Skip to main content
. 2013 Sep 20;8(9):e75853. doi: 10.1371/journal.pone.0075853

Figure 3. Probability distribution of nose speed in egl-30 mutants, egl-30 rescue mutants and hypoactive mutants during wake-like and sleep-like behavior.

Figure 3

Probability distribution of nose speeds during wake-like and sleep-like state. A wild type, B egl-30(tg26gf), C egl-30(n715sd), D egl-30(n715sd) transformed with a rescue construct expressed from its endogenous promoter, E egl-30(n715sd) transformed with a pan-neural rescue construct, F egl-30(n715sd) transformed with a muscle rescue construct, G acy-1(pk1279lf) and H unc-13(e51lf). We can exclude that the rescue of egl-30(n715sd) was caused by the myo-3 or unc-119 promoter regions, because transgenic worms that contained these promoters without the egl-30 cDNA such as pmyo-3::gcamp (Figure 4) or punc-119::gcamp (Figure 5) did not show rescue (Figure 4, 5 and data not shown). Complete immobility of the nose was virtually absent in egl-30 mutants, rescued by the egl-30 transgene and partially rescued by the pan-neural rescue construct. Values displayed show mean nose speed ± SEM. A paired sample Wilcoxon test was used for statistical testing of wake-like versus sleep-like behavior.