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Complex environmental drivers of
immunity and resistance in
malaria mosquitoes

Courtney C. Murdock, Lillian L. Moller-Jacobs and Matthew B. Thomas

Center for Infectious Disease Dynamics, Department of Entomology, Pennsylvania State University,
Merkle Lab, Orchard Road, University Park, PA 16802, USA

Considerable research effort has been directed at understanding the genetic

and molecular basis of mosquito innate immune mechanisms. Whether

environmental factors interact with these mechanisms to shape overall resist-

ance remains largely unexplored. Here, we examine how changes in mean

ambient temperature, diurnal temperature fluctuation and time of day of

infection affected the immunity and resistance of Anopheles stephensi to infec-

tion with Escherichia coli. We used quantitative PCR to estimate the gene

expression of three immune genes in response to challenge with heat-

killed E. coli. We also infected mosquitoes with live E. coli and ran bacterial

growth assays to quantify host resistance. Both mosquito immune par-

ameters and resistance were directly affected by mean temperature,

diurnal temperature fluctuation and time of day of infection. Furthermore,

there was a suite of complex two- and three-way interactions yielding idio-

syncratic phenotypic variation under different environmental conditions.

The results demonstrate mosquito immunity and resistance to be strongly

influenced by a complex interplay of environmental variables, challenging

the interpretation of the very many mosquito immune studies conducted

under standard laboratory conditions.
1. Introduction
Throughout the past two decades, researchers have made great strides in

describing the innate immune system of mosquito vectors [1], in defining the

key genetic players shaping mosquito resistance to vector-borne pathogens

(such as malaria and dengue virus) [2–4] and in identifying potential targets

for genetic manipulation [5–7]. By and large, most of this research has been

conducted under simplified laboratory conditions with tight control over vari-

ables, like environmental temperature. Yet, mosquitoes and their parasites

associate in a variable environment [8–10]. Studies on a wide range of invert-

ebrates show that small, realistic changes in ambient temperature can shape

host resistance (reviewed in [11]). Further, it is well established that temperature

has diverse impacts on mosquito physiology [12–14] and the development

rates of key vector-borne parasites [15,16–19]. Thus, it would be surprising if

mosquito resistance mechanisms, for instance immune function, were not

sensitive to changes in temperature.

Recently, we demonstrated in a malaria mosquito that expression of immune-

related genes, together with functional measures of cellular and humoral resist-

ance, do indeed vary with temperature [20]. Importantly, variation across

temperature did not simply scale quantitatively with temperature; individual

measures of immunity exhibited different thermal optima and distinct patterns

of expression over time in response to different immune challenges [20]. This

recent study, like others [12,21,22], considered a range of constant temperature

environments. However, mosquitoes live in environments that often change

dynamically throughout the day, between different habitats (e.g. indoors versus

outdoors) and across seasons [14,23]. Evidence from numerous ectotherm systems
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(including mosquitoes) indicates that short-term temperature

variation, for instance diurnal fluctuation, can affect a range

of life-history traits relative to constant temperature environ-

ments [24,25–28]. In addition to extrinsic influences like

temperature, the resistance of Drosophila melanogaster to bac-

terial infection has been shown to depend on the time of day

flies are infected owing to a clock-regulated transient burst in

the expression of innate immune genes [29]. Elements of mos-

quito behaviour [30–32], physiology [33,34] and some aspects

of immune function [33] have also been shown to be under

rhythmic control, suggesting that mosquitoes might vary in

their susceptibility to infection with time of day. Whether diur-

nal temperature fluctuation and time of day of infection affect

mosquito immunity and resistance remains largely unexplored.

In this study, we investigated how variation in mean temp-

erature, diurnal temperature fluctuation and time of day shape

the immunity and resistance of the Asian malaria vector Ano-
pheles stephensi. We examined expression of three key immune-

related genes (defensin 1 (DEF1), cecropin 1 (CEC1) and nitric
oxide synthase (NOS)) and resistance to infection with Escheri-
chia coli. DEF1 and CEC1 encode two antimicrobial peptides

that are active against Gram-positive and -negative bacteria,

filamentous fungi [35,36] and have been implicated to some

extent with Plasmodium killing [37,38]. NOS encodes nitric

oxide, an effector molecule that is involved in a multitude of

immune responses toward a wide diversity of pathogens

and parasites [39] and has been implicated as a major anti-

malarial defence in the mosquito midgut epithelia [40,41].

Further, in a previous study, we have demonstrated that

these three immune genes are differentially affected by

changes in mean ambient temperature [20]. Building upon

this research, we show direct effects of mean temperature,

diurnal temperature fluctuation and time of day of infection,

together with complex two- and three-way interactions, differ-

entially affecting expression of individual immune genes,

in vivo bacterial growth and mosquito survival. These results

indicate that overall patterns of immunity and resistance are

strongly influenced by environmental drivers and highlight

the need to consider environmental context to better under-

stand mosquito immunity and vector–parasite interactions.
2. Material and methods
(a) Mosquito rearing and experimental design
We reared An. stephensi (Liston) under standard insectary

conditions at 26+ 0.58C, 80% humidity and a 12 L : 12 D

photo-period [20]. Upon adult emergence, males were separated

from females and the males discarded. On day three post-

emergence, female mosquitoes were then provided a bloodmeal

from rats (Wistar, more than six weeks old). We conducted two

experiments to assess how temperature, diurnal temperature

fluctuation and time of day influence the expression of mosquito

immune genes and resistance to bacterial infection. In both

experiments, mosquitoes were anaesthetized on ice and chal-

lenged with 200 000 heat-killed (gene assay) or 2000 live

(resistance assay) tetracycline-resistant GFP-expressing E. coli
(dh5 alpha strain) through intrathoracic injection into the anepis-

ternal cleft [42] with a mouth pipette and microcapillary glass

needle. Mosquitoes were challenged/infected either in the morn-

ing (06.00) or evening (18.00) and were then distributed over 12

Percival incubators (three constant temperatures of 188C, 268C
and 328C; three diurnally fluctuating temperatures of 18+ 68C,

26+ 68C and 32+ 68C, and two replicates). All temperatures
were controlled to +0.58C, with a relative humidity of 80+5%

(see the electronic supplementary material, methods).

Temperature fluctuation was programmed using an asymm-

etrical, minimum–maximum temperature model (see electronic

supplementary material, methods, Parton–Logan model [43]),

in which temperature follows a sinusoidal progression during

the daytime and a decreasing exponential curve during the

night. This temperature model reproduces realistic diurnal temp-

erature fluctuations for a range of average temperatures [43,44].

This experimental design resulted in two levels of sampling

times (06.00 and 18.00), three levels of constant ambient tempera-

tures (188C, 268C and 328C), two levels of fluctuation (constant

versus variable) and two replicates (see electronic supplementary

material, methods).
(b) Immune challenge with Escherichia coli
For both experiments, we grew E. coli overnight in a Luria-Bertani’s

rich nutrient medium (LB broth) in a shaking incubator at

378C, and a serial dilution was prepared from the overnight cul-

ture. The concentration of our bacterial stock was estimated by

recording the absorbance (OD600) from each dilution using a

Nanodrop (Thermal Scientific). We then either concentrated or

diluted our stock to ensure a working concentration of 1 � 109

E. coli per ml (i.e. 200 000 E. coli per injection) for the gene

expression assays or 1 � 107 E. coli per ml (i.e. 2000 E. coli per

injection) for the mosquito resistance assay. To further confirm

these estimates, we plated our injection solution in triplicate

onto LB agar plates, placed them overnight into an incubator at

378C, and counted the resulting colony forming units (CFUs)

the next day. For the gene expression assays, we then killed the

E. coli stock by autoclaving for 25 min. Heat-killed E. coli rather

than live E. coli was used as our challenge in the gene expression

assay in order to isolate the effects of experimental treatment on

gene expression and to avoid temperature-mediated variation

in bacterial growth within mosquitoes housed in different

temperature treatments [20]. Further, we chose to work with a

significantly higher dose of heat-killed E. coli and a lower dose

live E. coli in the gene expression and mosquito resistance

experiments, respectively, so as to maximize mosquito immune

responses to immune challenge and to generate quantifiable

estimates of bacterial growth across 24 h.
(c) Gene expression assays: RNA collection,
cDNA synthesis and quantitative PCR

Twenty-four hours post-challenge, mosquitoes were removed

from their temperature treatment. To assess mortality, we first

quantified and removed dead mosquitoes. Of the remaining

mosquitoes, we killed them with chloroform and immediately

stored them in RNAlater RNA stabilization reagent at 48C until

termination of the experiment. Five mosquitoes from each

treatment group (n ¼ 360 total) were isolated individually in

b-mercaptoethanol and RLT lysis buffer. Messenger RNA was

extracted and quantified as described in [20]. Briefly, owing to

the thermal sensitivity of ribosomal protein S7 (rpS7) [20], a stan-

dard housekeeping gene in mosquito gene expression studies

[41,45,46], we chose to quantify our diluted cDNA from our

experimental samples by comparing their threshold cycle num-

bers against a standard curve generated from 1 : 10 serial

dilutions of our standard sample (cDNA from a pool of four

mosquitoes). We quantified cDNA counts for each gene of inter-

est (DEF1, CEC1, NOS and rpS7) from individual mosquitoes

collected across all experimental treatments relative to a standard

curve produced for that gene. To account for individual differ-

ences in background gene expression, rpS7 cDNA counts were

included as a covariate in our statistical analyses (see below).
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(d) Measuring in vivo bacterial growth and
mosquito mortality

To estimate mosquito resistance to infection, we recorded in vivo
bacterial growth 24 h post-infection. To assess in vivo bacterial

growth, live mosquitoes were put immediately in the freezer for

5 min. Once anaesthetized, mosquitoes were maintained on ice

to limit any further bacterial growth prior to homogenization,

and dead mosquitoes were counted and removed from each cup

to assess mortality. From each experimental treatment group,

three pools of three mosquitoes each were homogenized in

200 ml of 1� sterile phosphate-buffer saline (PBS) solution using

a hand held mortar and pestle. After homogenization, we added

800 ml more of 1� PBS to each sample and made a series of

dilutions in water (1 : 5, 1 : 10 and 1 : 50). We then plated 25 ml of

each dilution in triplicate on tetracycline embedded, nutritive

agar plates, which were then placed into an incubator at 378C.

Twenty-four hours later, we removed the plates and counted the

number of colony forming units that had formed on each plate.

Across both the gene expression and mosquito resistance assays,

we recorded daily mosquito mortality.
(e) Statistical analyses
All statistical analyses for these experiments were run in IBM SPSS

STATISTICS v. 21.0 (IBM Corporation). Full factorial models from gen-

eralized linear model (GZLM) analysis were reduced through

backward elimination of non-significant interactions. We assessed

goodness of fit of the final models through model deviance, log

likelihood values and model residuals. Covariates included in

GZLMs were centred on their grand mean, and adjusted Bonfer-

roni post hoc tests were used to identify significant pairwise

comparisons. For all dependent variables analysed, we included

the following factors in our model analysis: time of day (06.00

and 18.00), temperature (188C, 268C and 328C), diurnal temperature

fluctuation (+08C and +68C) and replicate.
(i) Gene expression
To compare differences in average gene expression among our

experimental treatment groups, we used the cDNA counts

generated for each target gene from our standard curve analysis

as our expression measure. Because the error structures for the

expression of each gene were overdispersed, we transformed

the cDNA counts (cube-root) for DEF1, CEC1 and NOS and ana-

lysed all expression data with GZLMs assuming a normal

distribution for the transformed dependent variables. Full factor-

ial analyses were run for each gene separately to control for any

differences in efficiencies among our assays as well as indepen-

dence among our experimental samples. In addition to the

factors described above, we included immune challenge (un-

manipulated, injured or heat-killed E. coli) as an additional factor

in all models. We also included the equivalently transformed

and centred rpS7 cDNA counts of each sample as a covariate in

all models to adjust our estimated means of our target gene by

any differences in baseline expression among mosquitoes and to

improve overall model fit [20]. To assess mosquito mortality in

response to heat-killed E. coli challenge, we used Poisson fit

GZLM analysis (log link function) to compare how the average

number of dead mosquitoes varied with the following fixed fac-

tors: temperature (188C, 268C or 328C), diurnal temperature

fluctuation (+08C or +68C), time of day of immune challenge

(06.00 or 18.00), immune challenge (unmanipulated, injured or

heat-killed E. coli) and replicate.
(ii) Resistance to bacterial infection
To examine the effect of experimental treatment on bacterial

growth within the mosquito, we ran a GZLM analysis assuming

a gamma distribution (log link function) on the mean number of

colony forming units. To assess mosquito mortality in response

to live E. coli infection across 24 h, we used Poisson fit GZLM

analysis (log link function) to compare how the average

number of dead mosquitoes varied with the following fixed fac-

tors: temperature (188C, 268C or 328C), diurnal temperature

fluctuation (+08C or +68C), time of day of infection (06.00 or

18.00) and replicate. We also incorporated centred mean E. coli
growth (CFUs recovered) over 24 h as a covariate to account

for any potential relationship between in vivo bacterial growth

and mosquito mortality.
3. Results
(a) Defensin expression
(i) Effects of immune challenge
Immune challenge significantly affected the expression of DEF1
(table 1). As indicated by two, two-way interactions (time of

day � immune challenge and temperature � immune chal-

lenge) the effect of immune challenge was mediated by the

time of day the challenge was administered and variation in

mean ambient temperature. For example, mosquitoes chal-

lenged with heat-killed E. coli in the morning expressed

significantly more DEF1 than injured ( p , 0.0001) and unmani-

pulated mosquitoes ( p , 0.0001; figure 1a). By contrast, there

was no significant effect of injury or challenge with heat-killed

E. coli in the evening. Mosquitoes challenged with heat-

killed E. coli expressed significantly more DEF1 than injured

( p ¼ 0.032) or unmanipulated mosquitoes ( p , 0.0001), irre-

spective of time of day of immune challenge, when

mosquitoes were placed into a cool temperature (188C; figure

1b). Interestingly, DEF1 expression levels did not significantly

differ with immune challenge when mosquitoes were housed

at warmer temperatures (268C and 328C; figure 1b).

(ii) Effects of environmental variation overall
Regardless of immune challenge, the expression of DEF1
varied significantly with time of day, mean ambient temp-

erature and diurnal temperature fluctuation as indicated

by a three-way interaction (time of day � temperature �
fluctuation; table 1). Mosquitoes placed into a diurnally fluctu-

ating, cool environment in the morning expressed significantly

more DEF1 in general than mosquitoes housed in a cons-

tant, cool environment (06.00, 18+08C versus 18+68C,

p ¼ 0.001), or those mosquitoes placed into a constant

(06.00, 18+68C versus 18.00, 18+08C) or fluctuating (06.00,

18+68C versus 18.00, 18+68C p , 0.0001), cool environment

in the evening (figure 1c). This effect of diurnal fluctuation,

however, disappears at warmer temperatures (268C and

328C) when mosquitoes were placed into their experimental

treatments in the morning, and across all temperatures if mos-

quitoes were placed into their experimental treatments in the

evening (figure 1c).

(b) Cecropin expression
(i) Effects of immune challenge
Like DEF1 expression, CEC1 expression was significantly

affected by immune challenge (table 1). The effect of immune
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defensin1 (DEF1) expression. (a) The expression of DEF1 in response to
immune challenge varies depending on the time of day mosquitoes are chal-
lenged (06.00, black line; 18.00, red line). (b) DEF1 expression in response to
immune challenge (unmanipulated, black line; injury, blue line; and heat-
killed E. coli, red line) varies depending on the mean ambient temperature
mosquitoes experience after immune challenge. (c) Independent of immune
challenge, DEF1 expression differs depending on the time of day (06.00, black
line; 18.00, red line) a mosquito is challenged, the ambient temperature a
mosquito is housed in, and whether or not there is diurnal temperature
fluctuation (+08C, solid lines; +68C, dashed lines). Asterisks denote sig-
nificant differences of p , 0.05, and bars around population means
represent standard errors.
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Figure 2. The effects of temperature, diurnal fluctuation and time of day on
cecropin1 (CEC1) expression. (a) The amount of CEC1 in response to immune
challenge (unmanipulated, black line; injury, blue line and heat-killed E. coli,
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toes experienced and the time of day challenge occurred (06.00, solid lines;
18.00, dashed lines). (b) Independent of immune challenge, the expression of
CEC1 varied significantly with the mean ambient temperature a mosquito
experiences, the time of day mosquitoes were placed into their temperature
treatments (06.00, black lines; 18.00, red lines), and whether or not there
was diurnal fluctuation (+08C, solid lines; +68C, dashed lines). Asterisks
denote significant differences of p , 0.05, and bars around population
means represent standard errors.
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challenge on CEC1 expression varied depending on the average

temperature at which mosquitoes were housed and whether

they were challenged in the morning or evening, as indicated

by a significant two- (temperature � immune challenge) and

three-way interaction (time of day � temperature � immune

challenge; table 1). Mosquitoes expressed quantitatively and

qualitatively different amounts of CEC1 depending on the

time of day of challenge, the mean ambient temperature mos-

quitoes were housed in and the nature of the immune

challenge (injury versus heat-killed E. coli; figure 2a).

(ii) Effects of environmental variation overall
Like DEF1, CEC1 expression was significantly affected by time

of day, mean ambient temperature and diurnal temperature

fluctuation regardless of immune challenge owing to two
significant two-way interactions (time of day � temperature

and temperature � fluctuation) and a significant three-way

interaction (time of day � temperature � fluctuation; table 1).

Mosquitoes placed into a 268C, diurnally fluctuating environ-

ment, expressed significantly more CEC1 than mosquitoes

placed into a constant 268C environment in the morning

( p , 0.001; figure 2b); this occurs mainly because mosquitoes

placed into constant environments in the morning express sig-

nificantly less CEC1 at 268C relative to those placed into a

constant, cool environment (06.00: 18+08C versus 26+08C,

p ¼ 0.009; figure 2b). By contrast, there is no effect of diurnal fluc-

tuation when mosquitoes were placed into cooler (188C) or

warmer (328C) environments in the morning or across all temp-

eratures in the evening (figure 2b). Finally, mosquitoes placed

into warm, constant environments in the evening expressed

significantly more CEC1 than those placed into cool, constant

environments (18.00: 18+08C versus 32+08C; figure 2b).
(c) Nitric oxide synthase expression
NOS expression was significantly shaped by immune chal-

lenge overall (table 1) and this effect was influenced by both

the time of day of immune challenge and mean ambient temp-

erature, illustrated by a significant three-way interaction (time

of day � temperature � immune challenge; table 1). Mean

ambient temperature only affects NOS expression in response

to immune challenge when mosquitoes were challenged in the

evening; mosquitoes challenged in the evening with heat-
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Figure 3. The effects of temperature, diurnal fluctuation and time of day on
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Table 2. Final results from GZLM analysis for E. coli growth within the mosquito and mosquito mortality. Significant effects are in italic ( p , 0.05) for each
response variable, and dashes indicate higher order interactions that were eliminated from the full model. (Omnibus tests confirmed that each fitted GZLM
model was significantly different from its null model (bacterial growth: likelihood ratio x2

1;8 ¼ 32:21, p , 0.0001; mortality: likelihood ratio x2
1;7 ¼ 99:354,

p , 0.0001). Goodness of fit was assessed by evaluating potential overdispersion through model deviance scores and model residuals (bacterial growth:
deviance/d.f. ¼ 2.390; mortality: deviance/d.f. ¼ 1.688).)

bacterial survival (n 5 72 pools) mosquito mortality (n 5 48)

factors Wald x2 d.f. p-value Wald x2 d.f. p-value

intercept 4978.56 1 ,0.0001 136.37 1 0.42

time of day 2.56 1 0.110 1.04 1 0.33

temperature 17.97 2 ,0.0001 42.26 2 ,0.0001

fluctuation 6.57 1 0.010 5.76 1 0.068

replicate 0.05 1 0.827 13.32 1 0.001

centred mean E. coli CFUs — — — 0.26 1 0.607

time of day � temperature 19.32 2 ,0.0001 17.45 2 ,0.0001

time of day � fluctuation 10.67 1 0.001 — — —
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killed E. coli and placed into the standard rearing temperature

for An. stephensi (268C) expressed significantly more NOS
than injured ( p ¼ 0.003) and unmanipulated mosquitoes

( p ¼ 0.003). In fact, immune challenge becomes irrelevant

when mosquitoes were placed into cool (188C) or warm

(328C) environments in the evening or if mosquitoes were

challenged and housed at any temperature in the morning

(figure 3). Finally, unlike DEF1 and CEC1 expression, diurnal

temperature fluctuation did not significantly shape NOS
expression, with mosquitoes expressing similar amounts of

NOS in constant and diurnally fluctuating environments and

across all mean ambient temperatures.

(d) Mosquito resistance assays
(i) Bacterial growth
Escherichia coli growth within the mosquito was significantly

affected by changes in ambient temperature, diurnal temp-

erature fluctuation and time of day at mosquitoes were

infected (table 2), represented by two significant two-way

interactions (time of day � fluctuation and time of day �
temperature). Regardless of mean ambient temperature,
mosquitoes significantly limited bacterial growth when they

were infected in the morning and placed into a diurnally fluc-

tuating environment relative to those infected in the morning

and placed into a constant thermal environment ( p ¼ 0.008),

or those infected in the evening and placed into a fluctuating

environment ( p ¼ 0.019; figure 4a). The effect of diurnal

temperature fluctuation no longer significantly affected mos-

quito resistance to bacterial growth when mosquitoes were

infected in the evening (figure 4a). Overall, in vivo bacterial

growth was greatest at 268C when mosquitoes were infec-

ted in the morning relative to those also infected in the

morning, but placed into a cool/warm ambient temperature

(188C versus 268C, p ¼ 0.016; 268C versus 328C, p ¼ 0.020;

figure 4b). However, when mosquitoes were infected with

E. coli in the evening, the effect of ambient temperature on

mosquito resistance is no longer significant (figure 4b).
(ii) Mosquito mortality
Patterns of mosquito mortality were similar across both the

gene expression (see electronic supplementary material,

results) and mosquito resistance assays, with significant

effects of mean ambient temperature and an interaction

between time of day and ambient temperature (time of

day � temperature; table 2 and electronic supplementary

material, results). Overall, the mean number of dead mosqui-

toes was significantly higher (three to four times higher)

when mosquitoes were infected with live E. coli compared

with dead E. coli (compare results in electronic supplemen-

tary material, figure SI 1 with figure 4). Further, in vivo
bacterial growth was not a significant predictor of mosquito

mortality in the resistance assay (table 2). In both the gene

expression and mosquito resistance assays, the number of

dead mosquitoes overall increased when mosquitoes were

infected in the morning and then were housed at a warm

temperature (328C) relative to cooler temperatures (both

assays: 188C versus 268C, p , 0.0001; 188C versus 328C,

p , 0.0001). This trend, however, qualitatively changes in

both assays when mosquitoes are infected in the evening.

In the gene expression assay, there was no significant effect

of temperature on mosquito mortality when mosquitoes
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Figure 4. Bacterial growth in vivo and mosquito mortality are affected by
ambient temperature, temperature fluctuation and time of day of infection.
(a) Regardless of mean ambient temperature, bacterial growth (E. coli CFUs)
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effect of mean ambient temperature on E. coli growth within the mosquito
(b) and mosquito mortality (c) were also significantly shaped by the time of
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cant differences ( p , 0.05), and bars around population means represent
standard errors.
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were infected in the evening (see electronic supplementary

material, results), whereas in the mosquito resistance assay

mosquitoes infected in the evening experienced significantly

more mortality when placed into cool (188C) and warm

(328C) temperatures (188C versus 268C, p ¼ 0.0016; 268C
versus 328C, p , 0.0001; figure 4c). We did have a significant

replicate effect in the resistance assay, with mosquitoes

in replicate two experiencing higher mortality on average

than those in replicate one (table 2); however, the effects of

mean ambient temperature, diurnal temperature fluctuation

and time of day did not qualitatively differ between replicates.
4. Discussion
Our results add to a growing body of literature demonstrat-

ing the potential for complex interactions among
environmental variables and invertebrate immunity/resist-

ance [28,47,48]. Both the expression of mosquito immune

genes (DEF1, CEC1 and NOS) and mosquito resistance to

bacterial infection (i.e. in vivo bacterial growth and mosquito

mortality) were strongly shaped by realistic environmental

variation. Such effects are likely to contribute to marked

heterogeneity in immune function and resistance (including

natural refractoriness to malaria parasites) across time and

space, and challenge the robustness of the mechanistic

insights gained from studies conducted under a constrained

set of laboratory conditions.

Our constant and fluctuating temperature treatments were

set up to provide approximately equivalent mean tempera-

tures to one another. However, because we used a realistic

asymmetric diurnal fluctuation rather than a symmetrical

sine function, the cumulative degree hours were not identical

between the paired temperatures, and the actual daily mean

temperatures in the fluctuating treatments exceeded those of

the constant treatments by around 0.18C. Such small differ-

ences are unlikely to explain the magnitude of the effects of

fluctuation on our response variables. Moreover, we observed

significant interactions between diurnal temperature fluctu-

ation and time of day, suggesting that the portion of the

diurnal fluctuation (e.g. cooling versus warming) experienced

directly following challenge/infection is important.

Unsurprisingly, immune challenge significantly increased

the expression of antimicrobial peptides and NOS; in all

cases, this effect was moderated by mean ambient tempera-

ture, diurnal temperature fluctuation and the time of day of

immune challenge. Mean ambient temperature differentially

shaped the expression of mosquito immune genes in

response to heat-killed E. coli, with DEF1, CEC1 and NOS
expression experiencing diverse thermal maxima, which

replicates well with our previous study [20]. The expression

of both antimicrobial peptides and NOS were also signifi-

cantly affected by the time of day mosquitoes were

immune-challenged, with time of day affecting the precise

direction of antimicrobial peptide and NOS expression in

different ways (i.e. antimicrobial peptides and NOS were

expressed more, on average, when challenge occurred in

the morning and evening, respectively). These effects

occurred whether or not mosquitoes were in a constant or

fluctuating thermal environment suggesting that DEF1,

CEC1 and NOS are under some sort of rhythmic control.

This seems reasonable considering a significant portion of

the An. gambiae genome exhibits diel rhythms in expression

[33], and D. melanogaster has a number of clock-regulated

immune genes [29]. Yet, there were also interactions between

temperature fluctuation and the time of day suggesting that

rhythmic effects can integrate with diurnal temperature pro-

files to influence immunity and resistance. The mechanisms

are currently unclear, but the interaction could occur for a

variety of reasons. First, immune molecules could interact

with, or compete for resources with other metabolic processes

resulting in a redistribution of immune molecules based on

an organism’s activity schedule [49–51] and with physiologi-

cal processes required for temperature acclimation. This

mechanism could also be driving the effect of the three-way

interaction among mean ambient temperature, diurnal fluctu-

ation and time of day on gene expression of antimicrobial

peptides independent of immune challenge. Many studies

have demonstrated circadian and seasonal changes in

physiology and immunity in a wide diversity of organisms
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[52–54], suggesting that mosquito susceptibility could

change with particular aspects of a mosquito’s life history.

Second, immune responses and parasite processes could

have different thermal optima [20,55]; thus, the temperature

at and immediately following infection could dramatically

impact parasite establishment [11,41,56]. Or third, as

suggested by the observed interactions among temperature,

diurnal temperature fluctuation and immune challenge,

could be some combination of both.

We initially expected bacterial growth within the mos-

quito, as well as mosquito mortality, to increase with

temperature regardless of time of infection because E. coli is

typically cultured at 378C. However, this was not the case

and in vivo bacterial growth was not a significant predictor

of mosquito mortality. Alternatively, owing to the qualitat-

ively similar trends in mosquito mortality in the gene

expression assays, the mosquito mortality in the resistance

assay could be owing to increased immunopathology associ-

ated with live infections.

There are some suggestive associations between in vivo
bacterial growth, mosquito mortality and the patterns of anti-

microbial peptide expression we observe. E. coli experienced

increased within host growth when mosquitoes were infected

in the evening and subjected to constant temperature

environments, whereas mosquitoes in general expressed the

least DEF1 and CEC1 in these environments in response to

heat-killed E. coli (figures 1 and 2). Thus, lower levels of

DEF1 and CEC1 may indicate lower immune responses to

infection under these circumstances. There might also be a

link between bacterial growth and NOS expression because

NOS is a key enzyme secreted by mosquito midgut, fat

body and haemocytes in the defence against bacterial patho-

gens [42]. If NOS enzyme production correlates with NOS
expression, significant increases in NOS expression in mos-

quitoes challenged with heat-killed E. coli in the evening

might explain why bacterial growth and mosquito mortality

was highest on average when mosquitoes were challenged in

the morning.

However, the functional role of these immune measures

remains slightly uncertain. For example, there is some evi-

dence for differential activity of antimicrobial peptides

in vitro as compared with in vivo [57]. Moreover, the

expression of antimicrobial peptides and NOS interact with

other components of the immune response mosquitoes

mount toward bacterial infection. Both antimicrobial pep-

tides and the NOS enzyme have been shown to interact

with a thioester-containing protein (TEP1), a complement-

like protein, which functions as an opsonin that binds cova-

lently to the surface of both Gram-positive and -negative
bacteria stimulating their clearance through phagocytosis by

circulating granulocytes [58,59]. In the absence of gene silen-

cing, the mechanistic link between our immune measures and

resistance is currently unclear, and we cannot ultimately say

whether these responses are resistance mechanisms or a con-

sequence of infection [60]. What these results definitively

demonstrate is how environmental variation can influence

mosquito immunity and resistance in qualitatively diverse

ways that could be biologically important and are both com-

plex and nonlinear.

In this study, we considered only three immune-related

genes and one pathogen; however, there is little reason to

assume these to be uniquely sensitive to environmental vari-

ation. The effects we observe might be especially important

for pathogens and parasites with developmental stages that

are sensitive to both temperature and timing of innate

immune responses, like malaria [19,41,61]. Our data suggest

that mean temperature, diurnal temperature variation and

the timing of blood feeding could combine to determine net

vector competence [28,62,63]. Such effects are also likely to

influence the efficacy of prospective vector control tools that

exploit immune mechanisms or use pathogens or parasites

[45,64,65], and might even affect conventional tools, for

instance chemical insecticides. Indeed, insecticide resistance

has been shown to vary in Aedes aegypti depending on time

of day of exposure [66,67] and to vary with temperature in

An. stephensi [68].

In summary, altering just one variable (e.g. time of day or

temperature variation) can dramatically affect patterns of

gene expression and resistance. In reality, we expect multiple

interacting variables to change simultaneously. With such

complexity, figuring out how environmental parameters

mechanistically influence mosquito physiology, immunity

and resistance is non-trivial. Nonetheless, our results clearly

highlight the need to consider mosquito immunity and resist-

ance beyond the limits of standard insectary conditions.
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