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Abstract
Objectives—A source of variation for inconsistent dietary-pancreatic cancer associations may be
individuals carrying constitutional metabolism/antioxidant gene variants differentially benefit
compared to homozygous individuals. Seventy-six tag SNPs were genotyped in thirteen candidate
genes to test differential associations with pancreatic adenocarcinoma.

Methods—A clinic-based case-control design was used to rapidly ascertain 251 cases and 970
frequency matched controls who provided blood samples and completed a 144-item food
frequency questionnaire. SNPs were evaluated using a dominant genetic model and dietary
categories split on controls’ median intake. Logistic regression was used to calculate odds ratios
and 95% confidence intervals, adjusted for potential confounders.

Results—Significant increased associations (Bonferroni corrected P ≤ 0.0007) were observed for
carriers of ≥ 1 minor allele for rs3816257 (glucosidase, alpha; acid [GAA]) and lower intake of
deep-yellow vegetables (1.90[1.28,2.83]); and carriers of no minor allele for rs12807961
(catalyase [CAT]) and high total grains intake (2.48[1.50,4.09]) while those with ≥ 1 minor allele
had a decreasing slope (across grains). The reference group was no minor alleles with low dietary
intake.

Conclusions—Inter-individual variation in metabolism/antioxidant genes could interact with
dietary intake to influence pancreatic cancer risk.
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INTRODUCTION
World-wide, pancreatic cancer represents a devastating disease with high mortality among
those diagnosed 1. There is a relatively greater disease burden in more developed nations,
such as the United States, where the American Cancer Society estimates there will be 43,920
new cases of pancreatic cancer and 37,390 deaths 2 in 2012. There is lack of successful early
detection methods 3, and an extremely poor prognosis, with a 1-year survival rate of 25%
and a 5-year survival rate of 4%4. An important strategy at present is to focus on prevention
through identification of modifiable risk factors.

Based on an extensive literature review, the World Cancer Research Fund/American
Institute for Cancer Research (WCRF/AICR) reported that there is limited evidence to
suggest that fruits protect against pancreatic cancer, and there is inconsistent evidence of a
risk relationship with vegetables5. Since 2006, five case-control studies have reported an
inverse association between pancreatic cancer and consumption of fruits6, vegetables7,
fiber8 and/or whole grains9, 10. During the same period, four cohort studies have reported
overall null associations 11–15 except in high risk group sub-analyses12, 14. Possible
explanations for inconsistency between case-control and cohort studies include information
bias with respect to dietary ascertainment, homogeneous intake, and variability in
histologically-verified tumor types11.

Another suggested explanation for these diet-cancer inconsistencies involves variation of
polymorphisms in genes involved in metabolizing components of fruits, vegetables, fiber,
and grains or antioxidant defense. To date, there has been a limited number of epidemiologic
studies that investigate pancreatic cancer risk associated with polymorphisms in antioxidant
genes, glucose metabolism genes, or carcinogen metabolism genes. Among antioxidant
genes, pancreatic cancer has shown null16, 17 and increased18 associations with SNPs of
manganese superoxide dismutase (SOD2) with some observed significant interactions with
diabeties19, and dietary intake of vitamin E19, lutein/zeaxanthin, lycopene, α-carotene, and
α-tocopherol.20 Among glucose metabolism genes, a SNP in glucokinase (GCK) has been
associated with better overall survival.21 Among carcinogen metabolism genes, a SNP in
UGT1A7 has been associated with pancreatic cancer especially in younger smokers and
those with chronic pancreatitis22, but has also shown null results along with UGT1A9.23, 24

Significant interaction effects have been observed between GSTT1 and heavy smokers,25

and GSTP1 and older age.26 Additional evidence exists for other cancers. In breast cancer,
significant interactions have been found between consumption of fruit and vegetables and
variation in CAT27, SOD228, 29, or MPO27, 30; similar interactions have been reported for
cruciferous vegetables and GSTP31; and fruit and CAT32. However, others reported null
results when examining fruit and vegetables and CAT33, SOD234, or GSTM135; as well as
vegetables and GSTA1 36. For prostate cancer, an interaction was seen between fruit and
vegetable intake and CAT37, while in lung cancer there was an interaction between GSTM1
and intake of cruciferous vegetables38, 39.

As there has been a demonstration in several cancers that the association of fruit and
vegetable intake is modified by polymorphisms in metabolism/antioxidant genes, we
hypothesized that the same would be true for pancreatic cancer. Based on a literature search
and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database40–42, we
identified 13 metabolism/antioxidant genes of interest: catalase (CAT), glucosidase, alpha;
acid (GAA), glucokinase (GCK), glutathione S-transferases: alpha 1 (GSTA1), and pi 1
(GSTP1), metallothionein 1E (MT1E), manganese superoxide dismutase (SOD2), UDP-
glucuronosyltransferase 1 family, polypeptide: A6 (UGT1A6), A7 (UGT1A7), A8
(UGT1A8), A9 (UGT1A9), UDP-glucuronosyltransferase 2 family, polypeptide:B4
(UGT2B4), and B7 (UGT2B7). These genes were selected for their involvement in the
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following pathways: antioxidant, starch and sucrose, glycolysis, glutathione, and fructose.
CAT is involved in antioxidant binding and is a major heme enzyme converting H2O2 to
H2O and O2

43. A common polymorphism in the promoter region of the CAT gene consists
of a C to T substitution at position −262 in the 5′ region and results in lower enzyme
activity43. CAT activity has been demonstrated to decline with age similar to antioxidant
capacity44–46. SOD2 is important to mitochondrial antioxidant defenses, as it destroys
superoxide anion radicals. The protein is translated from nuclear DNA and transferred to the
mitochondria47, 48. The polymorphism substitution of C for T changes the amino acid from
alanine to valine which may decrease activity and translocation of the protein into the
mitochondrial matrix as a result of structural modification47–51. Overexpression of SOD2
has been shown to reverse a malignant pancreatic cancer phenotype52. MT1E interacts with
glucocorticoids and heavy metals and has been linked with antioxidants53. GAA is required
for the conversion of glycogen to glucose, a form of starch metabolism. GCK is involved
with the metabolism of sugars including fructose. GCK catalyzes the ATP dependent
phosphorylation of glucose and maintains glucose homeostasis by regulating insulin
secretion54. GCK – 515G>A has been associated with reduced beta-cell function55. GCK
IVS1 +9652T allele is in linkage with the −515A allele and has been associated with
decreased PC risk in non-diabetics but increased PC in diabetics and reduced overall
survival in PC patients21. There have been interindividual differences in glucuronidation,
suggesting an important role for the family of UDP-glucuronosyltransferases (UGT)56.
These genes conjugate endogenous and exogenous compounds with 5′-diphosphoglucuronic
acid to form glucuronidated compounds that are more water soluble and easily excreted.
Enzymes encoded by UGT1A conjugate estrogens, bilirubin, and xenobiotic compounds
including PhIP and enzymes encoded by UGT2B regulate bile acids, androgens, and
drugs57. Genetic polymorphisms have been identified that alter enzyme expression and/or
activity and affect carcinogen clearance57. For example, UGT1A1*28 polymorphism with 7
thymine adenine repeats rather than 6 TA repeats result in lower promoter activity due to
reduced binding of TATA binding proteins58, 59 and may increase risk of cancer60–63 as a
result of decreased ability to excrete potential carcinogen56, 64–67. Glutathione S-transferase
pi 1 (GSTP1) belongs to a family of enzymes that have a role in detoxification of many
hydrophobic and electrophilic compounds with reduced glutathione, thereby protecting the
cell from reactive oxygen species and products of peroxidation40. A polymorphism (A to G)
within the binding site of GSTP1 causes an amino acid substitution influencing enzyme
activity68.

Given the inconsistent results of dietary analyses, positive gene-diet interaction results in
several cancers, and limited research in this area for pancreatic cancer, we report our
analysis of potential interactions of metabolism/antioxidant gene variants with intake of
fruit, vegetable, fiber, and grain and pancreatic cancer risk.

MATERIALS AND METHODS
Study sample

This study was approved by the Institutional Review Board. Briefly, from May 2004 to
December 2009, using a rapid ascertainment method69, 1,648 of 2,473 (66.6%) pancreatic
adenocarcinoma cases consented to participate in a prospective registry at time of their clinic
visit. During the same time period, 1,514 of 2,708 (55.9%) potential controls (unrelated
individuals without pancreatic cancer) seen in primary care clinics were consented. Controls
were frequency matched to cases on age at time of recruitment (in 5-year increments), race,
sex, and region of residence (Olmsted County; three-state (MN, WI, IA); or outside of area),
and those with prior diagnoses of cancer except non-melanoma skin cancer were excluded.
Written, informed consent was obtained from each individual for participation in the study.
Both groups were asked to complete a questionnaire which collected information on
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demographic characteristics and potential risk factors and to provide a peripheral blood
sample. DNA was extracted from lymphocytes.

Molecular genetic analysis of polymorphism
All DNA samples were genotyped for the selected 76 SNPs in the institutional genotyping
shared resource using an Illumina Golden Gate® Custom 1152-plex OPA panel as part of a
larger study using standard protocols. Candidate genes were selected using a combination of
literature review and the KEGG pathway database40–42 for involvement in the metabolism
of components of fruits, vegetables, fiber, or grains or in antioxidant defense. For all the
candidate genes in our list, we assessed LD (r2 = 0.9, minor allele frequency (MAF) cutoff =
5%) within the gene and included SNPs 5kb upstream and downstream. From Caucasian
populations in HapMap, Seattle SNPs and NIEHS SNPs, the single source was chosen for
each gene (the single source with most bins and most SNPs, with ties going to Hapmap due
to its larger sample size) and tag SNP(s) were identified from these sources. The SNPPicker
software70 was used to optimize the tag SNP selection process. Genotyping was successful
for 1,372 cases (1,143 Caucasian) and 1,190 controls (1,097 Caucasian) with SNP call rate
and sample success rates >99%; this was the set used for testing our gene associations with
pancreatic cancer. Concordance between inter- and intra-plate replicates of a CEPH family
trio (http://ccr.coriell.org/sections/collections/nhgri/hapmap.aspx?PgId=266) was used for
quality control.

Dietary data from food frequency questionnaire (FFQ)
The FFQ was a modified form of the New England Bladder Cancer FFQ developed by the
NCI. A detailed description can be found elsewhere10. Briefly, the scannable FFQ was used
to obtain self-reported average consumption and intake frequency for 144 food and beverage
items (53 pertained to fruits, vegetable, grain and fiber categories) over the 5 years prior to
study entry. The NCI software DietCalc71 was used to create food groupings and estimate
average nutrient intake. FFQs were returned by 816 (49.5%) cases and 1,290 (85.2%)
controls who were consented. Possible participants were excluded if they reported changing
their diet within the previous 5 years (420 cases and 286 controls), or did not answer 17 or
more items (12 cases and 21 controls). Therefore, the sample that was analyzed contained
384 cases and 983 controls. From this dietary analysis set, we excluded those who failed to
provide a blood sample (133 cases and 76 controls), resulting in 251 cases and 907 controls
for the present interaction analysis.

Statistical analysis
Seventy-six SNPs passed QC and were included in this analysis. The association between
pancreatic adenocarcinoma and each SNP was evaluated using a dominant genetic model
(i.e. comparisons were for 1 or 2 minor alleles vs. 0 minor alleles) and assessed using
unconditional logistic regression. Sex-specific median cut-points based on the distribution of
the control population were created for each dietary variable and dietary variables were
created using the density method with energy-adjusted dietary items 72. SNP-diet
interactions were investigated based on the dominant genetic model for SNPs and the
median dichotomized dietary variables. Unconditional logistic regression was used to
calculate odds ratios (OR) and 95% CIs, adjusting for age, sex, smoking status, BMI, family
history of pancreas cancer in a first degree relative, energy intake (per 1000 kcal), and
number of drinks of alcohol per week. A Bonferroni correction for the number of SNPs
(0.05/76 SNPs ≤ 0.0007) was used to help control for multiple testing of main effects for
these SNPs. Each dietary factor was considered as an independent hypothesis and therefore
no correction was performed, similar to the approach used by Figueiredo et. al 73. A
randomization test based on resampling 10,000 times from the null distribution was run for
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SNP-diet interactions meeting the Bonferroni correction (≤ 0.0007). All analyses were
generated using SASreg; software (Version [9.2]) 74.

RESULTS
Demographics

For our interaction analysis set, cases compared to controls were more likely to be male, be
slightly older, and have ever smoked (and if a former smoker, had tended to have quit more
recently than controls). Cases were more likely to have DM, especially new onset (Table 1)
and pancreatitis compared to controls. Usual BMI was similar for cases and controls.

Comparing the demographic characteristics of our analyzed participants (those who
completed a FFQ and genotyping N=251) to those who completed a FFQ but who were
excluded because of no genotyping (N=133) showed that our analyzed cases were more
likely to be male, older, not have DM, and have been a never smoker. The 907 analyzed
controls had very similar demographic characteristics compared to the 76 controls excluded
because of no genotyping, with the analyzed group having a higher percentage of males and
smokers (especially former smokers who quit relatively recently prior to study). A
comparison between the dietary analyzed set (384 case and 983 controls) and all approached
potential participants can be found in a previous publication, which showed modest
differences including DM (38.1% vs. 49%), current smoker (23.6 vs. 15.6%) and former
smoker status (36.9 vs. 43.4%)10.

Dietary analysis
The median value and interquartile range is given for each food grouping by sex and case
status in Table 2. We noted that the female controls have the highest intake value for most of
the groupings and male cases have the lowest value. In general, female cases and male
controls have similar values for each food grouping, with female cases having slightly
higher median values.

Significant results (P <0.05) for inverse association between pancreatic adenocarcinoma and
food groupings were citrus, melon, and berries, other fruit, total fruit, dark green vegetable,
deep yellow vegetable, tomato, other vegetable, other starches, total vegetables, insoluble
fiber, soluble fiber, total dietary fiber, whole grains, and orange/grapefruit juice. There was
an increased association between having pancreatic adenocarcinoma and non-whole grains.
The correlation between whole and non-whole grains was low (Pearson r = 0.17); therefore,
this discordant association appears not to be simple dietary replacement.

Genotype analysis
There was no significant evidence (P <0.0007) of any SNPs having an association with
pancreatic cancer (Table 3) with the lowest p-value (0.02) occurring for two SNPs
(rs2908289 and rs2971669) in GCK.

Diet-gene interactions
In Table 4, we list the interactions which have P ≤ 0.0007 based on permutation testing.
There is an interaction associated with an increased risk of pancreatic cancer among the
group with ≥ 1 minor allele for rs3816257 (GAA) and low deep-yellow vegetable intake
(OR=1.90[1.28,2.83]). Also associated with increased pancreatic cancer, rs12807961 (CAT)
interacts with total grains intake with an increasing slope (moving from low to high grain
intake) for those carrying no minor alleles and decreasing slope for those with ≥ 1 minor
allele.

Jansen et al. Page 5

Pancreas. Author manuscript; available in PMC 2014 October 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



We list additional interactions (P ≤ 0.008) which did not meet our permutation cut-off, but
still may provide interesting targets for future studies attempting to replicate results reported
here (Table 5). The interactions with an increased risk of pancreatic cancer include: the
group with no minor allele for rs11032703 (CAT) and high total grains
(OR=1.62[1.15,2.28]); the group with ≥ 1 minor allele for rs3816257 (GAA) and low other
starches (OR=1.88[1.22,2.88]); the group with ≥ 1 minor allele for rs1138272 (GSTP1) and
high non-whole grains (OR=2.05[1.24,3.39]). The interactions with a decreased risk of
pancreatic cancer include: the group with no minor allele for rs1042396 (GAA) and high
orange/grapefruit juice (OR=0.43[0.28,0.68]). Interactions with an increased risk for low
intake and decreased risk for high intake include: the group with ≥ 1 minor allele for
rs17671289 (UGT2B4) and dry beans and peas (OR=1.43 to 0.64); the group with ≥ 1 minor
allele for rs2304851 (GAA) and orange/grapefruit juice (OR=1.43 to 0.70). Interactions with
a decreased risk for low intake and increased risk for high intake include: the group with ≥ 1
minor allele for rs1138272 (GSTP1) and total grains (OR=0.49 to 1.80). The interaction
between rs475043 (CAT) and total grains has an increased risk for all 3 combinations (other
than reference), constant slope across dietary category for the group with ≥ 1 minor allele,
and larger positive slope for the 0 minor alleles group. The interactions between rs7403881
(MT1E) and total fruits and other fruits have a decreased risk for all 3 combinations (other
than reference), constant slope across dietary category for the group with ≥ 1 minor allele,
and larger slope across dietary category in the 0 minor allele group.

DISCUSSION
We tested the hypothesis that polymorphisms in metabolism/antioxidant genes interact with
fruit, vegetable, fiber, and grain intake to modify risk of pancreatic cancer. Although none of
the 76 SNP-level tests showed significant associations with pancreatic cancer, 15 of 19
dietary categories (citrus, melon, and berries, other fruits, total fruits, dark green vegetables,
deep yellow vegetables, tomato, other vegetables, other starches, total vegetables, insoluble
fiber, soluble fiber, total dietary fiber, whole grains, non-whole grains, total grains, and
orange/grapefruit juice) were significantly (P <0.05) associated with pancreatic cancer. We
report 2 SNP-diet interactions which had an interaction P of ≤ 0.0007 and an additional 10
which had an interaction P of ≤ 0.008.

One of the main theories on how dietary intake affects cancer risk is that dietary components
reduce DNA damage/mutation by reducing oxidative stress and inflammation75. Fruits,
vegetables and whole grains are excellent sources of exogenous antioxidants that may work
either synergistically with or down-regulate endogenous antioxidant enzymes33, 76. Fiber
has been proposed to both mechanically reduce the duration potential carcinogens spend in
the digestive tract and induce digestive/antioxidant enzymes.

Our results support an interaction of CAT and dietary intake of grains with pancreatic
adenocarcinoma. There is evidence of an increased risk for those with no minor alleles for
rs12807961 (Table 4), rs11032703, and rs475043 (Table 5) and high total grains intake
compared to those with no minor alleles and low total grain intake (reference group).
Among those with ≥1 minor allele, higher grain intake is suggested (not significantly) to be
associated with a reduced risk although significantly higher risk compared to reference
group. There are no main effects seen between total grain intake and pancreatic cancer
(Table 2) or between CAT SNPs and pancreatic cancer (Table 3). These patterns could
suggest that having no minor allele increases risk with increased intake and the apparent
contradictory observation among the group with ≥ 1 minor allele is a result of proportion of
those with 2 minor alleles in the low vs. high intake groups. The SNPs span the gene region,
suggesting they may be tagging polymorphisms which are responsible for CAT enzyme
activity. In prior research, the CT and TT genotypes of CAT (at position −262 in the 5′
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region, rs1001179) have been associated with lower catalase activity33, and epidemiologic
studies have shown associations between CAT genotype and risk of diseases related to
oxidative stress32, 37, 77. The high activity CAT CC genotype has been observed to interact
with fruits and vegetables exhibiting a reduced association with breast cancer27, 32. When
considering the sum of all low-risk alleles of CAT, an interaction was observed with low
fruit and vegetable intake to increase risk of breast cancer in a dose-dependent manner27.
The level of mRNA CAT has been found to be higher in phenolic acid (found in fruits,
vegetables, and whole grains) supplemented groups compared to controls76. Phenolic acids
cause oxidative stress in the liver inducing phase II antioxidant enzymes, thereby protecting
the cells from mutagenesis and oxidative damage78, 79. Our results combined with previous
research in other cancers would suggest that the tagged CAT SNPs presented here are
associated with increasing the negative effect of grains possibly through the activation or
lack of elimination of an oxidative product.

Our results regarding GAA SNPs interacting with dietary intake are the first reported for any
cancer. We observed those with ≥ 1 minor allele for rs3816257 and low intake of deep-
yellow vegetables (Table 4) and those with ≥ 1 minor allele for rs3816257 and low intake of
other starches (Table 5) increased the risk of pancreatic adenocarcinoma while those with no
minor allele for rs1042396 and high orange/grapefruit juice intake had a decreased risk of
pancreatic adenocarcinoma (Table 5). Those with ≥ 1 minor allele for rs2304851 had an
increased risk associated with low orange/grapefruit juice intake but reduced risk associated
with high orange/grapefruit juice intake (Table 5). We choose GAA for its involvement with
starch and sucrose metabolism. The mechanism at work here is undefined, but the
observations that interactions between SNPs (≥ 1 minor allele) in GAA and deep yellow
vegetables and other starches increase the risk of pancreatic cancer suggest this gene plays a
role in modifying the relationship between starch and the development of pancreatic
adenocarcinoma. We observed a reduced risk of pancreatic cancer among those with ≥ 1
minor allele for orange/grapefruit juice (source of sucrose) suggesting a possible role in
reducing exposure time to potential dietary carcinogens or inflammatory components.

Evidence of interaction between intake of fruit, vegetable, grains, or fiber and
polymorphisms in SOD2 is limited. There are studies demonstrating that blueberries are able
to upregulate SOD2 in a mouse model80. The SOD2 Val genotype (CT or CC) is associated
with decreased risk of breast cancer with low gamma-tocopherol intake81, and the Ala/Ala
genotype (TT) is associated with higher risk of aggressive prostate cancer with low intake of
lycopene82. A possible proposed explanation for these observations is that in the presence of
Ala and low antioxidant intake, an excess amount of H2O2 is produced, which results in
higher expression of matrix metalloproteinase (MMP) and metastatic activity47, 83, 84. This
metastatic activity is prevented in the presence of Val because the SOD2 enzyme is
restricted from entering the mitochondria, creating a buildup of ROS within the
mitochondria resulting in induction of programmed cell death85. We did not find evidence of
an interaction between our tag SNP for SOD2 and dietary intake with pancreatic cancer.

Phase II detoxification enzymes, including GST and UGT, have been shown to be induced
by a component of vegetables (isothiocyanate) in human cell lines and rats86. Liver GST or
UGT activity was shown not to be affected by dietary treatments with cabbage or brassica87,
in contrast to other studies which showed a two-fold increase in liver GST and UGT activity
in rats fed cabbage88, brassica89–91, or freeze-dried brussel sprouts91–93. Our results provide
evidence that those with ≥ 1 minor allele for the missense polymorphism rs1138272 in
GSTP1 and higher intakes for the categories: total grains and non-whole grains have an
increased risk of pancreatic cancer (Table 5). This result is consistent with evidence that
dietary fiber intake induces antioxidant/detoxification enzymes including GSTP194. We
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observed that those with ≥ 1 minor allele for the gene UGT2B4 (rs17671289) and intake of
dry beans and peas had reduced pancreatic cancer risk (Table 5).

MT1E is predicted to be involved in the detoxification of carcinogens53. The antioxidant
Genistein upregulates transcription of MT1E95, avoiding depletion of MT1E and associated
decreased cell proliferation53. Our study shows that those with no minor alleles for MT1E
rs7403881 and high total fruit and other fruit intake have a reduced risk of pancreatic
adenocarcinoma (Table 5). Results here and from previous literature would suggest that,
mechanistically, MT1E and fruit are working synergistically to eliminate potentially harmful
carcinogens from the body and that those with a polymorphism associated with rs7403881
are not as effective in this capacity.

This clinic based case-control study has several strengths. All adenocarcinoma cases were
pathologically confirmed, allowing for a well-defined case population. The unique
recruitment protocol enabled rapid ascertainment of cases, increasing the probability of self
completion and enrollment of cases at all stages of disease as well as biospecimen
collection. The hypothesis was evidence driven using a combination of KEGG database
information on pathways and previous metabolism/antioxidant gene-diet interaction studies.
Tagging SNPs were selected to cover the entire gene + 5kb upstream and downstream.

There are limitations that affect retrospective designs requiring participant recall of past
events and behavior. Differential misclassification and recall of dietary patterns between
cases and controls could contribute to biased risk estimates. However, within this study,
cases were rapidly enrolled and completed the FFQ at the time of diagnosis, potentially
reducing the effect of such bias. In retrospective population-based studies of rapidly fatal
disease, bias can occur due to demise of eligible cases (with a higher proportion of later
stage disease). There is a risk of false-positive findings due to multiple comparisons. Given
our small sample size, the power to detect interactions is rather limited since tests for an
interaction require even larger sample sizes than tests for main effects in order to be
adequately powered to detect clinically meaningful effects. This is an observational study;
therefore, additional studies, as well as functional work, need to be completed to confirm
results of gene-diet interactions on risk of pancreatic cancer reported here. Even though
when crudely adjusting for reported diabetes we did not see significant changes in reported
results, there could be unmeasured effect on reported results. Diabetes was self-reported and
there is a level of bias associated with both self-reporting and being diagnosed. Since
diagnosed diabetics are consulted to modify their diets, there could be an unmeasured effect
on the reported result as a result of either intentional or unintentional dietary modification.

We have provided evidence that supports our hypothesis that metabolism/antioxidant genes
modify the association dietary intake of fruits, vegetables, fiber and grains have on
pancreatic cancer risk. At least one SNP from each of 5 genes and 8 dietary categories
showed potential interaction. Results need to be confirmed with other studies, and functional
work linking these metabolism/antioxidant genes to dietary intakes would be informative. If
confirmed, our observations provide the potential for more effective dietary prevention
strategies aimed at reducing the risk of pancreatic cancer.
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Table 1

Characteristics of pancreatic adenocarcinoma cases and controls used in the analysis (no recent diet change),
and all adenocarcinoma cases and controls who completed FFQs.

Cases Controls

Genotyped (N=251) Not Genotyped (N=133) Genotyped (N=907) Not Genotyped (N=76)

Sex

 Female 102 (40.6%) 61 (45.9%) 440 (48.5%) 60 (78.9%)

 Male 149 (59.4%) 72 (54.1%) 467 (51.5%) 16 (21.1%)

Age when approached

 N 251 (100.0%) 133 (100.0%) 907 (100.0%) 76 (100.0%)

 Mean (SD) 67.5 (10.0) 65.9 (11.4) 65.9 (10.5) 64.4 (14.4)

 Median 67.0 66.0 67.0 69.0

 Q1, Q3 60.0, 75.0 59.0, 74.0 59.0, 74.0 57.5, 73.5

 Range (43.0–91.0) (31.0–92.0) (28.0–94.0) (24.0–86.0)

Diabetes Mellitus type 2

 Yes 106 (48.8%) 56 (54.4%) 64 (7.1%) 4 (6.2%)

　 ≥ 3 years ago 45 (45.0%) 21 (42.0%) 46 (75.4%) 3 (100.0%)

  < 3 years ago 55 (55.0%) 29 (58.0%) 15 (24.6%) 0 (0.0%)

  Missing 6 6 3 1

 No 111 (51.2%) 47 (45.6%) 842 (92.9%) 61 (93.8%)

 Missing 34 30 1 11

Race

 American Indian/ 0 (0.0%) 0 (0.0%) 1 (0.1%) 3 (3.9%)

 Alaskan Native

 Asian/Asian-American 1 (0.4%) 2 (1.5%) 3 (0.3%) 5 (6.6%)

 Black/African American 0 (0.0%) 4 (3.0%) 1 (0.1%) 0 (0.0%)

 White/Caucasian 247 (98.4%) 126 (94.7%) 901 (99.3%) 65 (85.5%)

 Multiracial 3 (1.2%) 1 (0.8%) 1 (0.1%) 3 (3.9%)

Smoking

 Current 35 (13.9%) 23 (17.4%) 35 (3.9%) 2 (2.7%)

 Former 110 (43.8%) 55 (41.7%) 378 (41.7%) 28 (37.3%)

  Quit < 10 years ago 17 (16.0%) 3 (5.5%) 33 (8.9%) 1 (3.8%)

  Quit 10+ years ago 89 (84.0%) 52 (94.5%) 336 (91.1%) 25 (96.2%)

  Missing 4 0 9 2

 Never 106 (42.2%) 54 (40.9%) 494 (54.5%) 45 (60%)

Usual BMI

 N 248 (98.8%) 131 (98.5%) 884 (97.5%) 70 (92.1%)

 Mean (SD) 27.5 (5.1) 27.8 (5.7) 26.7 (4.2) 25.9 (4.3)

 Median 26.6 27.1 26.4 25.3

 Q1, Q3 24.0, 30.1 23.9, 31.1 23.7, 29.1 23.3, 27.4

 Range (15.3–53.0) (17.0–45.7) (14.0–49.0) (19.1–40.7)

Abbreviations: SD, standard deviation; Q1, quintile 1; Q3, quintile 3
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