE
sequences due to haemosiderin, a blood breakdown product that causes magnetic
susceptibility-induced dephasing, leading to T2* signal loss. The appearance of microbleeds
on GRE sequences is larger than the actual tissue lesions because of the so-called blooming
effect of the magnetic resonance signal at the border of these lesions.12,57,58 Novel
techniques such as SWI have considerably increased microbleed detection rates.59–61

The ability of MRI to detect CMBs has greatly aided the non-invasive diagnosis of CAA
during life. As haemosiderin remains in macrophages for many years after haemorrhage,
MRI sequences that are particularly sensitive to susceptibility effects allow for reliable
assessment of an individual’s haemorrhagic burden over time. Haemorrhage burden
identified by MRI predicts clinically important events in survivors of lobar ICH.62 Detection
of microhaemorrhages is therefore useful for assessing risk of functional deterioration in
CAA patients as well as for risk of future ICH.62 It is noteworthy that CAA-related CMB,
like CAA pathology and CAA-related-ICH, tend to cluster in posterior brain regions.60

Non-traumatic subarachnoid haemorrhage (SAH) and superficial siderosis are also common
in patients with CAA.63,64 Superficial siderosis may be found at sites distant from ICH and
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in close vicinity to lobar CMBs, suggesting that SAH can also occur as a primary
manifestation of CAA.65–67

Boston Criteria
Using a combination of clinical, neuroimaging and pathological data, the Boston criteria
establish three levels of certainty for the diagnosis of CAA: definite, probable and possible.
These criteria were based on the tendency for CAA-related haemorrhages to occur in elderly
patients, to be multiple and primarily located in lobar brain regions.13 As fully described in
Table 1, the diagnosis of probable or possible CAA can be reached by clinical and
neuroimaging findings alone without requiring pathological confirmation.13,68 The modified
Boston criteria include superficial siderosis as one of the required lobar haemorrhagic lesion,
which has been reported to improve the sensitivity of the diagnosis without lowering its
specificity (see Figure 3).64

Positron Emission Tomography Imaging
PET imaging with Pittsburgh compound B (PiB) has been used in research to measure the
burden and location of brain fibrillar Aβ deposits in animal models and in humans with AD
or CAA.15,69–72 Global PiB retention is elevated in non-demented CAA subjects relative to
healthy control subjects (see Figure 4), although lower in CAA than in AD subjects.3

Importantly, the occipital-to-global PiB ratio was found to be significantly greater in CAA
than in patients with AD.15 Increased occipital PiB retention was further demonstrated in a
young subject with early Iowa-type hereditary CAA, a rare hereditary form of CAA in
which the fibrillar amyloid deposits appear to be entirely vascular.73 Taken together, these
results suggest that PiB-PET can noninvasively detect CAA, possibly prior to overt signs of
tissue damage such as haemorrhage or white matter lesions.

At present, PiB-PET use is still considered investigational by the FDA for the diagnosis of
AD or CAA. Other amyloid-binding compounds using the longer-lasting radionuclide
fluorine-18 have more recently been tested to detect amyloid and may enter into clinical
practice.74

Cerebrospinal Fluid Biomarkers
Patients with AD have decreased cerebrospinal fluid (CSF) concentrations of Aβ42 protein
and increased tau protein, which allows reasonably accurate differentiation between AD
patients and controls (sensitivity and specificity generally >80 %).75–83 More recently, CSF
concentrations of both Aβ42 and Aβ40 were shown to be reduced in non-demented CAA
subjects compared to both healthy controls and AD subjects.83 These results suggest that the
large component of Aβ40 deposited in vessels in advanced CAA may deplete this peptide
from CSF, similarly to AD-associated reductions of Aβ42. Total and phosphorylated tau
protein levels were not significantly different in CAA from controls. The combination of
Aβ42 and total tau strongly discriminated CAA from controls (area under the receiver
operator curve, 0.98), although discrimination between CAA and AD was less distinct (area
under the receiver operator curve, 0.82).83 Taken together, these data suggest that Aβ40,
Aβ42, and tau protein levels in the CSF may be useful biomarkers of advanced CAA
pathology.

Management of Patients with Cerebral Amyloid Angiopathy
There is no evidence-based treatment or preventive strategy specific for CAA or CAA-
related ICH at this time. Given the increased risk of a first or recurrent ICH or progressive
cognitive decline, the clinical diagnosis of CAA may nonetheless have impact on the
management of some patients, especially regarding the use of anti-thrombotic medications,
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management of co-morbidities, long-term prognosis, cognitive follow-up and genetic
counselling. Furthermore, patients who present with CAA-related inflammation have a
potentially treatable form of the disease because of its responsiveness to immunosuppressive
therapy.

Anti-thrombotic Medications
Anticoagulation with warfarin increases mortality after ICH and may not be safe following
CAA-related ICH.84 While selected patients with deep hemispheric ICH at particularly high
risk for thromboembolic stroke and low risk of ICH recurrence might benefit from long-term
anticoagulation, patients with CAA-related ICH and atrial fibrillation should not be offered
long-term anticoagulation.84 A small case-control study found an association between the
presence of CMBs and warfarin-related ICH,85 but the relative risks and benefits of
anticoagulation in patients with CMBs are less clear. At least two observational studies
found that antiplatelet therapy increased the risk of recurrent CAA-related ICH, particularly
for individuals with larger numbers of microbleeds.86,87 Larger, more definitive studies are
required to settle these important questions, which could have considerable clinical
implications.

Management of Co-morbidities
In the Perindopril protection against recurrent stroke study (PROGRESS), blood pressure
lowering treatment using perindopril plus optional indapamide was found to provide
protection against both ischaemic and haemorrhagic stroke.88 Further post hoc analysis
indicated that randomisation to the blood pressure-lowering regimen reduced risk for CAA-
related ICH in particular, suggesting that blood pressure reduction may have benefits in this
population.89

Management of Cerebral Amyloid Angiopathy-related Intracerebral Haemorrhage
There is no evidence that the acute medical management of patients with CAA-associated
ICH should differ from other causes of ICH.90 A subgroup analysis of the Surgical trial in
intracerebral haemorrhage (STICH) II suggested better functional outcomes after surgery in
patients with superficial as well as lobar ICH in the absence of IVH.91 The ongoing STICH
II will specifically test the benefits of early surgical evacuation for lobar haematomas within
1 cm of the cortical surface without intraventricular extension.92 The results of this trial will
have particular bearing on the surgical management of patients with CAA-related ICH, as
lobar ICH is the hallmark of this condition.93

Management of Inflammatory Cerebral Amyloid Angiopathy
The inflammatory presentation of CAA represents a potentially treatable form of the disease.
Corticosteroid treatment has been shown in some case reports and small series to ameliorate
symptoms associated with CAA-related inflammation, possibly by reducing vasogenic
oedema.94 Other immunosuppressant treatments have been reported to influence the course
of inflammatory CAA, but available evidence is limited.95 DiFrancesco and colleagues
reported a patient with CAA-related inflammation who was found to have elevated auto-
antibodies to Aβ40 and Aβ42 in CSF with subsequent reductions following corticosteroid
treatment, offering a potential biological mechanism for this syndrome.96 If this finding can
be confirmed, titres of CSF anti-Aβ antibodies might serve as a biological marker for the
diagnosis, monitoring and evaluation of treatment in CAA-related inflammation.

Genetic Testing and Counselling
The over-representation of the APOE ε2 allele in patients with warfarin-associated lobar
ICH highlights a future potential for identifying high-risk patients for anticoagulation.97 The
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APOE ε2 allele has also been associated with larger baseline ICH volumes, haematoma
expansion, presence of spot sign on initial CT angiography and poor outcome in lobar
ICH.43,44 Nevertheless, there is currently not enough scientific evidence to support routine
APOE genotyping of CAA patients for clinical purposes out of an investigational
protocol.98,99

Mutations of APP as well as other genes unrelated to Aβ such as cystatin C, BRI and
transthyretin have been associated to familial CAA.100–105 Interestingly, different carriers of
the same mutation may have dramatically different clinical presentationss.105 Genetic
testing and counselling may be appropriate to patients with a strong family history of lobar
ICH or vascular dementia. When faced with those uncommon cases, it is reasonable to offer
referral to an academic research centre for further genetic evaluation, differential diagnosis
and follow-up.

Conclusions
Since the original description of neurovascular amyloid deposits in 1909, there has been
remarkable progress in our understanding of CAA. A definitive diagnosis still relies on
histopathological evaluation but MRI sequences now allow reliable assessment of an
individual’s haemorrhagic burden over time and reasonable diagnostic accuracy via clinical
neuroimaging. CAA has been associated with both ischaemic and haemorrhagic
manifestations within the brain and is a major cause of lobar ICH and cognitive decline in
the elderly. Despite the absence of specific treatment for this condition, the clinical
diagnosis of CAA may have a significant impact on the management of some patients,
especially regarding the use of antithrombotic medications, management of co-morbidities,
long-term prognosis, cognitive follow-up and genetic counselling.
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Figure 1.
Histopathological Sections from a Patient with Definite Cerebral Amyloid Angiopathy
Confirmed by Congo Red Stain (A) and Immunostaining (B), Demonstrating Vascular
Amyloid Deposition
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Figure 2.
Neuroimaging of a Patient with Probable Cerebral Amyloid Angiopathy-related
Intracerebral Haemorrhage, According to the Boston Criteria
A: Computed tomography (CT) scan showing large right frontal intracerebral haemorrhage
(ICH); B: magnetic resonance imaging (MRI) gradient recalled echo (GRE) sequence
showing the large frontal lobar haematoma and several additional lobar microbleeds.
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Figure 3.
Patient with Probable Cerebral Amyloid Angiopathy According to the Modified Boston
Criteria
Gradient recalled echo (GRE) showing cortical siderosis on the right parietal lobe and a
lobar microbleed on the left frontal lobe.
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Figure 4.
Pittsburgh Compound B Positron Emission Tomography Scan of a Patient with Definitive
Cerebral Amyloid Angiopathy Subsequently Confirmed at Autopsy
A: Magnetic resonance image (MRI) T1 showing encephalomalacia from a previous left
occipital intracerebral haemorrhage (ICH). B: Pittsburg compound B (PiB) positron
emission tomography (PET) scan co-registered to MR showing increased PiB retention in
the posterior regions of the brain, including right occipital and bilateral temporal cortex.
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Table 1

Boston Criteria for Cerebral Amyloid Angiopathy Diagnosis

1 Definite Cerebral Amyloid Angiopathy (CAA)

Full post-mortem examination demonstrating:

• lobar, cortical or corticosubcortical haemorrhage

• severe CAA with vasculopathy

• absence of other diagnostic lesion

2 Probable CAA with Supporting Pathology

Clinical data and pathological tissue (evacuated haematoma or cortical biopsy) demonstrating:

• lobar, cortical or corticosubcortical haemorrhage

• some degree of CAA in specimen

• absence of other diagnostic lesion

3 Probable CAA

Clinical data and MRI or CT demonstrating:

• multiple haemorrhages restricted to lobar, cortical or corticosubcortical regions (cerebellar haemorrhage allowed)

• age ≥55 years

• absence of other cause of haemorrhage*

4 Possible CAA

Clinical data and MRI or CT demonstrating:

• single lobar, cortical or corticosubcortical haemorrhage

• age ≥55 years

• absence of other cause of haemorrhage*

*
Other causes of intracerebral haemorrhage include: excessive warfarin dosing (international normalised ratio [INR] >3.0), antecedent head trauma

or ischaemic stroke, central nervous system (CNS) tumour, vascular malformation, CNS vasculitis, blood dyscrasia, coagulopathy.

CT = computed tomography; MRI = magnetic resonance imaging.
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