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Abstract

Generalized lipodystrophy is a rare disorder characterized by marked loss of adipose tissue with
reduced triglyceride storage capacity leading to a severe form of metabolic syndrome including,
hypertriglyceridemia, insulin resistance, type 2 diabetes mellitus, and hepatic steatosis. Recent
echocardiographic studies suggest that concentric left ventricular (LV) hypertrophy is another
characteristic feature of this syndrome but the mechanism remains unknown. It has recently been
hypothesized that the LV hypertrophy could be an extreme clinical example of “lipotoxic
cardiomyopathy” - excessive myocyte accumulation of triglyceride leading to adverse
hypertrophic signaling. To test this hypothesis, we performed the first cardiac magnetic resonance
study of patients with generalized lipodystrophy, using both magnetic resonance imaging and
localized proton spectroscopy to detect excessive triglyceride content in the hypertrophied
myocytes. Six patients with generalized lipodystrophy and 6 healthy controls matched for age,
gender and body mass index, were studied. As hypothesized, myocardial triglyceride content was
3-fold higher in the patients than controls: 0.6+0.2% vs. 0.2+0.1% (P = 0.004). We also found
presence of pericardial fat, representing a previously undescribed adipose depot in generalized
lipodystrophy. Patients with generalized lipodystrophy, as compared to controls, also had a
striking degree of concentric LV hypertrophy, independent of blood pressure: LV mass index,
101.0+18.3 vs. 69.0+17.7 g/m?, respectively (P = 0.02); LV concentricity, 1.3+0.3 vs. 0.99+0.1 g/
mL, respectively (P = 0.04). These findings advance the lipotoxicity hypothesis as a putative
underlying mechanism for the dramatic concentric LV hypertrophy found in generalized
lipodystrophy.
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Introduction

Methods

Lipodystrophy is an extremely rare disorder characterized by loss of body fat and thus
deficiency of the adipocytokines, such as leptin and adiponectin (1). The etiology can be
either inherited or acquired and the loss of body fat may be generalized or partial. Patients
with generalized lipodystrophy are markedly leptin deficient and are severely hyperphagic;
however, have no adipose tissue to store the excess energy, leading to ectopic deposition of
triglyceride in non-adipose tissue-most notably the parenchymal cells of the liver and
skeletal muscle (2;3). Consequently, they develop a severe form of metabolic syndrome with
insulin resistance, type 2 diabetes mellitus, hypertriglyceridemia and non-alcoholic fatty
liver disease (4). Recent echocardiographic studies suggest that concentric left ventricular
(LV) hypertrophy constitutes another common feature of patients with either congenital or
acquired generalized lipodystrophy (5). While the precise underlying mechanism remains
unknown, an attractive hypothesis is that the LV hypertrophy could be an extreme clinical
example of “lipotoxic cardiomyopathy” - excessive myocyte accumulation of triglyceride
(i.e., “cardiac steatosis”) leading to adverse hypertrophic signaling. However, myocardial
triglyceride content has not previously been measured in these patients. We therefore used
magnetic resonance imaging (MRI) and localized proton magnetic resonance spectroscopy
(MRS) to determine if there was a relation between myocardial hypertrophy and triglyceride
content in patients with generalized lipodystrophy.

Six individuals with generalized lipodystrophy: 2 with congenital generalized lipodystrophy
type 1 due to acylglycerol phosphate acyltransferase, isoform 2 gene mutations; 3 with type
2 congenital generalized lipodystrophy due to Berardinelli-Seip congenital lipodystrophy 2
gene mutations; and 1 with acquired generalized lipodystrophy, were recruited for the
present investigation. For cross-sectional comparison, 6 healthy control subjects, matched
for age, gender and body mass index, without metabolic disease, were selected from an
existing database. The study was approved by the Institutional Review Board of UT
Southwestern Medical Center and all participants provided written informed consent prior to
the study.

Body mass index was calculated as weight (kg) divided by height (m) squared. Body surface
area was calculated according to the formula of DuBois and DuBois (6). Blood pressure was
measured in the seated position, with a validated oscillometric sphygmomanometer (Series
#52,000, Welch Allyn, Inc., Arden, North Carolina), with an appropriately sized cuff placed
on the upper left arm. Venous blood samples were obtained from all participants and
processed according to standard laboratory procedures (7).

All cardiac MR experiments were performed with a 1.5-T Gyroscan INTERA whole-body
MR system (Philips Medical Systems, Best, The Netherlands). Cardiac MRI was used to
assess LV morphology, as previously described (8;9). Cardiac MRS was used for the non-
invasive quantification of cardiac triglyceride content, as described in detail elsewhere
(2;3;10;11). Briefly, image-guided MRS was performed with the following imaging
parameters: repetition time of 4 s, echo time of 25 ms, and 1,024 data points over a 1,000-
kHz spectral width. The volume of interest (voxel) was centered over the intraventricular
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septum at end-systole, in order to avoid vascular structures, gross adipose tissue deposits,
and to ensure consistent orientation of muscle fibers along the magnetic field (Figure 1A).
Spectra were processed and resonances quantified using a standard analysis package
(NUTS; ACORNNMR, Fremont, CA). Myocardial triglyceride content is expressed as a
percentage of the intensity of the water resonance peak.

Cross-sectional comparisons (patients vs. controls) were performed using independent
samples t-tests. The level of significance was set a priori at P < 0.05. Data are reported as
mean + SE, unless otherwise specified.

Patient specific characteristics are presented in Table 1. Patients and controls were well
matched for age, height, and weight, and therefore no differences in body surface area or
body mass index were found. As expected, patients had elevated circulating triglycerides
and fasting glucose, with 4 of the 6 patients being treated with insulin (Patients from Pair 1,
3, 4, and 6 — Table 1). One patient (Pair 6) was being treated with a lipid lowering
medication at the time of the study. No difference in serum cholesterol level was found,
while high-density lipoprotein-cholesterol was significantly lower in patients versus
controls. Blood pressure was similar between the two groups, and in the normotensive
range, except for two lipodystrophy patients (Pair 3 and 6) whose blood pressure was
elevated at the time of study.

The major novel finding of our study is that intra-myocardial triglyceride content was
threefold higher in patients with lipodystrophy compared to controls (Figure 1, P = 0.004).
Unexpectedly, cardiac MRI also detected pericardial adipose tissue in the patients, despite
their general lack of adipose tissue elsewhere in the body (Figure 2). Lastly, LV mass
indexed to body surface area and LV concentricity were dramatically increased in patients
over controls (Table 1), regardless of whether the two patients with elevated blood pressure
were excluded from analysis (Figure 3). No group differences were found in LV end-
diastolic volume, end-systolic volume, stroke volume or ejection fraction between groups
(Table 1).

Discussion

This is the first cardiac magnetic resonance imaging study of patients with generalized
lipodystrophy. The MRI data confirm a high degree of concentric LV hypertrophy suggested
by previous echocardiographic studies and document two major new findings. First,
consistent with the lipotoxicity hypothesis, we found that myocardial triglyceride content is
markedly elevated in the patients’ hypertrophied cardiomyocytes. Second, we unexpectedly
found pericardial fat to be present in all the patients, representing a previously undescribed
depot of adipocytes preserved in generalized lipodystrophy.

Generalized lipodystrophy has been associated with ectopic accumulation of triglyceride in
the parenchymal cells of the liver and skeletal muscle (2;3). The three-fold elevation in
myocardial triglyceride content in our patients shows that the heart is another steatotic target
organ in this disease. From a mechanistic standpoint, generalized lipodystrophy is a perfect
storm for cardiac steatosis. In patients with congenital generalized lipodystrophy,
widespread failure of adipogenesis causes both leptin deficiency and a greatly reduced
adipocyte pool to store triglyceride. In patients with acquired generalized lipodystrophy,
autoimmune or other unknown mechanisms cause loss of adipose tissue. These patients
therefore lack both the central neural action of leptin, which suppresses appetite, and the
peripheral anti-steatotic action of leptin, which upregulates fatty acid oxidation of non-
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adipose tissue, so as to oxidize any lipid spillover that may have occurred due to over-
nutrition (12). Furthermore, secondary insulin resistance would also be expected to disrupt
the balance of cardiac substrate utilization, favoring greater uptake of fatty acids (13;14).

In addition to the new spectroscopy data, our imaging data not only confirmed a dramatic
degree of concentric LV hypertrophy in generalized lipodystrophy but also document the
consistent presence of pericardial fat. The latter finding was quite unexpected because
pericardial fat represents a protected pool of adipocytes in a disease characterized by
widespread failure of adipogenesis. This /n vivo cardiac MRI finding differs from autopsy
studies concluding that patients with generalized lipodystrophy have no pericardial fat
(15;16). We interpret our data to suggest that the beating heart produces repetitive
stimulation of mechanosensitive transcriptional elements of genes involved in adipogenesis.
Mechanosensitive adipogenesis is indeed an accepted explanation for the residual adipose
tissue patients with congenital generalized lipodystrophy, type 1 have in the intra-orbital
region, palms, and soles (17). Thus, while generalized lipodystrophy results in poor growth
and development of metabolically active adipose tissue, “mechanical adipose tissue”
(reducing friction) appears preserved with pericardial fat constituting yet another example.

The major strength of this study is the application of cardiac MRI/MRS in an extremely rare
human disease that provides a unique experiment of nature to study cardiac lipotoxicity in
the absence of generalized obesity. While these data in patients with generalized
lipodystrophy are entirely consistent with the concentric LV hypertrophy being an extreme
human example of lipotoxic cardiomyopathy, the major limitation of this work is that these
cross-sectional data cannot prove causal attribution. Importantly, our patients’ LV
hypertrophy appears independent of hypertension and thus is not pressure overload
hypertrophy. Likewise, none of the patients were actively engaged in regular exercise
training, excluding the possibility of exercise-induced cardiac remodeling. We also did not
observe a systematic relationship between those with impaired glucose tolerance, whom
were receiving insulin injections, and the development of LV hypertrophy, suggesting that
the hypertrophy observed in our patients may be independent of insulin. Lastly, pericardial
fat has recently been implicated in the pathogenesis of LV hypertrophy (18-20); however,
the amount of pericardial fat in our patients appears no higher than normal. Thus, it is
tempting to speculate that the development of LV hypertrophy in patients with generalized
lipodystrophy is mechanistically linked to their dramatic cardiac steatosis. Indeed, in
transgenic mouse models, cardiac-specific overexpression of fatty acid transport proteins, or
enzymes involved in triglyceride synthesis, produce severe cardiac steatosis, with the excess
fatty acid causing concentric LV hypertrophy (21;22). Thus, in addition to providing a
potential mechanistic explanation for the well described cardiomegaly described in
generalized lipodystrophy, the present results may also provide important insight into the
development of obesity related cardiomyopathy.
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Figure 1.

(A) Measurement of myocardial triglyceride content by localized!H-MRS in a
representative lipodystrophy patient. Top s: cine four-chamber and short axis cardiac image.
The volume of interest (voxel) is placed within the interventricular septum (green rectangle).
Below, spectrum from myocardial tissue collected simultaneously at end-expiration and end-
systole with respiratory gating and ECG triggering, respectively. (B) Individual cross-
sectional comparison of intramyocellular triglyceride content in six patients with generalized
lipodystrophy compared to six age, gender and BMI match controls [e, patient 1, pair 1; m,
patient 2, pair 2; o, patient 3, pair 3; [J, patient 4, pair 4; v, patient 5, pair 5; A, patient 6;
pair 6] . (C) Group average cross-sectional comparison of myocardial triglyceride content,
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demonstrating a three-fold difference in myocardial triglyceride content in patients versus
controls. Data reported as mean + SEM. P < 0.05.
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Figure2.

High resolution magnetic resonance images. Top, cine four-chamber cardiac MR images.
Note the presence of pericardial fat in both the patient and control. The control also has
chest wall fat, whereas the patient does not. Middle, Axial T1-weighted MR image of calf.
Increased typical intensity indicates fat, demonstrating a general lack of adipose tissue in the
patient, whereas the control has normal levels of adipose tissue surrounding skeletal muscle.
Bottom, axial abdominal MR images at the level of liver. Liver appears bright due to hepatic
steatosis in patient with lipodystrophy. Note the general lack of subcutaneous and visceral
adipose tissue in the patient with Generalized Lipodystrophy.
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Figure 3.

Left ventricular (LV) concentricity and LV mass are independent of arterial blood pressure.
Note that with the 2 patients with the highest blood pressure removed, systolic blood
pressure (A) decreases below that of the controls, yet LV mass indexed to body surface area
(BSA) (B) and LV concentricity (C) remain elevated above controls. Subject specific data
presented [e®, patient 1, pair 1; m, patient 2, pair 2; o, patient 3, pair 3; [J, patient 4, pair 4;

v, patient 5, pair 5; A, patient 6; pair 6] , along with the mean and standard error (open

bars). * indicates P < 0.05.
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