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Abstract
Background—Metabolic functions typically increase with human activity, but optimal methods
to characterize activity levels for real-time predictions of ventilation volume (l/min) during
exposure assessments have not been available. Could tiny, triaxial accelerometers be incorporated
into personal level monitors to define periods of acceptable wearing compliance, and allow the
exposures (μg/m3) to be extended to potential doses in μg/min/kg of body weight?

Objectives—In a pilot effort, we tested: 1) whether appropriately-processed accelerometer data
could be utilized to predict compliance and in linear regressions to predict ventilation volumes in
real time as an on-board component of personal level exposure sensor systems, and 2) whether
locating the exposure monitors on the chest in the breathing zone, provided comparable
accelerometric data to other locations more typically utilized (waist, thigh, wrist, etc.).

Methods—Prototype exposure monitors from RTI International and Columbia University were
worn on the chest by a pilot cohort of adults while conducting an array of scripted activities (all
<10 METS), spanning common recumbent, sedentary, and ambulatory activity categories. Referee
Wocket accelerometers that were placed at various body locations allowed comparison with the
chest-located exposure sensor accelerometers. An Oxycon Mobile mask was used to measure oral-
nasal ventilation volumes in-situ. For the subset of participants with complete data (n= 22), linear
regressions were constructed (processed accelerometric variable versus ventilation rate) for each
participant and exposure monitor type, and Pearson correlations computed to compare across
scenarios.

Results—Triaxial accelerometer data were demonstrated to be adequately sensitive indicators for
predicting exposure monitor wearing compliance. Strong linear correlations (R values from 0.77
to 0.99) were observed for all participants for both exposure sensor accelerometer variables
against ventilation volume for recumbent, sedentary, and ambulatory activities with MET values
~<6. The RTI monitors mean R value of 0.91 was slightly higher than the Columbia monitors
mean of 0.86 due to utilizing a 20 Hz data rate instead of a slower 1 Hz rate. A nominal mean
regression slope was computed for the RTI system across participants and showed a modest RSD
of +/−36.6%. Comparison of the correlation values of the exposure monitors with the Wocket
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accelerometers at various body locations showed statistically identical regressions for all sensors
at alternate hip, ankle, upper arm, thigh, and pocket locations, but not for the Wocket
accelerometer located at the dominant-side wrist location (R=0.57; p=0.016).

Conclusions—Even with a modest number of adult volunteers, the consistency and linearity of
regression slopes for all subjects were very good with excellent within-person Pearson correlations
for the accelerometer versus ventilation volume data. Computing accelerometric standard
deviations allowed good sensitivity for compliance assessments even for sedentary activities.
These pilot findings supported the hypothesis that a common linear regression is likely to be
usable for a wider range of adults to predict ventilation volumes from accelerometry data over a
range of low to moderate energy level activities. The predicted volumes would then allow real-
time estimates of potential dose, enabling more robust panel studies. The poorer correlation in
predicting ventilation rate for an accelerometer located on the wrist suggested that this location
should not be considered for predictions of ventilation volume.

Keywords
Ventilation volume; personal exposure; potential dose; triaxial accelerometry; adults; wearing
compliance

1. BACKGROUND
The National Research Council (NRC, 2004) noted that reducing the uncertainties
associated with characterizing individual and population exposures to particulate matter
(PM) was a critically-important area of research needed to improve the establishment of
linkages between exposures to sized particles and adverse health effects. A meta-analysis by
Avery et al. (2010) reviewed 567 epidemiologic and toxicology studies during the prior
decade and concluded that substantial progress has been made in understanding exposure
biases such as misclassification error research progress is still needed to strengthen analyses
attempting to utilize ambient air toxics concentration data as a surrogate for true personal
exposures. Brook et al. (2010) noted that the strongest associations between vascular
diseases and fine particles resulted from the use of personal level exposure assessments that
applied approaches to identify measurement confounders such as second hand smoke and
poor sensor wearing compliance and adjust accordingly. Fajardo and Rojas (2012) reported
that utilizing individual exposure characterizations of bicycling near roadways that did not
account for breathing rates, could significantly underestimate health risk levels. Especially
in cases where spatial and temporal PM gradients are produced by strong sources such as
roadways, linking localized exposure levels with respiratory effects would provide the most
robust associations (McCreanor et al., 2007). Historically, the methodologies to characterize
exposure levels for sized particles at the personal level have been cumbersome (Rodes and
Thornburg, 2005), but technological advances are allowing smaller and lighter exposure
monitors. If a comparably-low-burden approach were utilized to simultaneously monitor
exposure study participant breathing rates with personal level PM concentrations, estimates
of personal dose would be possible in real-time. Associating potential doses with potential
sources and adverse outcomes, rather than more simplistic concentration data, should
strengthen observed associative levels, thereby minimizing misclassification error. If such
strengthening could be achieved, it would ultimately enhance the exposure/dose metric,
thereby potentially reducing the sizes of cohorts and/or the numbers of participant-days
needed to achieve acceptable statistical significance levels in epidemiologic analyses.

Vries et al. (2006) had investigated in a clinimetric review the validity, reliability and
reproducibility of various accelerometer-based activity sensors in children. They concluded
that the inherent and acceptable levels of (accelerometric) reproducibility, validity, and
application feasibility strongly merited further study. Similarly, Pober et al. (2006) described
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the utility of triaxial accelerometers to define activity levels and potentially identify
activities by some level of pattern recognition. They also concluded the accelerometers were
indeed promising for activity studies focusing on energy expenditure and provided several
recommendations for future work, including collecting better participant descriptive
variables during baseline enrollments to better examine factors such as age, fitness level, and
handedness. Initial testing at RTI with accelerometric data produced from components
embedded within the main circuit board of the MicroPEM™ personal level exposure
monitor worn in the breathing zone provided comparable and encouraging results to that of
Pober et al. (2006). These tests bolstered the case that properly collected and processed
accelerometric data (designated ACCEL here) had the potential to correlate strongly with
estimations of pulmonary ventilation while monitoring PM exposure levels. Successful
predictions of ventilation (breathing) volume in liters/minute, designated here as V, would
enable concentration data to be transposed in either real-time or post-processing into
potential inhalation-based dose. While ventilation volumes could be determined by wearing
a mask during exposure assessments (Panis et al., 2010), masks can hinder breathing
patterns and are too cumbersome for large cohort applications. Additionally, they could alter
the rates particles enter the respiratory system.

Prior accelerometers have been modestly-robust single axis sensors, typically placed at
convenient body locations to provide specific information about activity levels and
estimated activity energy expenditure (Trost, 2001; Puyau et al., 2002; Mathie et al., 2002;
Welk et al., 2006). The potential of using 3-axis accelerometry to predict selected metabolic
functions and provide metrics inherently having more information content was suggested as
early as 1997 by Bouten et al. (1997) and Mathie et al. (2002). New systems, such as the
Wockets used by Albinali et al., (2010) permit comfortable, long-term wearability to support
human activity studies for a range of health-based applications. The most common body
location for measuring physical activity has been the hip. The preferred location for
monitoring sleeping has been the wrist. As noted by Liu et al. (2010), defining bodily
movement produced by skeletal muscles provides valuable insights into behavior patterns
and the associated energy expenditures. Vries et al. (2006) surveyed childrens’
accelerometric activity research and characterized the quality of the data for clinimetric
applications. The relationships between activity level and the physiological responses that
alter metabolic rates and impact obesity levels are summarized by Bouchard et al. (2007).
Bates et al. (2010) and Albinali et al. (2010) describe some benefits for activity type and
energy expenditure detection of using 3 spatial axes and high-sampling rate data with pattern
recognition algorithms. They also noted that the current tiny device packages offered by
MEMS manufacturers should broaden the potential applications and enhance the potential
for estimating ventilation and a range of metabolic rates in transparent manners from
relatively simplistic motion sensing. As mentioned by Albinali et al., (2010) and Liu et al.
(2009; 2010), locating wearable accelerometric sensors on the body and wearing them for
extended periods can be significantly less obtrusive compared with piezoelectric chest straps
that must necessarily be worn invasively adjacent to the skin and under the clothing.

Although ventilation volume data have been linked to exposures (Beals et al., 1996), data
were not available to suggest: 1) whether simple to apply on-board predictive linear
regression forms were applicable, nor how broadly the regression data for a single
participant was likely to be applicable to broader cohorts - representing both adult men and
women, over a reasonable age range, and 2) whether the wearing location of the
accelerometer on the body might affect the strengths of the developed regressions. While
personal level exposure monitors are preferentially worn in the breathing zone,
accelerometer data have been historically collected at hip or wrist locations. For a range of
scripted mild to moderate activities, we tested the accelerometer-enabled prototype personal
exposure sensors of RTI and Columbia worn in participant breathing zones with
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accelerometer data collected at several other locations on the body simultaneously with
sensors specifically designed for monitoring physiologic metrics (including ventilation rate
and volume, heart rate, skin temperature, etc.).

Robust estimates of potential dose rather than more simplistic personal level exposure
characterizations more accurately reflect true body burden and hence should provide
stronger association with adverse biological and health outcomes. Importantly, if
reasonably-robust predictive regressions are possible, could a single regression then be used
for all adults over a reasonable range of activity levels, body types and fitness levels? Data
from Bennett and Zeman (2004) had already shown that BMI was moderately correlated
(R=0.46) with ventilation rate in children measured on a per minute basis. If such
strengthening could be achieved, it would ultimately enhance the exposure/dose metric,
thereby potentially reducing the sizes of cohorts and the numbers of participant-days needed
to achieve acceptable statistical significance levels in epidemiologic analyses. The primary
goal of this paper was to explore the applicability of the ventilation rate estimation process
using accelerometry for application to exposure panel studies attempting to characterize
general population adult cohorts.

2. OBJECTIVES
1. Determine whether linear regression fits between ACCEL and V have reasonable

predictive power for adult cohorts over a range of scripted activities, thereby
reducing the complexity of applying the predictions in near-real-time, i.e. V = m x
ACCEL + b where m=slope and b= intercept ]

2. Determine whether accelerometric measurements (ACCEL) made by an exposure
sensor system worn on the chest or other locations near the breathing zone could be
used to develop regressions to predict ventilation rates (V’s) for each participant
over a representative array of scripted activity tests representing typical daily, low-
energy activities.

3. MATERIALS AND METHODS
The participants were recruited, representative activities selected, followed by participants
outfitted with a range of accelerometers, exposure sensors, and metabolic function monitors,
(see below), and asked to perform a range of scripted activities according to a standardized
protocol. Normalized comparisons across body locations were facilitated by collocations of
small wireless 3-axis accelerometers (Wockets) developed at MIT1. These sensors can be
used with pattern recognition algorithms to detect activity type and intensity, with one recent
paper showing improvement in activity energy estimation during a variety of activities by
incorporating activity type detection (Albinali et al., 2010). The pilot cohort size of recruited
and successfully tested adults that underwent the preset list of scripted activities was n = 22.

3.1 Personal Exposure Sensors/Samplers
Two prototype personal exposure sensor platforms developed by RTI International and
Columbia University containing embedded 3-axis accelerometer devices were used in this
research. Due to the timing of the experiments, both the systems used were early prototype
versions of what each group was ultimately aiming to produce (i.e. with limited sensor
functionality) but the tri-axial accelerometer chip used by each group has not changed as
their platform has evolved. The prototype RTI MicroPEM™ system used here weighs under
300g, has a volume of 510 cm3 and fits into a shirt pocket (see photos in Figure 1). Key

1see http://www.carefusion.com/medical-products/respiratory/cardio-pulmonary-diagnostics/metabolic-carts/oxycon-mobile.aspx
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capabilities of the system include: a) providing both integrated PM samples on a 25 mm OD
Teflon filter, and real-time PM data by nephelometry at 780 nm for periods as short as 1s, b)
collecting QC data such as flowrate, filter pressure drop, battery voltage, temperature,
relative humidity, and wearing compliance level on-board to subsequently validate the PM
data, and c) allowing fully programmable operational control and timing that permits a one-
button starting procedure by the participant. The on-board 3-axis accelerometer device is an
Okidata 8953 component with a +/−3g range, whose size (25 mm2) and weight (<1g) are
typical of triaxial accelerometers (see Section 1.1 of Supplemental Material). The on-board
software was set to sample the accelerometer’s x, y, and z output data at 20 Hz, with the
resultant data integrated over 1s intervals (see Section 3.9) for comparison with all other
accelerometers. The nominal resolution provided by the manufacturers for each
accelerometric axis (RTI or Columbia) is 0.02 gravity units.

The early Columbia prototype system tested here was an integrated sampler collecting filters
for laboratory analysis only while logging location and compliance information, though the
current model also provides real-time optical measurements for particulate matter
components such as black carbon. The system weighed just over 300g and had a volume of
ca. 310 cm3 allowing it to be worn in a vest pocket. At the time of the experiments, the
accelerometer was limited by the software to collect data at a slower 1 Hz rate for the tests
reported here.

3.2 Accelerometry for Wearing Compliance and Activity Level Prediction
Accelerometers can be used to characterize both wearing compliance (Rodes et al., 2010) for
exposure monitors and to characterize human activity levels and patterns. Quantifying
wearing compliance is extremely important in minimizing exposure misclassification, and
refinements to the approach reported by Rodes et al. (2010) were developed as part of the
present research. Additional background information on why protocol compliance is
important is provided in Section 1 of the Supplemental material.

The ability to distinguish periods when the exposure systems are unworn requires that
adequate accelerometric sensitivity is available to effectively set a threshold that can identify
significant differences in the signal between when the system is unworn compared with
worn during very low energy activities, such as working at a computer. Since it is nearly
impossible for a participant to remain as motionless as an unworn system, a representative
variability level was determined from an unworn unit and used to set a threshold compliance
level. The composite arithmetic standard deviation of the AUC variable across all three axes,
x, y, and z, (Sx,y,z) was determined for the RTI system for an unworn (stationary) RTI
MicroPEM™ (Okidata 8953 accelerometer) unit and found to be 0.0078 G (gravity units).
Table 1S in the supplementary material provides additional Sx,y,z values determined by
activity type for participant #30. This threshold value was then compared across activities
for all worn activities having a higher composite standard deviation by at least a factor of
two. From these data, a modestly-conservative 20% higher threshold activity level
variability of Sx,y,z = 0.0100 G was selected to account for likely between-accelerometer
differences, above which the unit was presumed to be worn. The level of resolution was
readily facilitated by the excellent sensitivity of current-technology triaxial devices
combined with the digital sampling resolutions designed into the data capture electronics
(typical analog-to-digital resolution 4,096 steps; see also Liu et al., 2010). The lowest
standard deviation for all tested low energy activities while awake with the unit worn was
Sitting at a Computer with a composite Sx,y,z of 0.0129 G, which was 65% greater than the
threshold level. Since exposure monitoring protocols do not typically require them to be
worn while sleeping, this mode was not evaluated.
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3.3 Wocket Activity Monitor System
The Wocket system uses common mobile phones and multiple miniature sensors that
transmit motion data to the phones using the Bluetooth wireless protocol. Each sensor,
called a Wocket, has a 3-axis, Freescale Semiconductor model MMA7331LT-ND −4 to +4G
accelerometer. The system is described in the web address given in Footnote 1. Each
Wocket’s small (43mm × 30mm × 7mm with a small connector in a microSD form factor) to
be placed comfortably and inconspicuously at various locations on the body in thin bands.
The Wocket has limited on-board memory, but transmits collected data wirelessly to a
nearby cellphone-based receiver unit. 3-axis accelerometer data can be saved to the phone
for later processing or processed immediately given the phones microprocessor. In this paper
we report data from Wockets worn at the wrist, ankle, chest, waist, pocket, and thigh.

3.4 Other Accelerometers
Comparison testing also included two additional commercially available 3-axis
accelerometers These were the Actigraph model 7164 (Actigraph, Pensacola FL) and the
accelerometer built into the Zephyr PSM Bioharness, (Zephyr Technology, Annapolis, MD,
+/− 3G range) The Actigraph unit was worn at the waist attached to a belt (dominant hand
side), while the Bioharness strap was worn under the clothing around the chest. The
accelerometer on the Bioharness was located on the midline of the chest. Both the Actigraph
and the Bioharness record and store data in on-board memory which then is downloaded to a
computer following the test session.

3.6 Recruitment and Enrollment of Study Cohort
After development of a Consent Form and proposed test methodologies, the Institutional
Review Boards at both Stanford University and RTI International provided reviews of the
Consent Form and study design, with the Stanford IRB providing the primary approval.
Recruitment for this pilot effort was conducted primarily from the campus community at
Stanford University. Cohort data collection included age, sex, body weight and height, and
self- reported habitual physical activity using the Stanford Brief Activity Survey, or SBAS
(Taylor-Piliae, 2006). For this report data analyses were conducted on test data from 22
adult participants. The characteristics of this cohort are shown in Table 1. The cohort
recruitment criteria considered only healthy, non-smoking adults who were sufficiently
ambulatory to perform the range of selected activities, including bicycling. Since the
recruitment was conducted on the Stanford campus, most participants were either students or
university employees. Handedness was included in this table and exposure monitor
placement in Table 4 for completeness as vigorous single hand activities such as painting are
suspected to disproportionately shake a monitor worn on that side. However, no formal
analysis to identify whether handedness was important are reported here.

3.7 Scripted Activity Selection and Testing
A limited panel of physical activities was selected that could easily be conducted in a 2 hour
session and which were not physically demanding for generally healthy adults 18 to 75 years
with no medical or functional limitations. The activities, listed in Table 2 range up to 8
METS (8 times resting energy expenditure - for MET classifications see Ainsworth et al.,
(2011). The activities were performed for 2 to 3 min, or long enough for each activity so
participants reached “steady state” for heart rate, pulmonary ventilation and oxygen uptake.
Note that activities #14 and #15 typically were much shorter than 2 minutes, and were not
included in the present analysis for consistency with the 2 to 3 min. criterion. To minimize
the effects of fatigue, the panel was selected so that they all could be completed in less than
120 minutes of actual testing. Activity selection (range of types and intensities) was based in
part on the recommendations from previous and on-going research (Lyden et al., 2011;
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Kozey-Keadle et al., 2011; Sasaki et al., 2011), an NIH-sponsored workshop on the
Objective Measurement of Physical Activity (Freedson, 2009), and review of reports on how
American adults spend their time (American Time Use Survey), and a report on those
activities that contribute the most to the daily energy expenditure of American adults (Dong
et al., 2004). Since resources were limited and this work considered a demonstration pilot,
some compromises were made including not being able to include all of the most common
activities, such as commuting. The latter was logistically complicated to include in a 2 hour
suite of activities, and while important, had to be relegated to subsequent testing. Some
activities such as stationary biking were selected because of strong staff familiarity with
these activities in prior and on-going programs, simplifying the setup times. Some
participant fatigue may have occurred toward the end of the 120 minute test period, but if so,
those fatigued periods couldn’t be identified separately by our methodology. Future work on
that aspect is warranted.

The panel of activities included activities performed by many members of the target
population such as different postures (lying, sitting, standing), ambulation at different speeds
(on the level and up or down various gradients) and at least partially representative forms of
occupational transportation and home care activities. While vehicle driving is likely a
scenario with high particle exposures (Panis et al., 2010; Dons et al., 2011), we simply
didn’t have the resources to include that activity in these pilot tests. The activities spanned
the intensity range from sedentary activities to medium-vigorous intensity (≥ ~8.0 METS).
Activities were included that require use of lower body, upper body, and upper plus lower
body combined. Activities were also included where the increase in energy expenditure was
due to an increase in speed or frequency of movement and where the increase in energy
expenditure was due to an increase in resistance or weight. Weight bearing and non-weight
bearing activities were also included. A photo of a simulated participant wearing the array of
sensors is shown in Figure 2, while additional photos of testing indoor and outdoor cycling
are shown in supplemental Figure 2S.

3.8 Metabolic Data Collection
The pulmonary ventilation data collected for the present analyses were obtained using an
Oxycon Mobile metabolic measurement system (Carefusion, Yorba Linda, CA). This is a
lightweight (950 g.) portable unit that is worn by the subject and consists of a face mask that
contains a flat fan for measuring pulmonary ventilation volume and an air sampling port that
directs expired air through tubing to oxygen and carbon dioxide measurement devices. Data
from expired air volume and the measures of oxygen and carbon dioxide concentrations are
stored by unit and used to calculate a number of metabolic variables. After a testing session,
the data on the memory card are downloaded to a computer for analysis using software
provided by the company. The Oxycon Mobile1 and its supporting software have been
shown to provide accurate ventilation and oxygen uptake data on subjects performing a wide
variety of physical activities (Carter and Jeukendrup, 2002). For measurement of pulmonary
ventilation, the reported range of the Oxycon unit is 0–300 l/min with an accuracy of ± 3%

3.9 Data Processing, Data Base Development and Validation
The ability to time synchronize data across sensors was important, and great care was taken
to develop data collection procedures and software that would seamlessly allow temporal
synchronization to nominally 1s across all accelerometric and metabolic sensors. A common
laptop computer time was identified as the time-keeping referee against which all sensor
clocks were synchronized prior to each participant test.

Data from 3-axis accelerometers were sampled at 40 Hz on the Wockets, 20 Hz for the RTI
MicroPEM™ and 1 Hz for the Columbia sensor. To isolate the dynamic component of
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motion and get rid of the static component (due to gravity and changes in the orientation of
the sensor), a moving average filter calculated over the previous 5s was applied to each raw
acceleration stream (x, y and z) to remove high frequency components of the signal. The
resulting smoothened signal was then integrated using the Trapezoidal Rule to compute the
area under the curve (AUC) for each axis at 1s intervals. The integrated results from each
axis were then summed into a single composite activity count that represents an orientation
independent measure of movement intensity. Thus, for the RTI sensor, the AUC data were
computed from the individual x, y, and z directions (Xauc, Yauc, and Zauc) and these three
components totaled to provide a single XYZauc value for each second. A moving-time-base
5 second average of the prior 1s values was computed and subtracted from each 1s value in
an effort to remove the impact of gravity on the individual readings for each accelerometer
type. These 1s AUC difference values were also utilized for the ACCEL variable (see
supplemental material) to establish threshold response levels above which indicated that the
exposure monitors were actually being worn. A rapid scanning viewer procedure was
developed to intercom pare the accelerometer data across all sensors for comparability as
part of the review and validation process. An example output of this viewer is shown in
supplemental Figure 2S.

On-board programming restrictions for the Columbia prototype necessarily limited its data
collection to 1 Hz for these tests. The Wocket units served as the “referee” units against
which the informational content losses of the slower RTI and Columbia sampling rates could
be gauged. All Wocket, RTI, and Columbia accelerometry data were processed in the same
manner, differing only by the hardware producing the signal, and the data sampling rates.
Note that while slower data rates were thought to be usable for V rate prediction, data rates
as high as 40 Hz are likely to be required only if categorical identifications by pattern
recognition of activity type are considered, as was done in Albinali et al. (2010). This type
of pattern recognition was not a goal of the current analyses but the developed data bases
should allow these analyses in the future.

3.10 Data Treatments and Statistical Analyses
The total number of participants enrolled for testing was 36, but data from only 22
participants were deemed usable for this analysis, such that all participants could be
compared across the same suite of tests with identical levels of data completeness for each
participant by metric. The logistical complexity of the effort (since a longer suite of
metabolic function data were also being collected, but are not reported here) resulted in
identification of early stage testing functional and logistics problems. Only 7 of the first 20
participants enrolled provided complete data for the current analyses (<40% data capture)
due primarily to early exposure sensor prototype system failures. This shortfall necessarily
limited the number (n) of scripted low-energy (defined here as recumbent, sedentary, and
ambulatory <4 mph) activities validated for these seven ranged from 8 to 13. For the last 16
participants tested, data from only 2 participants were lost, resulting in a much improved
88% data capture. The activity n-values for the last 15 participants ranged from 11 to 14. As
noted previously, hardware and software glitches (e.g. intermittent failures of the Oxycon
ventilation channel) with the exposure and metabolic function monitors proved to be the
most troublesome and caused the greatest number of invalid participant days. The number of
scripted activities investigated for each participant were not the same across participants.
The number of higher-energy activities exhibiting valid data captures was also limited for
the first 7 participants, with the number of activities ranging from 1 to 4 for this early group.
The final 15 participants were more comprehensively tested, with the number of higher
energy activities ranging from 4 to 5.
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The statistical testing reported here consists of standard linear regression fit testing
(Kleinbaum et al., 1988), with computations conducted primarily within Excel (v2003;
Microsoft, Corp.). Goodness of fit (ACCEL versus V) to a linear model was characterized
by the square of the Pearson correlation, with a two-way analysis of variance F test applied
to test the degree of linearity of each regression for either the 95% or 99% confidence level.
Comparability of Pearson correlation for a candidate accelerometer at a given body location
against the data provide by a referee accelerometer located on the dominant side hip
(Wocket 00; see location codes at the top of Table 3) was determined from associated Z and
P-statistics for the 95% confidence level. Additionally, 95% confidence limits were
computed for both the slope and intercept for each of the 22 participants to determine how
appropriately a single median value could be applied (overlapping confidence limits) for the
recruited cohort.

4. RESULTS
4.1 Recruited Adult Cohort Characteristics

Data from a final total of 22 adults were deemed to be acceptable for these analyses, having
no missing data for each participant-day for the full suite of exposure monitors, referee
Wockets, and metabolic sensors. The distribution of ages shown in Table 1 was no doubt
impacted by the proximity of the Stanford university community for recruitment. The mean/
median SBAS physical activity score was 4.2/4.5 indicating a generally physically active
population. The sample was somewhat leaner than the general US adult population in which
about two-thirds have a BMI above 25 compared to 45% in this sample.

4.2 Predictive Model Development—The mean, steady-state AUC data as the ACCEL
dependent variable for all activities were initially regressed against the mean minute
ventilation rate (V) data for all scripted activities to test the simple linear regression form V
= m x ACCEL + b, where m = slope and b = intercept. Applying the linear model to data
with METS levels less than or equal to that of walking on a level treadmill at 4 mph,
resulted in the majority of coefficients of determination (R2) exceeding a nominal level of
0.85. These lower-energy activities correspond to the activities numbered 1 through 16 in
Table 2. Including activities 17 through 22 in the regressions substantially reduced the
observed correlation levels. This resulted from either higher METS level activities such as
cycling, or single arm dominant activities such as brush painting which disproportionately
jostled the chest accelerometers relative to the true METS levels. Since activities from 17 to
22 tended to produce significantly higher ventilations compared with simple linear
predictions for the same accelerometer value, they were excluded from the linear modeling.
It became clear that as the testing progressed that the higher energy activities, and especially
cycling, merited a separate focus and warranted appending even high level activities such as
jogging to better understand and define the breakpoint between linear and non-linear
modeling. Figure 3s in the Supplemental material shows how including elevation in the
treadmill to increase the METS level, began to shift these points from the linear model.
Subsequently, the initially planned modeling was divided into low and higher energy
activity levels, nominally at the 6 MET level. Thus, the subsequent ACCEL versus V
regression analyses for the current analyses reported here cover only those lower-energy
scripted activities with numbers from 1 thru 16. Higher METS modeling will be reported in
a subsequent analysis.

4.3 V Measurements by Sensor Type
The assessment of V in l/min for each participant was made simultaneously by an Oxycon
Mobile system using an adult ventilation face mask, and Zephyr Bioharness (the latter
providing respiration rates in breaths/minute using a chest strap positioned sensor, but not
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true V). The ACCEL versus V regressions for the RTI system were constructed separately
using ACCEL data from both types of monitors. Comparisons between the Pearson R2

coefficients of determination by V monitor type are presented in Table 3 across all
participants for all ACCEL data for the two exposure monitors, all Wockets, the Zephyr
Bioharness and the Actigraph accelerometers. The mean/median correlations developed by
the RTI unit across all participants with the Oxycon Mobile were 0.89/0.92. The correlations
of the MicroPEM™ (and other accelerometers) was substantially poorer as expected when
the Zephyr breathing rate (min1) data were used as a marker variable for V (e.g. mean/media
values of 0.65/0.70 for the MicroPEM™ for the same participants and activities), see data
column 9 in Table 3.

In general the R2 data for all accelerometers at their tested locations were excellent, except
for the Wocket data from the dominant side wrist location. This location gave consistently
poorer correlations than any other location. Using the waist Wocket (00) as the “referee”
location, correlations from all other sensors and locations were found to be statistically
identical at the 95% CI, except for the dominant side wrist location (p=0.016). The latter
mean/median R2 values were 0.56/0.57, respectively.

4.4 RTI and Columbia Regression Data, Chest Locations
The slopes and intercepts, and respective 95% confidence intervals for the linear regressions
with the RTI and Columbia systems worn at chest locations (Rodes and Thornburg, 2005)
were determined for activities 1 through 16. The RTI data regression summary by
participant is provided in Table 4, while the comparable Columbia unit results are provided
in Table 2S of the supplemental data. The numbers of scripted activities available for each
regression gradually increased over the testing, reflecting improvements in the prototype
exposure sensor hardware and software, as well as refinement of the complex matrix of
scripted activity test procedures and metrics. The n for both exposure systems ranged from a
low of 8 to a high of 15 (of 16 possible) activity types.

The slope and intercept data for the RTI and Columbia units cannot be directly compared
due to the differences in internal scaling utilized by each approach in determining the
ACCEL variable. However the composite relative standard deviations for the regression
slopes and intercepts by unit types showed the RTI RSD’s to be 36.6% and 21.5% for the
slope and intercept composites across all participants, while the comparable RSD’s for the
Columbia unit were indistinguishable at 35.1% and 22.0% for the slopes and intercepts,
respectively. The fractional magnitude of the mean 95% CI’s of the mean slope for the RTI
units was 45%, while the same fractional CI for the Columbia mean slope was much larger
at 66.0%. The fraction of the mean 95% CI for the RTI intercept was 50.9%, compared with
66.0% for the Columbia unit.

Graphical comparison across participants by Participant ID # for the slopes and their 95%
CI’s for the RTI unit are shown in Figure 3. Comparable intercept data comparisons are
shown in supplemental Figure S4. Also provided at the top of these graphs are the ages and
BMI values for each participant. The mean slope value is indicated by the dashed line across
all participants. Comparable slope and intercept data for the Columbia unit are provided in
Table 2S of the supplemental material, and are very similar to the RTI, except exhibiting
slightly lower Pearson correlations and larger confidence intervals for the slopes and
intercept values. This performance deficit was attributed to the slower data collection rate
for the Columbia prototype.
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4.5 ACCEL versus V for Cycling
Both indoor stationary cycling and outdoor bicycling provided linear regression
relationships, but with slopes that are substantially different from the lower energy activities
1 through 16. The plot in Figure 4 compares the low energy regression for participant #30
with the linear regression for cycling activities. Note that both regressions had excellent R2

values exceeding 0.9, but had slopes differing by a factor of four. Including cycling and the
higher energy activities (roller and brush painting) 17 and 18, resulted in substantial
correlation weakening, with an all-activity R2 reduced to only 0.32.

Attempting to utilize the low-energy activity regression across all activities for this
participant to predict a cycling event could lead to large biases. On the presumption that
subsequent analyses of the higher data rate sampling will support at least categorical
identification of higher energy activities such as cycling, an example prediction was
undertaken for Participant 16 with and without the knowledge of a cycling component.
Figure 5 plots both the ACCEL and V time series data across a suite of tested activities,
highlighting the indoor (Activity 19) and outdoor (Activity 20) events. Utilizing the low
energy regression across the cycling events (+ data), shows excellent tracking of the
ventilation rate for all other activities, but is biased substantially low for cycling events by
factors of 2 to 5. An a priori categorical identification of the cycling events (Δ) would have
dramatically improved the predictive power for these events. Examples of some distinctive
activity patterns at 20 Hz are shown in supplemental Figure 5S.

5. DISCUSSION
Even as a pilot effort with a limited adult cohort size, the results presented here are
encouraging. The data strongly support the application of utilizing on-board accelerometry
in exposure sensors to predict ventilation rates for adults for a fairly wide range of typical
adult daily activities. The strengths of the correlations across a wide array of triaxial
accelerometer types and locations show that any of the tested triaxial devices and all but one
body location (the wrist) would have provided equally robust data.

Note that the ACCEL metric utilized here was not the conventional vector composite of the
x, y, and z components, but an area-under-the-curve (AUC) summation metric that was
observed to be more reflective of subtle changes that might lead to increased energy
expenditure and strong impacts on metabolic functioning. The AUC metric also proved
more sensitive for identifying whether the exposure monitors were being worn across all
tested activities. Also, it was clear that the importance of examining data for higher energy
activities, as well as a small, parallel childrens’ cohort with child-appropriate activities
evaluated will be extremely interesting (manuscripts in preparation).

5.1 Predictive Power Versus Data Collection Rate
The referee Wocket accelerometers sampled and recorded motion at a rate of 40 Hz, while
the RTI accelerometer collected data at 20 Hz, and the Columbia accelerometer sampled at
only 1 Hz. While it is likely true that predictions of activity type may indeed require data
rates approaching 40 Hz, the strengths of prediction between the Wocket and RTI devices at
the same chest location were indistinguishable when AUC 1s summary values are used. If
activity predictions are not needed, the slower 1 Hz data rate would provide a 40× reduction
in required on-board memory and substantially speed data downloading. The slower 1 Hz
rate used by the Columbia system provided acceptably strong correlations, but exhibited
much wider error bars around the regression slopes for nearly all participants tested. This
strongly suggests that such a low data rate is unreasonably slow, and a rate approaching or
equaling the 20 Hz rate is far more robust and accurate. Since the data can be processed and
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stored in 1 sec increments or longer- the 20 Hz rate does not take any additional memory or
energy.

5.2 Wearing Tightness Importance
Attaching accelerometers (or exposure sensing systems) tightly to the body undoubtedly
results in the recorded motion patterns most closely resembling the correct activity
magnitudes and pattern across a study period. However, tightly worn sensors may be
perceived as somewhat invasive and uncomfortable over time, and looser sensor attachments
are preferred if they don’t degrade the predictive power. At least for low energy activities
represented by Activities 1 through 16, wearing tightness appeared not to be a factor, but no
systematic focus on evaluating the impact of wearing tightness was conducted. Wocket 05
was loosely contained in a chest shirt pocket and provided equally strong associations with
V as tight ankle, thigh, hip, and upper arm locations. This ability to provide strong
associations may change significantly with higher energy activities where a loosely attached
sensor would begin to bounce from its own inertia. Further investigation of the impact of
wearing tightness on ventilation rate prediction for these higher energy activities is
warranted.

5.3 Expanding Real-Time Exposure Data to Predict Potential Dose
The ability to robustly predict V data in real-time opens the door to predicting potential dose
levels (μg/min/kg) instead of the more commonly collected exposures (μg/m3). This could
result in significant strengthening of associations between exposures to aerosol toxicants and
adverse health effects in situations where the aerosol concentrations are elevated
simultaneously with the ventilation volume. For example, walking events on residential
carpeting can readily increase the vertical gradients within a room by factors of two to more
between breathing zone levels and other room heights (Rosati et al., 2008). Re-suspended
dusts in the breathing zone have been associated with increased exposures to endotoxin
(Rabinovitch et al., 2005) during walking events. During these walking events, typical adult
ventilation volumes increased from sedentary activities to walking at 4 mph (Activity 8 in
Figure 4) by roughly a factor of three. Thus, modeling potential dose estimates with
concentrations measured at a fixed location and using a constant ventilation rate rather than
applying a measured and varying V, could mis-characterize the peak respiratory burdens by
a factor of 6 or more for the most active participants. This important point is supported by
the conclusions of Panis et al. (2010) who reported that concentrations unadjusted for
ventilation volumes under-estimated respiratory burden by a factor of 4.3 for a bicyclist.

While the single activity impacts on dose can be substantial, they have to be placed in
context with the amount of time each day that a participant actually is walking on an aerosol
sink such as carpeting that would produce such extremes in peak concentrations and
potential doses. The critical importance of time-activity patterns in elevating particle
exposures is also highlighted by Dons et al. (2011). Additionally, while the correlation for
the ACCEL versus V regression is strong for a given participant, attempting to utilize
composite regression statistics to represent a larger cohort of adults (per Table 4) will
overlay the additional uncertainties posed by the reported confidence limits for both the
slope and intercept. The impacts of these empirical confidence limits on the overall
uncertainties in potential dose prediction remain to be identified.

System modules to compute both real-time exposures and potential dose estimates
simultaneously have now been appended to the RTI MicroPEM™ on-board system
software. Examples of those exposure and potential dose graphical interfaces can be found
in Figure 6S of the supplemental materials.
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5.4 Role of Participant BMI and Age Characteristics
Review of the data presented here strongly suggests that extremes in BMI (e.g. those above
30) and age (those over age 70) may deviate significantly from an adult general population
regression to predict V from ACCEL data. For example, BMI was moderately correlated
with the slope of the regression between V and ACCEL, with coefficients of determination
of 0.30, but increasing to 0.50 if one elderly outlier was removed. A cursory breakdown of
the data here with only 10 men and 22 women suggests that sex is also an important factor.
Further testing with larger cohorts would be needed to prove that these surmises are correct.
However, it is also clear that at rest V data from each recruited participant could be collected
with minimal difficulty during enrollment and Consent Form processing to improve the
predictive power of the regression. The at-rest V would then become the intercept term for
that participant in place of a general adult regression value. This approach also merits further
testing to demonstrate whether this surmise is correct.

5.5 Pattern Recognition is Possible and Important
Even with no formal pattern recognition analyses, the data collected here tended to show
dramatically different triaxial magnitudes and patterns for the AUC ACCEL data across
activity types. Example patterns are provided in the Supplemental material in Figure 5S.
Future analyses will determine whether such identification is possible for at least a limited
suite of the most common adult activities. Not only would this greatly strengthen the
predictive accuracy, but peak values in the real-time exposure data would be simpler to
interpret if categorical activity types could be identified transparently to the participant (no
time-activity logging required).

6. FUTURE DIRECTIONS
Even as a modest effort with adults exhibiting a limited range of BMI’s, the results
presented here are very encouraging, and strongly suggest that including small-footprint,
low power triaxial accelerometers within personal exposure systems supporting health
studies is very advantageous from perspectives of both wearing compliance determination
and predicting potential doses. The surprisingly linear and consistent ACCEL versus V
relationships for the limited range of adults tested, greatly simplifies the on-board data
processing needed and encourages broader examinations as to how accelerometric data
could enhance the robustness of panel study data. The significant slopes differences for the
two oldest participants and the two with BMI’s greater than 30, clearly suggests that the
limitations in the applicability of the approach need to be established from further testing.
Until further analyses are undertaken, it is not clear whether the prediction of other
metabolic variables such as pulse rate will show similar patterns.

A large experimental database still remains to be analyzed, including a limited cohort of 20
youth age 11–15 years who participated in scripted juvenile activity testing very similar to
the adult testing reported here. Additional, data are still under review for higher intensity
(e.g. jogging) adult scripted activities with METS >10 to more readily clarify when and how
nonlinearities become apparent. A range of additional physiological data were collected
simultaneously with the ventilation volume data, including pulse rate, skin temperature, and
breath oxygen and have not yet been analyzed to determine whether the ACCEL variable
would provide comparable predictive power.

Confirmatory data are needed across larger and more diverse cohorts, especially to examine
distinctions between low and higher-energy activities, males and females, and to cover a
wider range of participant BMI’s and ages. Additional analyses should also be considered as
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to whether other physical characteristics such as body height or weight (alone) might prove
to be more robust predictors than BMI or age.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Prototype RTI MicroPEM™ (v2.7) and Columbia Black Carbon monitors worn in shirt
pocket locations
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Figure 2.
Placement of exposure and accelerometric sensors on an adult during scripted testing, with
the Oxycon Mobile face mask for characterizing ventilation volume (V). Not shown is the
backpack containing data logging modules.
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Figure 3.
RTI Composite Regression Slopes (ACCEL versus V by Oxycon); activities 1 through 16,
showing the median value of 1.43. Highlighted age and BMI values reflect participants over
70 years of age, and outside a BMI range of 20 to 30, respectively.
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Figure 4.
Example regression plots for Participant #30 comparing including only low-energy activities
1 to 16 ( ), with cycling ( ) indoor (and outdoor) regressions to illustrate the dramatic
slope change. R2 data are provided (but not plotted) for a regression merging low and high
METS activities (1 to 22), showing the much poorer correlation, but similar slope.
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Figure 5.
Example of Measured V for Participant #30 across selected scripted activities, illustrating
the consistency of the ACCEL variable in predicting ventilation volume, and the potential
biases if cycling was (black △) or was not (blue ; see color in online version only)
identified a prior to define the appropriate regression to characterize the actual, measured V
( ).
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Table 2

Adult Scripted Activities by Number. Recumbent, sedentary and low-energy activities 1 through 16 all had
METS values <6.0. Cycling and single-arm dominant activities not used in linear regression modeling had
METS values from 1.8 to 8.0. see also, Ainsworth et al. (2011).

# Description METS Values, mean (std dev)

Recumbent, Sedentary, or Lower-Energy Ambulatory

1 lying on back 1.1 (0.24)

2 sitting 1.0 (na)

3 sitting, computer search 1.3 (0.27)

4 sitting, writing 1.1 (0.27)

5 sitting, sorting files 1.2 (0.33)

6 sitting, reading 1.2 (0.39)

7 indoor treadmill, 2 mph, 0% 2.8 (0.57)

8 indoor treadmill, 4 mph, 0% 5.0 (1.04)

9 indoor treadmill, 3 mph, 6% incline 4.7 (1.04)

10 indoor treadmill, 3 mph, 9% incline 5.6 (1.24)

11 walking outside naturally 2.8 (0.83)

12 standing 1.3 (na)

13 indoors, carrying load 3.2 (0.74)

14 indoors, stairs, down nd

15 indoors, stairs, up nd

16 sweeping with broom nd

Cycling or Single Arm Dominant

17 indoor painting, roller 2.0 (0.41)

18 indoor painting, brush 1.8 (0.36)

19 indoor, stationary bike 4.0 (0.82)

20 outdoor, bicycling 5.5 (0.95)

21 outdoor, bicycling, downhill 4.1 (na)

22 outdoor, bicycling, uphill 8.0 (na)

na - not available; nd - not determined
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