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Key points

• We used a novel high performance computing approach to conduct a sensitivity analysis of
emergent properties of simulated ECGs from a transmural cable of cells.

• The rapid delayed rectifier and inward rectifying potassium currents are the primary
determinants of the height of the T wave in this system.

• Theight is correlated with the temporal dispersion of repolarisation in the transmural cable while
Tpeak – Tend is correlated with the interval from the time of maximum total rate of repolarisation
to the end of repolarisation in the cable of cells.

• This study advances our understanding of the molecular basis of T wave morphology and the
role of epistatis in the modification of cardiac electrical phenotypes.

Abstract Altered function of ion channels in the heart can increase the risk of sudden arrhythmic
death. Hundreds of genetic variants exist in these cardiac ion channel genes. The challenge is how to
interpret the effects of multiple conductance perturbations on the complex multi-variable cardiac
electrical system? In theory, sensitivity analysis can address this question. However, to date this
approach has been restricted by computational overheads to analysis of isolated cells, which has
limited extrapolation to physiologically relevant scales. The goal of this study was to extend existing
sensitivity analyses to electrocardiogram (ECG) signals derived from multicellular systems and
quantify the contribution of ionic conductances to emergent properties of the ECG. To achieve
this, we have developed a highly parallelised simulation environment using unconventional
high performance computing architectures to analyse the emergent electrical properties of a
multicellular system. This has permitted the first systematic analysis of the molecular basis of the
T wave amplitude, revealing important but distinct roles for delayed rectifier and inward rectifier
K+ currents. In addition to quantifying how interactions between multiple ion channels influence
ECG parameters we show that these sensitivities are dynamic functions of heart rate. This study
provides a significant advance in our understanding both of how individual ion conductances
define ECG signals and of epistatic modification of cardiac electrical phenotypes. The parallelised
simulation environment we have developed removes the computational roadblock that has limited
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this approach and so provides the framework for future analysis of more complex tissue and whole
organ systems.
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Abbreviations AP, action potential; APD, action potential duration; APD90, action potential duration at 90%
repolarisation; ECG, electrocardiogram; GCaL, conductance of L-type calcium channel current; GJup, maximum current
of SERCA component; GKr, conductance of rapid delayed rectifier current; GKs, conductance of slow delayed rectifier
current; GK1, conductance of inward rectifier current; GNa, conductance of voltage-gated sodium channel current;
GNaL, conductance of persistent sodium current; Gncx, maximum current of sodium–calcium exchanger; GPU, graphics
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partial differential equation; PLS, partial least squares regression; SERCA, sarco/endoplasmic reticulum Ca2+-ATPase.

Introduction

Sudden cardiac death caused by abnormal electrical
signalling in the heart accounts for approximately 10–15%
of deaths in the developed world (Knollmann & Roden,
2008). Despite intensive investigation at both the tissue
level (Hondeghem et al. 2001) and the molecular/cellular
level (Keating & Sanguinetti, 2001) we still cannot pre-
dict accurately who is at greatest risk and whom we
should target for use of implantable cardiac defibrillators.
In recent years there has been considerable interest in
identifying the genetic factors that may influence the risk
of sudden cardiac death (Grace & Roden, 2012). What is
not well understood is how this genetic variation translates
to altered electrical phenotype of cardiac tissue.

One of the most commonly used techniques for
measurement of electrical activity of the heart is the surface
electrocardiogram (ECG). Many studies have shown that
parameters measured from the ECG show significant
variability across the population. For example, the QT
interval, a measure of the repolarisation time of the
heart, shows a distribution of 385 ± 24 ms in the normal
male population (Gallagher et al. 2006). It is likely that
some of this variability is acquired, e.g. related to myo-
cardial injury or remodelling. Twin studies suggest that
there is also a significant genetic component (Carter
et al. 2000; Haarmark et al. 2011). However, twin studies
do not identify the basis of this genetic contribution.
At the other extreme, the advent of whole genome
sequencing has highlighted the fact that genetic variation
is extraordinarily extensive, and polymorphisms occur
on average once every 17 bp in coding regions (Nelson
et al. 2012). Whilst the vast majority of these are benign
(it is estimated that ∼2% of variants in coding regions
are functional, Tennessen et al. 2012), the likelihood is
that an average-sized gene will have multiple functional
variants from person to person. It has been suggested
that combinations of these multiple small perturbations
in function can account for the variability in a phenotype
(Mann et al. 2012). In this study, we set out to test this
hypothesis with respect to how individual ion currents

affect cardiac repolarisation parameters determined from
the ECG.

The electrical properties of the heart are a complex
function of the spatial distribution of approximately 5–10
billion cells (Adler & Costabel, 1975), which themselves
contain multiple ion channels and pumps. Predicting
the effects of changes to even one component in such
a complex multivariable system is very difficult, and
realistically only tractable through use of computer
modelling (Bailey, 1999). At the single cell level, sensitivity
analysis of computational models is one approach that
has been used to quantify the contribution of ionic
conductance levels to cellular electrical outputs such
as action potential duration (APD). Specifically, partial
least squares (PLS) regression is a statistical technique
that has been used to highlight the differences between
cellular models (Sobie, 2009) and demonstrate how
epistatic variability can produce a phenotype similar to
that observed with single gene mutations of large effect
(Mann et al. 2012). These studies, at the single cell level,
have demonstrated that it is possible to investigate how
simultaneous changes in multiple inputs can influence
the output of a complex system.

The emergent electrical properties of the heart are more
than the sum of individual myocytes. At the simplest
level, we know that there are multiple distinct subtypes
of myocytes including epicardial, mid-myocardial and
endocardial myocytes and that electrotonic interactions
between them modulate the properties of the individual
cells (Glukhov et al. 2010). As a result, analysis of single
cell systems provides only limited insight into whole heart
physiology. Unfortunately, to date, sensitivity analysis of
more complex multicellular systems has been prevented by
the immense computational load of simulating hundreds
of thousands of heart beats.

In this study we have overcome this computational
obstacle by utilising the large scale parallelisation afforded
by general purpose computing on graphics processing
units (GPGPU) (Owens et al. 2007; Kirk & Hwu,
2010). Specifically, we have extended the application
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of partial least squares sensitivity analysis to the more
complex and more clinically relevant scenario of a pseudo
ECG generated from a transmural cable of ventricular
myocytes that reflects the heterogeneity of endocardial,
mid-myocardial and epicardial cells. Use of this novel
computational framework has allowed us, for the first
time, to analyse the molecular determinants of the
amplitude of the T wave, a signal that cannot be inferred
from single cell studies. We were also able to quantify the
effects of individual ion channel conductance changes on
ECG parameters at different pacing rates and assess the
effect of multiple ‘genetic hits’ on ECG waveforms. This
work also provides proof-of-principle that it is possible
to analyse the molecular basis of emergent properties of
multicellular preparations.

Methods

Ventricular cell model

Cellular simulations were carried out using the O’Hara
ventricular model (O’Hara et al. 2011). This cellular
model was chosen since it is based entirely on data
from healthy human tissue. The sodium channel in the
O’Hara model was replaced with the Markov description
from Clancy and Kass (Clancy et al. 2002) to enable
future incorporation of long QT syndrome (LQTS) type
3 mutants genotypes. Likewise the slow delayed rectifying
current (IKs) in the model was replaced with the human
IKs from Terrenoire et al. to allow future incorporation
of adrenergic effects (Terrenoire et al. 2005). Both
currents were scaled such that peak current amplitudes
during the action potential (AP) were unaltered. Recent
results suggest that Nav1.8 is responsible for the late
sodium current in cardiomyocytes (Yang et al. 2012).
We therefore left the existing persistent sodium current
of the model unaltered. The eight most significant ionic
conductances in the O’Hara cell model analysed as
part of this study were: GNa (cardiac sodium current),
GNaL (persistent sodium current), GCaL (L-type calcium
current), GKr (rapid delayed rectifying potassium current),
GKs (slow delayed rectifying potassium current), GK1

(inward rectifier), GKb (background potassium current),
GJup (calcium uptake into sarcoplasmic reticulum via
sarco/endoplasmic reticulum Ca2+-ATPase (SERCA)),
Gncx (maximum current of sodium–calcium exchanger).

Cable simulations/ECG calculations

Cable simulations were performed as previously described
(Shaw & Rudy, 1997; Gima & Rudy, 2002). Cables
consisted of 165 O’Hara model cells, with cells
1–60 in endocardial configuration, cells 61–105 in
mid-myocardial configuration, and cells 106–165 in

epicardial configuration. Cables were stimulated from
the endocardial terminal of the cable with a current of
–80 m μA μF−1 for 0.5 ms and propagation calculated
according to the partial differential equation (PDE):

Cm
∂V
∂t

= aσ
2R cg

× ∂2V
∂x2 − I ion(x) − I stim(x) (1)

Where Cm is the membrane capacitance, V is the trans-
membrane voltage, a is the radius of the fibre (11 μm),
Rcg is the ratio between capacitive and geometric areas
(Rcg = 2), σ is effective conductivity (composed of myo-
plasmic conductivity and gap junction conductivity) and
I ion and I stim represent ionic and stimulus currents at
position x, respectively.

To calculate V along the cable, eqn (1) was
made discrete in space and time using the finite
difference method (assuming �t = 0.01 ms, Cm = 1 μF
and �x = L = 0.01 cm, where L is cell length). Therefore,
at time t we can obtain Vt

x from the equation:

Vt
x = k1σ�t

�x2

(
Vt−�t

x+�x − 2Vt−�t
x + Vt−�t

x−�x

)

− [
I t−�t

ion (x) + I t−�t
stim (x)

]
�t + Vt−�t

x

(1a)

The value of I t−�t
ion (x) is calculated from the cell model (at

position x) by applying the forward Euler integration time
step (i.e. explicit Euler).

We calculated pseudo ECGs by determining a spatially
weighted sum of the voltage gradient at a point x′ = 2 cm
away from the endocardial end of the cable along the fibre
axis, according to the equation (Plonsey & Barr, 2007):

�e(x′) = k2 ∫
∇x V

(x−x′)2 dx (2)

The first and last 15 cells were excluded from the pseudo
ECG calculations due to edge effects.

Partial least squares analysis

To assess the sensitivity of action potential and ECG
parameters to changes in individual ionic currents in
the cardiac myocyte we employed partial least squares
(PLS) analysis (Sobie, 2009). This technique correlates
the effects of variation of input parameters of a model
(ionic conductances through channels and pumps) with
output parameters (action potential duration, QT interval,
Theight, Tpeak – Tend). For each instance of the PLS analysis,
the system (either individual cell or cable) was solved for
100 individual runs. In each run, all ionic conductances in
the model were individually scaled by a random number
drawn from a log–normal distribution centred around
a mean value of 1, with standard deviation of 5%. A
single scaling factor was applied to each conductance
across the entire cable, regardless of whether the particular
conductance varied depending on cell type (i.e. epi-
mid-myo- and endocardial cells). For every run, the
system was equilibrated for 500 beats after parameter
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randomisation to account for long-term changes in ionic
concentrations (see Supplemental Fig. 1; Supplemental
material is available online only). After equilibration, ECG
or APD parameters were measured from the 500th beat
and saved with the corresponding set of eight scaling
factors. Matrices containing APD/ECG parameters and
scaling factors were log-transformed, centred on their
mean values, and normalised to their means. These
values were used as inputs for the partial least squares
function PLSREGRESS in the Matlab Statistics Toolbox
(Mathworks, MA, USA). The output of this function is
an array of PLS regression coefficients (ρ) that describes
the model’s sensitivity for each ionic conductance. To
get an estimate of error in PLS regressions, datasets
of 100 simulations were randomly split into three and
PLS analysis carried out on each sub-dataset. Means and
standard deviations of PLS coefficients were then derived
from the three outputs.

‘Wheel of fortune’ plots

To generate ‘wheel of fortune’ plots we examined five ionic
conductances in each case. Each of these conductances
were varied by ±10% which, together with the baseline
level, gives a total of 35 (three levels of five different
conductances), or 243 different combinations for each
plot. For each of these 243 combinations we simulated
ECGs (each equilibrated for 500 beats at 1 Hz). We then
used ECG parameters measured from these simulations
to generate the ‘genetic wheel of fortune’ plots. In each
plot, each of the 243 circle segments represents one of
the possible combinations of conductance level variation
in our five selected ion channels. Segments are coloured
according to conductance level such that the baseline level
of each conductance is shown in grey, an increase of 10%
in white, and a decrease of 10% in black. Combinations are
then sorted according to the magnitude of the measured
parameter (QT interval, Tpeak – Tend and Theight), from
highest (red, at the three o’clock position) to the lowest
(blue, at the four o’clock position).

Graphics processing unit (GPU) simulation
environment

To overcome the computational challenge of large-scale
simulation, we exploited two levels of parallelism that
naturally exist in the problem. First, in each simulation
set, all of the 100 randomised simulation scenarios were
executed concurrently. Second, at every time step of
each simulation scenario, each cell model was solved
independently from the rest of the cells in the cable
(before solution of the PDE). It should be noted that even
in a conventional sequential approach, each individual
cell in the cable is solved independently. The difference

in this approach is that the individual cells are solved
simultaneously, rather than one after the other before
solution of the PDE.

We exploited the massively parallel computing
capability of the GPU architecture (Owens et al. 2007;
Kirk & Hwu, 2010) to develop a custom parallel simulation
system. The implementation consisted of two main sub-
systems: a simulation engine implemented in CUDA C
4.1 (NVIDIA, CA, USA) and a pre/post-processing sub-
system implemented in Matlab. Communication between
the two subsystems was achieved by exchanging text files in
comma-separated format. Simulations were performed on
a GPU-based supercomputer (Bragg, CSIRO, Australia),
where individual cluster nodes, each comprising a Dual
Xeon 8-Core E5-2650 CPU and three NVIDIA Tesla
M2050 GPU cards, were assigned to each set of simulations
(i.e. for the 100 scenarios at each pacing rate and the 243
scenarios for each wheel of fortune).

Results

Electrotonic coupling modulates sensitivity to
conductance variability

A comparison of AP waveforms extracted from a cable
in the middle of the endocardial, mid-myocardial and
epicardial regions with AP waveforms from isolated single
cell simulations of the same cell type is shown in Fig. 1.
Electrotonic coupling resulted in significant shortening of
the mid-myocardial action potential as well as more sub-
tle effects on plateau and notch morphologies of all cell
types.

To investigate how electrotonic coupling affects the
sensitivity of AP waveforms to changes in individual ionic
conductances we undertook a partial least squares (PLS)
regression analysis of action potential duration at 90%
repolarisation (APD90) in isolated versus coupled cells
(see Fig. 2). Specifically, each of the ionic conductances
in the cell models was scaled according to a randomised
factor taken from a log–normal distribution, meaning the
probability of the conductance being doubled was the
same as that of it being halved (Fig. 2Ab). We focused
our investigation on variations in conductance, rather
than channel kinetics, since this is representative of most
disease-causing mutations and variants. For example, the
most thorough analysis of the mechanism of disease in
mutations that cause long QT syndrome type 2 showed
that the vast majority (80%) of mutants exerted their
effect via reduced trafficking of proteins, resulting in
altered membrane conductance, not via effects on channel
kinetics (Anderson et al. 2006). This process was repeated
100 times in order to simulate families of APs that varied
according to the combination of inputs (Fig. 2Ac). An
example of how the output from these simulations can be
analysed is illustrated in Fig. 2Ad, which shows a scatter

C© 2013 The Authors. The Journal of Physiology C© 2013 The Physiological Society
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Figure 1. Effect of electrotonic coupling
A, simulation of action potential propagation in a cable of ventricular cells. Three beats of the simulation paced
at 1 Hz at the endocardial terminal of the cable are shown. B, comparison of action potential waveforms for
endocardial (ENDO), mid-myocardial (MID) and epicardial (EPI) cells either simulated in isolation, or in the presence
of electrotonic coupling (extracted from the cable in A).
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100 times to yield a family of action potentials (c). The relationship between action potential parameters such as
APD90 and variability in individual ionic conductances can be represented on a scatter plot (d). B, comparison of
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and epicardial cells.
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plot of the simulated APD90 versus the conductance for
GKr in each simulation. Each of the data points represents
a different combination of the remaining (non-GKr) input
parameters. This plot provides a crude estimate of the
effect of changes in GKr on APD90. Similar plots can
be done where each of the other ion conductances is
made the independent variable. PLS regression takes
the analysis one step further to present these data
in terms of a sensitivity coefficient, ρ, which allows
direct quantitative comparison between different input
parameters.

PLS outputs describing the sensitivity of APD90 to
changes in GCaL, GK1 and Gncx, for isolated versus coupled
epi-, mid-myo- and endocardial cells are presented in
Fig. 2B. The magnitude of the bars in Fig. 2B indicates
how sensitive the output is to changes in the corresponding
input. For example, the PLS regression coefficient of +0.4
for GCaL in coupled cells, tells us that for a 1 standard
deviation (SD) increase in the conductance of GCaL (5% in
our analysis), the APD90 increases by 0.4 SD. Conversely,
the negative regression coefficients for GK1 indicate that an
increase in GK1 causes a decrease in APD90. Furthermore,
since in each case we know the distribution of measured
output parameters, the PLS regression coefficient can
be converted to an absolute value. For example, if the
simulated APD90 values had a SD of 10 ms and ρGCaL was
0.4, the absolute change associated with a 1 SD increase in
GCaL would be 4 ms.

The plots in Fig. 2B clearly show that the PLS regression
coefficients differ for isolated cells compared to the more
physiologically relevant multicellular arrangement. For
example, in mid-myocardial cells from a cable, the APD90

is approximately fourfold more sensitive to changes in GCaL

than in isolated cells but less sensitive to changes in GK1

and Gncx. While the exact sensitivities will vary depending
on the cellular model used, as has been shown at the single
cell level (Sobie, 2009), the results in Fig. 2 demonstrate
that it is not possible to simply extrapolate sensitivity
parameters from single cell studies to multicellular
systems.

Partial least squares analysis of ECG parameters

A linear cable of cardiac myocytes such as that illustrated
in Fig. 1A is the simplest system that can be used to
generate a first approximation of an ECG, often referred
to as a pseudo ECG (see Fig. 3Aa). These pseudo ECGs
reproduce the important features of a full surface ECG: a
tall, narrow QRS complex and a T wave, corresponding
to depolarisation and repolarisation within the cable. By
identifying three points, 1: the start of the Q-wave, 2: the
peak of the T wave and 3: the end of the T wave, from each
ECG trace (see Fig. 3Aa) we can measure the QT inter-
val (time at 3 – time at 1), the Theight (amplitude at 2),

and Tpeak – Tend (time at 3 – time at 2). We can then use
PLS to analyse the sensitivities of each of these emergent
properties of the whole, coupled heterogeneous system,
to changes in individual ion conductances, thereby over-
coming the limitations imposed by analysis of isolated
cells.

It is important to note that it was necessary to
equilibrate each instance of the cable for 500 beats to take
into account long-term changes in ion concentrations,
especially [Na+]i and [Ca2+]i (see Supplemental Fig. 1).
The T waves of the 500th beat at 1 Hz pacing for
each of the 100 scenarios generated using the same
randomisation pipeline illustrated in Fig. 2A are illustrated
in Fig. 3Ab. These data clearly illustrate that small changes
in underlying ionic conductances can cause significant
modification of the T wave of the ECG. The distributions of
QT interval, Theight and Tpeak – Tend derived from the family
of ECGs are shown in Fig. 3Ba–Da. The means ± SD for
each of the parameters were 273.6 ± 5.0 ms, 3.8 ± 0.2 V
and 26.9 ± 1.1 ms for QT interval, Theight and Tpeak – Tend,
respectively.

The PLS regression coefficients for the eight most
sensitive parameters derived from these distributions are
shown in Fig. 3Bb–Db. Given this model is representative
of baseline activity without adrenergic stimulation
(O’Hara et al. 2011), it is unsurprising that the most
important determinant for QT interval duration is GKr

with a PLS regression coefficient, ρGKr,QT, of −0.91. This
reflects the well-known relationship between decreased
IKr and increased QT interval (Keating & Sanguinetti,
2001). Many of the other significant contributors to
variation in ECG parameters, however, are less intuitive.
For example, GKr was also an important determinant of
Tpeak – Tend, although the sensitivity was in the opposite
direction to that for QT interval, i.e. ρGKr,T(peak)−T(end)

was +0.73 compared to −0.91 for the QT interval.
Given that there is no single cell equivalent parameter to
Theight, our data provide the first insights into the relative
contributions of different conductances to this parameter.
The major determinants of variation in Theight are GKr

(ρGKr,T(height) = +0.78) and GK1 (ρGK1,T(height) = +0.33).
Perhaps more surprising is that increased activity of
SERCA (GJup) is also positively correlated with changes
in Theight (ρGJup,T(height) of +0.194).

Relationship between cellular parameters and ECG
waveforms

The datasets generated in the sensitivity analysis above
(i.e. the sets of 100 cable simulations and corresponding
ECGs) also provide a powerful means of correlating
ECG parameters with the characteristics of the cable
to yield some insight into how cellular action potential
characteristics define the ECG waveform. The relationship

C© 2013 The Authors. The Journal of Physiology C© 2013 The Physiological Society
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between the three ECG parameters, QT interval, Theight

and Tpeak – Tend and their correlated cable parameters at
1 Hz pacing rate are shown in Fig. 4. The QT interval on
the ECG is well known to correspond to the period from

the onset of depolarisation to the end of repolarisation.
As would be expected therefore, a strong correlation
(r2 = 0.9941) exists between the QT interval and the time
from the stimulus (t stim) to the APD90 of the last cell
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Figure 3. PLS analysis of ECG waveforms
Aa, pseudo ECG generated from simulation of
electrical propagation in a cable of cells as shown
in Fig. 1A. Numbered arrows indicate points
required in measuring ECG parameters: 1, onset
of depolarisation; 2, peak of T wave; 3, end of T
wave, defined as extrapolation of a tangent from
the steepest part of the T wave slope to the
isoelectric line. Ab, family of T waves from ECGs
generated according to the randomisation
pipeline in Fig. 2A from a transmural cable paced
at 1 Hz. B–D, distributions (a) and PLS coefficients
(b) for QT interval, Tpeak – Tend and Theight,
respectively, for the family of ECGs shown in Ab.
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in the cable to repolarise (t last) (Fig. 4Ba). Tpeak – Tend,
on the other hand, is correlated with the period from
the time of maximum total repolarisation rate (Repolmax)
to t last (r2 = 0.5738, Fig. 4Bb). To calculate Repolmax we
summed the first derivatives of all action potential wave-
forms in the cable (�(dV /dt)) at each time point. Repolmax

was identified as the time at which the minimum of
�(dV /dt) was reached (see Supplemental Fig. 2). The
lower goodness of fit for this correlation is due to the
error in measurement of Tend (through extrapolation of
the tangent of the steepest part of the T wave, see Fig. 3Aa)
relative to the absolute value of Tpeak – Tend. However,
since we can unambiguously assign Repolmax to Tpeak

by other means (there is a strong correlation between
Q – Tpeak measured from the ECG and t stim – Repolmax

in the cable, see Supplemental Fig. 2), we are confident
that the time from Repolmax to t last in the cable
defines Tpeak – Tend. Lastly Theight is strongly correlated
(r2 = 0.9590) with the dispersion of repolarisation
through the cable (i.e. the time from the APD90 of
the earliest repolarising cell in the cable (tfirst) to t last)
(Fig. 4Bc).

Quantification of additive epistatic modulation of
ECG parameters

So far we have quantified how small variations (±5%
SD) in individual ionic conductances can contribute to
ECG parameter variability (Fig. 3). The absolute changes
associated with this level of variation are small. For
example, for the strongest determinant of QT interval,
GKr, a 5% decrease (i.e. 1 SD change) results in a ∼5 ms, or
1.8%, increase in QT interval (i.e. 0.9 standard deviations
of the distribution of measured QT intervals, see Fig. 3Ba).
It is well known, however, that ECG signal parameters vary
considerably more than this in the normal population, e.g.
the standard deviation of the QT interval in the normal
population is ∼±7% (Gallagher et al. 2006).

To quantifiably test the hypothesis that additive effects
of changes in multiple conductances could explain the
observed population variation in ECG parameters we
took the five ionic conductances that had the greatest
contribution to QT interval, Tpeak – Tend and Theight (from
Fig. 3) and varied them ±10%. With the inclusion of the
baseline level of each conductance, this gives a total of
35, or 243 different combinations for each parameter, for

Figure 4. Correlation of ECG waveform morphology and cellular AP characteristics
A, heatmap showing propagation of AP waveforms in the cable. Data are coloured according to voltage. Time
points used to correlate cable/cellular characteristics with ECG waveforms are marked. Specifically, tstim is the time
the stimulus is applied to the endocardial terminus of the cable, tfirst is the time at which the first cell in the
cable repolarises to its APD90 and tlast is the time at which the last cell in the cable repolarises to its APD90. Ba,
correlation between QT interval and the time from tstim to tlast. Bb, correlation between Tpeak – Tend and the time
from Repolmax (see Supplemental Fig. 2) and tlast. Bc, correlation between Theight and the time from tfirst to tlast.
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which we then simulated ECGs (each equilibrated for 500
beats at 1 Hz). We measured ECG parameters from each of
these simulations and used them to generate the ‘genetic
wheel of fortune’ plots shown in Fig. 5. In these plots each
of the 243 circle segments represents one of the possible
combinations of conductance level variation in our five
selected ion channels. In each plot, the combinations
are sorted according to the magnitude of the measured
parameter, from highest (red, at the three o’clock position)
to the lowest (blue, at the four o’clock position) and the
ECG waveforms corresponding to the two extremes are
shown below. Overall, the relative ranges of the variabilities
for each of the three parameters observed as a result of
additive modification of phenotype were mean ± 7% for
QT interval, ±15% for Tpeak – Tend and ± 23% for Theight.

The pattern of current segments in the QT interval
wheel of fortune plot (Fig. 5A) is consistent with the data in
Fig. 3, i.e. low GKr (black segments) dominate the long QT
end of the circular plot. GCaL is also important, but less so,
and reversed relative to GKr. The remaining three currents
are more randomly distributed. The important output
from this analysis is that a QT interval range from 257.8 ms
to 293.5 ms is obtained using just ±10% changes in five
currents. This very effectively demonstrates how multiple
small perturbations can add up to a significant effect.
Similar data for Tpeak – Tend is presented in Fig. 5B. The
total range of the variability observed in our simulations
for this parameter was 22.8–31 ms, with GKr and GK1

being the most important input parameters. Finally, the
Theight observed in our simulations ranged from 2.8 to

4.52 V with a relatively small change in the QT inter-
val between these extremes (Fig. 5C). Increased levels of
GKr and GK1 are also the primary determinants of Theight.
However, in this case, both GKr and GK1 correlate positively
with Theight, the opposite to the relationship for QT
duration.

Effect of pacing rate/heart rate on ECG parameter
sensitivity

The rhythm of the heartbeat is highly dynamic with
the typical heart rate ranging between ∼40 and
∼150 beats min−1. To examine how changes in heart rate
influence ECG parameter sensitivity we repeated our PLS
analysis on pseudo ECGs paced at 0.25, 0.5, 1, 1.5 and
2 Hz. The signals simulated at different pacing rates show
obvious differences (Fig. 6A). For example, the QT inter-
val and Theight both decrease with increasing heart rate,
as has been previously reported physiologically (Bazett,
1920; Couderc et al. 2007), and also demonstrated for
this model (O’Hara et al. 2011). However, there is also an
apparent change in the magnitude of variability at different
pacing rates. For example, there is greater variability
in Theight at slower compared to higher heart rates
(Fig. 6B).

A selection of relationships derived from the PLS
analysis of ECG parameters at all pacing rates are pre-
sented in Figs 7 and 8, while the full datasets are included
in the Supplemental material (Supplemental Figs 3–5).

250ms 300 ms 2.8 µV 4.7 µV31.1 ms22.9 ms

A B C

Figure 5. Genetic wheel of fortune plots
Data are shown for QT interval (A), Tpeak – Tend (B) and Theight (C). In each case the mean value is identified with
a red bar. Pseudo ECGs simulated using the ionic conductance combinations from the extreme minimum (blue)
and maximum (red) of the wheel are shown in each case. Grey, black and white segments represent conductance
levels of baseline, 10% decreased and 10% increased, respectively.
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The effect of heart rate on the distributions of the QT
interval is illustrated in Fig. 7Aa. The QT interval both
prolongs and shows greater variability at slower heart
rates (239 ± 4 ms at 2 Hz compared to 318 ± 8.4 ms at
0.25 Hz). GKr and GCaL are the most important parameters
influencing QT interval at all rates. Although the PLS
regression coefficients for GKr and GCaL change only
slightly with rate, the absolute change in the QT inter-
val measured in response to a 1 SD change in each of these
parameters decreases at higher pacing rates, consistent
with the narrower distributions of QT interval at the higher
rates. For example, a 1 SD (5%) increase in GKr causes a
6.7 ± 0.1 ms shortening of the QT interval at a pacing rate
of 0.25 Hz compared to 2.98 ± 0.01 ms at a pacing rate of
2 Hz.

Tpeak – Tend is a measure of the temporal spread of the
terminal phase of the T wave. Increasing pacing rate
resulted in an increase in magnitude and a narrower
distribution (i.e. reduced variability) for Tpeak – Tend

(Fig. 7Ba). The two major contributors to variability
in Tpeak – Tend at all pacing rates are GK1 and GKr.
ρGKr is relatively rate independent (ρGKr,T(peak)−T(end)

0.72 ± 0.04 and 0.69 ± 0.04 at 0.25 and 2 Hz, respectively)
whereas ρGK1,T(peak)−T(end) increases with increasing rate
(ρGK1,T(peak)−T(end) –0.33 ± 0.01 and −0.63 ± 0.02 at

0.25 Hz
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Figure 6. Effect of heart rate on ECG sensitivities
A, pseudo ECGs simulated at pacing frequencies between 0.25 and
2 Hz. B, T waves from families of 100 ECGs simulated according to
the randomisation pipeline in Fig. 2A at 0.25 Hz (blue) and 2 Hz (red)
after equilibration for 500 beats.

0.25 Hz and 2 Hz, respectively). As a result of these trends
the ratio of the magnitude of sensitivities to GKr versus
GK1 changes from approximately 2:1 at 0.25 Hz to 1:1 at
2 Hz.

The rate-dependent distributions of Theight are shown
in Fig. 8Aa. There is a steady increase in the amplitude
of the T wave in response to slowing heart rate, while
the distribution of Theight only starts to widen at the
slowest rate (2.36 ± 0.24 V and 5.26 ± 0.3 V at 2 Hz and
0.25 Hz, respectively). As is the case for Tpeak – Tend, GKr

and GK1 are the main determinants of Theight; however,
the GK1 sensitivity factors are reversed (compare Figs 7Bc
and 8Ac). ρGKr does not vary significantly with heart
rate, meaning the trend in absolute change in Theight

directly reflects the rate-dependent change in distributions
in Fig. 8Aa, e.g. a 1 SD change in conductance (5%)
of GKr causes a 0.26 ± 0.007 μV change in Theight at
0.25 Hz but only a 0.18 ± 0.002 μV change at 2 Hz. ρGK1

shows a modest (25%) rate-dependent decrease from
0.4 ± 0.017 at 0.25 Hz to 0.3 ± 0.005 at 2 Hz resulting
in a 50% decrease in the absolute effect at faster rates
(0.12 ± 0.005 V at 0.25 Hz compared to 0.06 ± 0.001 V at
2 Hz).

Although both GKr and GK1 correlate positively with
Theight, the mechanism by which they alter the T wave
amplitude, as well as the overall ECG signal is very
different. To highlight these differences, we performed
simulations with larger perturbations to a conductance
of ±50% for the two individual conductances (Fig. 8B).
Changes in GKr primarily affect the early part of the T
wave whereas changes in GK1 result in a distinct peaking
of the terminal phase. These marked differences in the
T wave responses can be more readily appreciated when
the T waves for the GKr simulations are plotted with the
peaks shifted to coincide and the magnitudes normalised
as shown in the inset in Fig. 8Ba.

Discussion

Over the last 10–20 years significant progress has been
made in elucidating the molecular and cellular basis of
cardiac electrical activity (Keating & Sanguinetti, 2001).
The challenge now is to utilise this knowledge to better
understand the integrated activity of the whole heart
both in health and disease. Computational simulation
provides an ideal framework to address this challenge.
Indeed, computational simulation of the heart is unique
in that it is the only example in physiology where a
clinically observable output of a whole organ, i.e. the
ECG, can be modelled from the constituent molecular
and cellular mechanisms (Noble, 2002). At the single
cell level, models of cardiac APs are numerous and
sensitivity analysis of these models is an approach that
has been employed to examine how the network of
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interactions between the component ionic currents
influences AP parameters. This has enabled some level
of clinical insight particularly with regard to the role of
epistasis in modulating genotype–phenotype presentation
(Sobie, 2009; Mann et al. 2012). However, to date, this
type of analysis has been limited to individual cells as a
consequence of the immense computational burden of
simulating multicellular systems. This in turn has limited
our ability to extrapolate findings in single cells to intact
cardiac tissue.

Here, we have provided the first sensitivity analysis,
specifically using PLS regression, of ECG signals derived
from a multicellular arrangements of cells. This was made
possible by taking advantage of a new computational
approach – general purpose computing on graphics
processing units (GPGPU) (Owens et al. 2007). Through
application of this approach we can now start to investigate
the molecular basis of emergent phenomena such as QT
interval, Tpeak – Tend and Theight, phenomena that are all
complex functions of the arrangements of different cell
types within the heart and are not properties that can be
easily predicted from knowledge of how individual cells
behave.

The computational approach

Simulating propagation in a multicellular environment
comes with the added computational load of increased
cell numbers, as well as solving the partial differential
describing electrical propagation between cells. While
multicellular simulations are often employed to answer
specific questions in this research field (Gima & Rudy,
2002), there is a vast difference between simulating
individual scenarios to answer specific questions and
simulating the hundreds of thousands of beats necessary
for a full sensitivity analysis. The key to our approach
is taking advantage of recent developments in parallel
computing hardware. Parallel computing revolves around
solving multiple parts of a problem concurrently,
traditionally on an array of separate connected computers,
to accelerate the solution of the overall problem. Graphics
processing units (GPUs) offer another alternative for
parallelisation. GPUs have large scale, inbuilt parallel
properties, since each card typically has hundreds of
processing cores. While this hardware has historically been
used for rendering graphics, recent developments now
allow researchers to exploit this parallelisation for general
purpose computing (Owens et al. 2007; Kirk & Hwu,
2010). Furthermore, this parallelisation can be further
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Figure 7. Rate dependence of QT and Tpeak – Tend sensitivities
Aa, QT interval distributions at pacing rates between 0.25 and 2 Hz. Ab and c, rate dependence of PLS regression
coefficients (ρ, black line) and absolute changes (grey line) in QT interval associated with GKr (b) and GCaL (c). Ba,
Tpeak – Tend distributions at pacing rates between 0.25 and 2 Hz. Bb and c, rate dependence of PLS regression
coefficients (ρ, black line) and absolute changes in Tpeak – Tend (grey line) associated with GKr (b) and GK1 (c).
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amplified by using connected arrays of these devices
in GPU-based supercomputers (Top500: www.top500.org
(2010)).

In relation to cardiac simulations, this parallelism
can be exploited by two means: (1) by increasing the
scale of parallelism, whereby a massive problem is sub-
divided and distributed to separate processors that each
compute individual parts of one overall problem, and
(2) increasing the order of parallelism, whereby many
instances of the same problem can be solved concurrently,
each on separate parallel processors. The former is an
approach that is being actively pursued for whole organ
simulation on GPU-based machines (Nimmagadda et al.
2012), but technical factors still restrict the scale of the
parallelisation, meaning that practical simulation of whole
organs for any extended period is still limited. In this
study we have taken the second approach and increased
the order of parallelisation. We have developed a parallel
implementation of a multicellular simulation, deployed
on a GPU-based supercomputer, to allow us to simulate
the hundreds of thousands of beats necessary to perform
a sensitivity analysis of how changes in individual ionic
conductances affect multicellular ECG signals. In doing so,
this work also lays out the computational framework for
achieving the ultimate goal of this approach, large-scale
analysis of whole organ cardiac systems, which will no

doubt be achievable as this technology develops in the
future.

Ionic conductance contributions to ECG waveforms

The data presented here provide the first quantification
of the sensitivity of ECG parameters to variability in the
individual ionic conductances of a computational model.
Many of the conductance sensitivities and rate-dependent
trends we have identified in ECG parameters are consistent
with existing clinical and experimental data. Furthermore,
the ECG parameter sensitivities we have identified are
consistent with the basic single cell sensitivity analysis
carried out in the original publication of the cell model
(O’Hara et al. 2011). This acts as validation for both the
original cell model and our analysis. More importantly,
many of the sensitivities we identified, e.g. the sensitivities
for Theight, were only made possible by the approach we
have used.

The QT interval is effectively set by the action potential
durations across the myocardium. It is not surprising that
many of the trends in sensitivities for QT interval could be
inferred from previous single cell simulations. Specifically,
changes in GKr are the most important determinant of QT
interval duration in this system, which correlates with
the well-described effect of hERG mutations in long QT
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Figure 8. Rate dependence of Theight sensitivities
Aa, Theight distributions at pacing rates between 0.25 and 2 Hz. Ab and c, rate dependence of PLS regression
coefficients (ρ, black line) and absolute changes (grey line) in Theight associated with GKr (b) and GK1 (c). B, pseudo
ECGs simulated with baseline and ±50% GKr (a) and GK1 (b). The inset in Ba shows T waves normalised to their
peaks illustrating that GKr variability primarily affects the early part of the T wave.
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syndrome type 2 (Sanguinetti & Tristani-Firouzi, 2006).
GCaL plays a lesser but nevertheless significant role in
determining QT interval duration. This is also consistent
with previously reported clinical observations: loss of
function mutations in calcium channel subunits and
diltiazem (a specific L-type calcium channel antagonist)
both result in reduced QT duration (Kageyama et al.
1995; Antzelevitch et al. 2007), whereas gain of function
mutations in calcium channel subunits lead to increased
QT duration (Splawski et al. 2004). Finally, the negative
correlation between GK1 and QT length is consistent
with the QT prolongation seen clinically in patients with
Andersen syndrome (Tristani-Firouzi et al. 2002).

In contrast to the ionic basis of the QT interval duration,
much less is known about the origin of variability in Theight

and Tpeak – Tend. Our analysis of these parameters therefore
illustrates the power of the computational approach to
provide novel biological insights. The major contributors
to variation in Tpeak – Tend are changes in GKr and GK1, with
these two parameters show differing rate dependences. At
low rates, GKr is the primary determinant, while at fast
rates, both conductances contribute equally to Tpeak – Tend.

Lastly, the rate-dependent sensitivities of Theight show
that the two major contributors to variability in Theight are
also GKr and GK1. The positive sensitivities for both GKr and
GK1 are consistent with the clinically reported observations
of low amplitude T waves in many patients with long QT
syndrome type 2 (Zhang et al. 2000) as well as peaked,
upright T waves seen in patients with short QT syndrome
due to gain of function mutations in the genes coding
for IKr (Brugada et al. 2004) and IK1 (Priori et al. 2005).
It is clear from Fig. 8B that although both conductances
contribute to variability in Theight, the associated ECG
waveforms, specifically with regard to repolarisation, are
very different. In the case of GK1, the T wave is primarily
altered in its terminal phase, while GKr primarily affects
the early part of the T wave, consistent with observations
that LQTS2, as well as GKr block, alter the left slope of the
T wave (Couderc et al. 2011).

Additive effects of conductance variability

In vitro characterisations of cardiac ion channel gene
variants have shown that the functional effects on ionic
conductances are often very small (Mann et al. 2012).
Based on our quantification of the sensitivity of ECG
parameters to conductance variations, this would suggest
that the effects on measured ECG parameters would
be correspondingly small. Indeed this is often what
is observed, and extremely large population studies
are required to have sufficient power to conclusively
measure phenotypic changes associated with such variants
(Lunetta, 2008). However, based on recent analysis of the
frequency of single nucleotide polymorphisms (SNPs) in
the population (Nelson et al. 2012), it is likely that we all
have multiple variants in the genes that code for proteins,

which contribute to cardiac electricity, i.e. the so-called
‘rhythmonome’. This leads to the question of whether
multiple small variations in ion conductances can combine
to give more significant modification of the ECG wave-
form.

Clinically, a quantitative analysis of the interaction
between functional variants in the rhythmonome is
important. First, in developing our understanding of
the spectrum of ECG phenotypes observed in ‘normal’
and disease populations, and second for prediction of
how ion channel conductance variability can alter the
importance of other ion channels in the context of a
‘second hit’, whether that be from multiple gene defects
or acquired defects such as drug block (as has previously
been discussed in the literature, Sarkar & Sobie, 2011). The
‘genetic wheel of fortune’ plots shown in Fig. 5 illustrate
how small variability in just a few ion channels can add
up to significant changes in ECG parameters consistent
with the degree of variability observed in the population
(Gallagher et al. 2006; Viskin, 2009). This observation
quantitatively demonstrates that combinations of small
alterations in channel expression levels can give apparently
pathogenic indicators on the ECG (a prolonged QT inter-
val for example). Our data also illustrate how other
combinations can be protective; for example, a reduced
ICaL conductance can offset the QT prolongation caused by
a reduction in IKr. Such combinations could easily explain
how SNPs could modify the phenotype associated with
disease-causing mutations even within the same family
(Zhao et al. 2009) and why some mutants show apparently
low penetrance (Priori et al. 1999).

Cellular electrical basis of ECG waveforms

In addition to quantifying the ionic basis of ECG
parameter variability, the datasets generated during our
analysis also allow us to correlate ECG parameters with
characteristics of the action potential waveforms in the
cable. Previous studies based on recordings from wedges
of canine ventricular tissue have suggested that Tpeak – Tend

is a measure of dispersion of repolarisation, from the
epicardium to the mid-myocardium, across the wedge
(Yan & Antzelevitch, 1998). Our analysis suggests that
rather than being a measure of the total dispersion,
Tpeak – Tend is determined by the interval from the time
of maximum repolarisation, i.e. when the sum of the rates
of repolarisation of all the cells in the cable is greatest,
to the end of mid-myocardial repolarisation. In relation
to Theight, much less is known about the cellular origins
of this ECG waveform. Our analysis suggested that Theight

is directly related to the total dispersion of repolarisation
in the cable. That is, the shorter the time between the
first repolarising cell and the last repolarising cell, the
higher the T wave. This is in agreement with observations
made in previous modelling and experimental studies
where decreased dispersion of repolarisation (as a result of
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hyperkalaemia and the subsequent increased conductance
of IKr) correlated with an increased amplitude of the T
wave (Yan & Antzelevitch, 1998; Gima & Rudy, 2002).

Limitations

In this study we focused on a single cellular model of
the ventricular action potential (O’Hara et al. 2011).
Clearly, different models may give different sensitivities,
based on the relative conductance levels of different ion
channels in the models. The O’Hara–Rudy model is
the only model based entirely on data recorded from
healthy human hearts, with the heterogeneous expression
of ion channel proteins between cell types (e.g. epi-,
endo- and mid-myocardial cells) based on expression data
from human tissue. With this in mind we considered it
an appropriate model for extrapolation to human ECG
signals. Similarly, in the construction of our cables we
have included mid-myocardial cells whose functional role
in the myocardium of the intact heart is still controversial
(Janse et al. 2011; Wilson et al. 2011). Much like the
choice of the specific cellular model, the construction of
the cable in relation to cell type and number may affect
the outcomes. Our primary goal, however, was not to
provide a comparison of different cellular models (indeed
this has already been carried out using PLS analysis at
the single cell level, Sobie, 2009) or cable assemblies, but
rather demonstrate the potential of the computational
framework we have developed when applied to emergent
properties of the cardiac electrical system.

A further point for consideration is that the expression
levels of ionic currents involved in repolarisation
(specifically IKs) in the O’Hara–Rudy model are
representative of low adrenergic tone. Previous studies
have demonstrated that IKs has little contribution to the
cardiac AP under these conditions. As a result, the AP
and ECG parameters examined in our study are relatively
insensitive to variability in GKs (see Supplemental
Figs 3–5). We would anticipate, however, that addition of
adrenergic signalling to the O’Hara–Rudy model would
result in GKs being a significant determinant of ECG
parameters. Previous studies that have compared different
cardiac AP models have indeed confirmed that GKs makes
an important contribution when its level of activity is
increased (Sarkar & Sobie, 2011).

Finally, calculating pseudo ECGs from a transmural
cable is clearly a simplification relative to a full ECG
recorded from a real heart. The consequences of this
are twofold. First, only information related to trans-
mural propagation can be inferred. As a result, while we
are able to analyse contributions of transmural cellular
heterogeneity to T wave morphology, as discussed above,
we cannot examine other scenarios, such as how spatial
heterogeneity from apex to base of the intact heart
contributes to T wave parameters such as Tpeak – Tend.

Second, pseudo ECGs are calculated as the spatially
weighted sum of the voltage gradient across the cable
measured from a single point. As a result of this, factors
that contribute to the shape of the T wave in real ECGs
such as T loop morphology (Malik & Batchvarov, 2000)
cannot be examined. Either of these limitations can be
addressed in future studies by extending our technique to
whole organs, as technology progresses.

Summary

The concept of multiple gene variants in the rhythmonome
contributing to population variability in ECG parameters
is one that has been qualitatively discussed for some time
(Grace & Roden, 2012). Furthermore, sensitivity analysis
of isolated cardiac cell models over the past few decades
has given us a semi-quantitative understanding of how
variability in the ionic conductances in the cell can alter
the electrical output at the level of the action potential. In
this study we have developed a novel, highly parallelised
simulation environment based on GPGPU, which has
enabled the application of PLS to quantify the effects
of individual ion channel conductance changes on the
electrical signals manifest in the ECG. In addition to
confirming many well-known clinical observations, we
have been able to perform the first quantitative analysis
of the molecular contributions to T wave amplitude in
the ECG. Our results demonstrate how multiple small
effect variants can combine to account for the significant
ECG parameter variability observed in the population. In
doing so this study provides the proof-of-principle that
it is possible to analyse the molecular basis of emergent
properties of multicellular preparations and provides the
computational framework for future studies, that will no
doubt be possible with further hardware development,
to achieve the ultimate goal of this approach, sensitivity
analysis of whole organ systems.
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Translational perspective

The power of computational modelling in developing our understanding of cardiac function lies
in the ability to evaluate relationships between parameters that are not experimentally tractable.
Sensitivity analysis of cellular models of electrical activity is one approach that has been employed
in understanding population variability in electrical phenotypes as well as epistatic modification of
disease. However, until this study, this type of analysis has been restricted to single cells as a result of
computational limitations and meaningful extrapolation to the whole heart has been limited. Using
an unconventional parallel computing approach, ours is the first study to complete a sensitivity
analysis of the emergent properties of an ECG signal.

From a translational perspective, this type of quantitative analysis of the molecular and cellular
basis of the T wave paves the way for better diagnostic reading of the ECG. For example, an
in-depth understanding of how individual ionic conductances in the cardiomyocyte influence T wave
morphology will allow faster and more accurate identification of the mechanism of pathogenesis in
patients. Furthermore, our analysis of the additive contribution of multiple gene variants to ECG
parameters provides a quantitative understanding of the role of epistatis in modification of cardiac
electrical phenotypes and acts as a framework for risk stratification in the context of a ‘second hit’,
either from multiple gene defects or acquired defects such as drug block.
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