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Background: Various receptor proteins recruit Drp1 to drive fission of mitochondria and peroxisomes.
Results:MiD49 and MiD51 recruit Drp1 specifically to mitochondria independently of receptors Fis1 and Mff.
Conclusion:MiD49 and MiD51 appear to be specific to the mitochondrial fission apparatus of mammalian cells.
Significance:Mitochondrial and peroxisomal fission processes can be differentially regulated.

Drp1 (dynamin-related protein 1) is recruited to both mito-
chondrial and peroxisomal membranes to execute fission. Fis1
and Mff are Drp1 receptor/effector proteins of mitochondria
and peroxisomes. Recently, MiD49 andMiD51 were also shown
to recruit Drp1 to themitochondrial surface; however, different
reports have ascribed opposing roles in fission and fusion. Here,
we show that MiD49 or MiD51 overexpression blocked fission
by acting in a dominant-negative manner by sequestering Drp1
specifically at mitochondria, causing unopposed fusion events
at mitochondria along with elongation of peroxisomes. Mito-
chondrial elongation caused by MiD49/51 overexpression
required the action of fusion mediators mitofusins 1 and 2.
Furthermore, at low level overexpression when MiD49 and
MiD51 form discrete foci at mitochondria, mitochondrial fis-
sion events still occurred. Unlike Fis1 and Mff, MiD49 and
MiD51were not targeted to the peroxisomal surface, suggesting
that they specifically act to facilitate Drp1-directed fission at
mitochondria. Moreover, when MiD49 or MiD51 was targeted
to the surface of peroxisomes or lysosomes, Drp1 was specifi-
cally recruited to these organelles. Moreover, the Drp1 recruit-
ment activity ofMiD49/51 appeared stronger than that ofMff or
Fis1. We conclude that MiD49 and MiD51 can act independ-
ently of Mff and Fis1 in Drp1 recruitment and suggest that they
provide specificity to the division of mitochondria.

Mitochondrial morphology is maintained through the
opposing forces of fission and fusion, and the regulation of
these processes governs the reticular nature of this organelle

(1–3). Efficient control of the shape and distribution of mito-
chondria is important for a number of cellular processes (3).
Regulation of mitochondrial dynamics has been shown to be
crucial for neuronal cell function and transport of mitochon-
dria along neuronal process (4–6) and for quality control and
maintenance of a healthy mitochondrial network (7–11).
The key mediator of mitochondrial fission (division) is Drp1

(dynamin-related protein 1). Drp1 is a GTPase that is recruited
to mitochondrial constriction sites, where it polymerizes
around the organelle and, through the hydrolysis of GTP,
changes conformation to constrict the outer and inner mem-
branes to drive fission (12–14). Themitochondrial outer mem-
brane proteins Fis1 andMff have been proposed to act as recep-
tors for Drp1 (15–21). However, deletion of Fis1 in cultured
mammalian HCT116 cells results in no changes in mitochon-
drial morphology or Drp1 association with mitochondria, sug-
gesting that Fis1 is dispensable for fission in mammalian cells
(22). In contrast, a recent report found that Fis1-null mouse
embryonic fibroblasts (MEFs)4 have reduced Drp1 puncta at
mitochondria, which was compounded following the addi-
tional knock-out ofMff in these cells (23). Both Fis1 andMff are
also found on peroxisomal membranes and are involved in
Drp1-mediated fission of that organelle (24). Recently, the
mitochondrial outer membrane proteins MiD49 and MiD51
were found to also recruit Drp1 to the mitochondrial surface
(25, 26). However, the proposed function ofMiD49/51 inmito-
chondrial morphology has been under debate (1, 25–27). We
proposed that MiD49 and MiD51 are mediators of mitochon-
drial fission (25), whereas Zhao et al. (26) reported that MiD51
(also termed MIEF1) promotes fusion rather than fission. This
role in mitochondrial fusion was assigned based on the obser-
vation that the fused mitochondrial network seen following
MiD51 overexpression was not blocked following knockdown
of the fusion mediator mitofusin 2 (Mfn2) (26).
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In this work, we set out to clarify the role of MiD49/51 in
mitochondrial morphology. Herein, we provide additional evi-
dence to validate the importance of the MiD proteins in Drp1
recruitment and mitochondrial fission. We found that mito-
chondrial fusion observed upon MiD49 or MiD51 overexpres-
sion is dependent on the presence of either known fusionmedi-
ator, mitofusin 1 (Mfn1) or Mfn2. We also established that the
fused mitochondrial phenotype seen upon MiD49/51 overex-
pression is due to sequestration and inactivation of Drp1 on the
mitochondrial surface, blocking fission and leading to unop-
posed fusion. Supporting this, we found that MiD49/51-medi-
ated Drp1 sequestration at mitochondria results in peroxisome
elongation. The Drp1 recruitment activity of MiD49/51 was
stronger than that of Mff or Fis1. We suggest that unlike Fis1
and Mff, MiD49 and MiD51 specifically mediate the recruit-
ment of Drp1 to mitochondria to execute fission.

EXPERIMENTAL PROCEDURES

Antibodies, Plasmids, and Chemicals—Antibodies specific
for MiD49 were generated as described previously (25). Poly-
clonal antibodies against Mfn1 andMfn2 were kindly provided
by R. Youle (National Institutes of Health, Bethesda, MD), and
anti-PEX14 antibody was a kind gift fromDavid Crane (Griffith
University, Queensland, Australia). Commercial antibodies
used were anti-cytochrome c and anti-Drp1 (BD Biosciences),
anti-�-actin (Sigma), and anti-Tom20 (Santa Cruz Biotechnol-
ogy). Generation of GFP-Drp1, GFP-Drp1K38A, GFP-Fis1,
mito-GFP, MiD49-GFP, and MiD51-GFP was described previ-
ously (17, 25). The mito-DsRed vector was purchased from
BD Biosciences. The open reading frame of human Mff
(GenBankTM accession number BC016597) was obtained from
the Dana-Farber/Harvard Cancer Center.Mff was cloned down-
streamofGFP at BamHI andNotI. Plasmids encoding FKBP12/
rapamycin-binding (FRB) domain-mito (FRB-Fis1TM), lyso-
FRB (Lamp1-FRB), perox-FRB (PMP34-FRB), andGFP-FK506-
binding protein (FKBP) (28) were kindly provided by R. Youle.
MiD51 lacking the transmembrane domain (MiD51�TM) was
cloned downstream of the FKBP domain, followed by GFP.
Both Mff and Fis1 lacking the C-terminal transmembrane
domains (Mff�TM and Fis1�TM) were cloned downstream of
GFP, followedby the FKBPmoiety. The plasmid encodingGFP-
Sec61 (29) was a kind gift from Gia Voeltz (University of Colo-
rado, Boulder, CO).
Cell Culture and Treatments—MEFs and HeLa cells were

grown as previously described (25). Mfn1�/�, Mfn2�/�, and
Mfn1/Mfn2�/� (Mfn-DKO) MEFs were purchased from
American Type Culture Collection (Manassas, VA). Genera-
tion, selection, and induction of stable MEF cell lines were per-
formed as reported previously (30). Transfections were per-
formed using Lipofectamine 2000 or Lipofectamine LTX
(Invitrogen) according to themanufacturer’s instructions. Cells
were incubated with 50 nMMitoTracker Red CMXRos (Molec-
ular Probes), 50 nMMitoTracker Deep Red (Molecular Probes),
and 10 �g/ml Hoechst 33258 (Sigma). A/C Heterodimerizer
(Clontech) was used at a final concentration of 250 nM for 3 h
at 37 °C.
Immunofluorescence Assays—Immunofluorescence assays

were performed as described previously (25). Briefly, cells were

fixed in 4% (w/v) paraformaldehyde in PBS (pH 7.4) and incu-
bated for 60 min at room temperature with primary antibody.
Primary antibodies were labeled for 20 min at room tempera-
ture with Alexa Fluor 488-, Alexa Fluor 568-, or Alexa Fluor
647-conjugated anti-rabbit or anti-mouse (Molecular Probes)
or FITC-conjugated anti-rabbit or anti-mouse (Sigma) second-
ary antibodies.
ElectronMicroscopy—Control,MiD49-induced, andMiD51-

induced MEFs were treated with or without 100 nM 4-hy-
droxytamoxifen (4-OHT) for 72 h. Following protein induc-
tion, cytochemical staining for catalase was conducted as
described previously (31). Briefly, cells were fixed in 4% para-
formaldehyde, 0.05% glutaraldehyde, 2.5% sucrose, 3 mM

CaCl2, and 100 mMHepes (pH 7.4) for 1 h. The fixed cells were
then washed and stored in PBS before incubation in 2 mg/ml 3,
3�-diaminobenzidine, 0.15% H2O2, and 100 mM glycine/NaOH
(pH 10.5) at 37 °C for 1 h. Cells were dehydrated in successive
washes of 70, 90, and 100% ethanol before embedding in resin
and analysis by transmission electron microscopy (32).
PEG Cell Fusion Assay—The PEG cell fusion assay was con-

ducted as reported previously (33, 34). Briefly, cells expressing
either mito-EGFP or mito-DsRed were seeded onto coverslips
at a 1:1 ratio. The following day, the cells were treated with
cycloheximide (30 �g/ml) for 30 min prior to and at all times
following PEG-mediated cell fusion. Cells were fused for 60 s
with 50% PEG 1500 (Fluka) and washed thoroughly with PBS
containing 30 �g/ml cycloheximide. Cells were then grown for
7 h in medium containing 30 �g/ml cycloheximide and subse-
quently fixed with 4% paraformaldehyde. Mfn-DKO MEFs
expressing MiD49 were treated with 100 nM 4-OHT 24 h prior
to PEG cell fusion.
Microscopy—Epifluorescence microscopy was conducted

using an Olympus IX8I microscope equipped with an F-view2
camera and processing using Soft System SIS (Olympus). Con-
focal microscopy was performed with a Zeiss confocal micro-
scope equipped with a ConfoCor 3 system containing an ava-
lanche photodiode detector. Green fluorescence was detected
using an argon laser, red fluorescence was detected using a
DPSS laser, and deep red fluorescence was detected using a
helium/neon laser. All images were processed using ImageJ
(http://rsbweb.nih.gov/ij/index.html), Zeiss and/or MetaMorph
software (Visitron Systems), ZEN lite 2011 (Blue edition, Zeiss),
or Imaris imaging software (Bitplane AG). Average peroxisome
length from confocal images was calculated by determining the
volume of each individual peroxisome and the average peroxi-
some diameter using Imaris imaging software. The length of
each peroxisome was then calculated from the volume accord-
ing to volume � length � width � height. Analysis of peroxi-
some number was determined using MetaMorph software.
Briefly, peroxisome images were converted into skeleton pic-
tures, and the average length or number quantified. The
method used to determine Drp1 fluorescence intensity at per-
oxisomes was adapted from Ref. 23. Briefly, images were bina-
rized to select peroxisomes and subtracted from the Drp1 sig-
nal. These images were subsequently subtracted from the
original Drp1 signal, producing a peroxisomal Drp1 image. The
average fluorescence intensity per cell was then analyzed by
MetaMorph software and normalized to the wild-type control.
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This method was also modified to determine cytosolic versus
total Drp1 fluorescence. Briefly, images were thresholded and
binarized for mitochondria and subtracted from the Drp1 sig-
nal, resulting in an image containing cytosolic Drp1. Measure-
ments of fluorescence intensity of both the total and cytosolic
Drp1 signals were obtained per cell. Analysis of colocalization
following PEG fusion assay and A/C heterodimerization was
conducted as described previously (25). Briefly, following a 3-h
treatment with A/C Heterodimerizer or 24 h following PEG
fusion, cells were fixed in 4% paraformaldehyde. Single plane
images were obtained on a Zeiss 510 confocal microscope and
analyzed by MetaMorph software. Colocalization statistics
were obtained from 30–35-�m line scans of images and are
presented as Pearson correlation units (r). Images in all exper-
imental groupswere obtainedwith the same settings, except for
detector gain adjustments that were performed to normalize
saturation levels.
Mitochondrial Treatments and Western Blotting—Tris/

Tricine/SDS-PAGE was performed as described previously
(35). ECL chemiluminescent substrate (Amersham Biosci-
ences) was used to detect immunoreactive proteins in blots.

RESULTS

MiD49 and MiD51 Overexpression Induces Mfn1/2-depen-
dent Mitochondrial Elongation—It has recently been proposed
thatMiD51 actively promotesmitochondrial fusion (26). How-
ever, these findings were largely based on the observation that
mitochondria still appear fused in MiD51-overexpressing cells
following knockdown of the fusion mediator Mfn2. Given that
Mfn1 is also involved in mitochondrial fusion, we sought to
determine how the complete absence of the mitochondrial
fusion apparatus would influence MiD-induced mitochondrial
morphology. To this end, we addressed whether MiD49 or
MiD51 expression could promote mitochondrial fusion in
MEFs lacking genes encoding Mfn1 and/or Mfn2. Stable cell
lines were generated in which expression of MiD49 was
induced by the addition of 4-OHT (25), andWestern blot anal-
ysis confirmed the expression of MiD49 in these cells (Fig. 1A).
Fluorescencemicroscopy revealed that up-regulation ofMiD49
in wild-type MEFs induced the appearance of elongated mito-
chondria as seen by the presence of a largely interconnected
network (Fig. 1, B and C) as reported previously (25). Interest-
ingly, MiD49 expression in MEFs lacking Mfn1 or Mfn2 also
resulted in the appearance of elongated mitochondria (Fig. 1, B
and C). It was only in cells lacking both Mfn1 and Mfn2 (Mfn-
DKO) that mitochondrial elongation was blocked following
MiD49 up-regulation (Fig. 1,B andC), resulting in no change in
mitochondrial phenotype from the uninduced fragmented
morphology, as described by Chen et al. (33, 34). These results
indicate that at least onemitofusin is required to drive the elon-
gation phenotype seen upon MiD49 overexpression. Identical
results were observed following transient overexpression of
MiD51 in these Mfn1- and/or Mfn2-deficient cell lines (data
not shown). Our results are consistent with previous reports
showing that mitochondrial fusion requires a complement of
mitofusins on opposing organelles so that membrane tethering
can be facilitated (33, 34, 36).

From our previous data (25), we interpreted that mitochon-
drial elongation following MiD49/51 overexpression is due to
sequestration of Drp1 at mitochondria, which blocks fission
and leads to unopposed fusion. To look at this in a differentway,
we expressed the dominant-negative mutant Drp1K38A in
Mfn2�/� cells. As shown in Fig. 1 (D and E), expression of
GFP-tagged Drp1K38A caused mitochondria to elongate in a
manner similar to that seen following overexpression of GFP-
taggedMiD49 orMiD51 in these cells. Expression of mito-GFP
or GFP-Drp1 did not result in the appearance of elongated
mitochondria, as expected (Fig. 1,D andE). Similar results were
also observed in Mfn1�/� cells expressing Drp1K38A (data not
shown). Given this, it is likely that overexpression of MiD49 or
MiD51 indeed impairs the organization of the mitochondrial
fissionmachinery by blockingDrp1 function. Because themito-
fusins remain active, the mitochondria elongate.
It remains possible that MiD49/51 could tether with a mito-

fusin on an opposing organelle to drive mitochondrial fusion,
similar to the tethering described betweenMfn1 andMfn2 (Fig.
2A) (33, 34, 36). We therefore assessed this using PEG-medi-
ated cell fusion analysis, in which one set of cells expressed
mito-GFP and anothermito-DsRed (33, 34). During cell fusion,
cycloheximide was added to block further expression of the
fluorescent protein. The addition of cycloheximide induces
transient mitochondrial hyperfusion even in Mfn2�/� cells
and, to a lesser extent, in Mfn1�/� cells, as reported previously
(37). Fusion of mitochondria originating from distinct cells
could be seen by the mixing of red and green mitochondrial
contents to produce a yellow merged image (Fig. 2, A and B).
Such an event was seen with combinations of wild-type MEFs
(Fig. 2B) and single Mfn knock-out cells fused together (Fig.
2C). However, fusion of distinctmitochondrial populationswas
not observed when cells lacking both mitofusins were
employed (Fig. 2, B and C), as described previously (33). Next,
we performed cell fusion experiments to determine whether
overexpressed MiD proteins could complement the lack of
mitofusins (Fig. 2, A and B). When Mfn-DKO MEFs overex-
pressing MiD49 or MiD51 and mito-EGFP were fused to wild-
type, Mfn1�/�, or Mfn2�/� MEFs expressing mito-DsRed, no
mitochondrial fusionwas observed (Fig. 2,B andC). From these
results, we conclude thatMiD49 orMiD51 cannot actively pro-
mote fusion with either Mfn partner and therefore cannot
replace the function of either Mfn1 or Mfn2.
To support their role in fission, we performed time lapse

imaging of a COS-7 cell cotransfected with MiD51-GFP and
mito-DsRed. At very early stages of MiD51-GFP overexpression,
mitochondrial morphology was normal, and fission events were
indeed observed (see the supplemental movie). At longer time
points when GFP expression became greater, the mitochondria
became extensively elongated. Coupled with our previous RNAi
results showing that knockdown of MiD49 and MiD51 causes a
fission block (25) and recent findings from other groups (23, 38,
39), we conclude that the levels of the MiD proteins are precisely
regulated to ensure that mitochondrial fission ensues.
MiD49/51 Overexpression Induces Peroxisome Elongation—

Drp1 has a dual role in both mitochondrial and peroxisomal
fission, with the formation of Drp1 puncta at regions of organ-
elle division (40–43). Likewise, Fis1 and Mff are also found at
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peroxisomes, and inmammals, they are suggested to work with
the peroxin PEX11 to facilitate Drp1-dependent fission (19, 20,
44). Because MiD49 andMiD51 recruit Drp1 to the mitochon-
drial surface, we investigated whether they are also involved in
peroxisomal fission.
In contrast to Fis1 and Mff, MiD51 was not targeted to per-

oxisomes (Fig. 3A). MiD49 was similarly not found at peroxi-

somes (data not shown). This suggests that the MiD proteins
have a primary role in mitochondrial dynamics. Following
extended overexpression of MiD51, the length of peroxisomes
markedly increased in comparisonwithwild-type cells (Fig. 3,B
and C). This was also seen in cell sections analyzed by electron
microscopy and stained for catalase to visualize peroxisomes
(Fig. 3D). The non-continuous staining along the entire length
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of the peroxisome may be attributed to the thin sectioning
required for electron microscopy. In both cases, the extended
morphology of peroxisomes appeared evenmore striking than the
mitochondrial elongation. There were no obvious morphological
changes seen for the cis-Golgi, lysosomes, or endoplasmic reticu-
lum following MiD51 overexpression (data not shown). With
increased timeofMiD51 induction, not onlywas there an increase
inperoxisome lengthcomparedwithwild-typeMEFs (Fig. 3B), but
also a concomitant reduction in the number of peroxisomes (Fig.
3E). The observed increase in peroxisome length and reduction in
peroxisome number followingMiD51 induction appeared similar
to that observed followingDrp1 knock-out or knockdown (31, 42,
45, 46), consistent with our findings that MiD49/51 overexpres-
sion renders Drp1 nonfunctional.
To confirm that peroxisome elongation is due to loss of Drp1

at peroxisomes, MiD51-uninduced (without 4-OHT) and
MiD51-induced (with 4-OHT) MEFs were analyzed for Drp1
subcellular localization by immunofluorescence. Following

induction of MiD51, endogenous Drp1 was reduced at peroxi-
somes compared with control cells, and peroxisomes adopted
an elongated morphology (Fig. 4, A and B). In the same cells,
Drp1 predominantly colocalized with mitochondria in discrete
regions (Fig. 4C). The loss of cytosolic Drp1 could be observed
uponMiD51 expression (Fig. 4,C andD). These results suggest
that peroxisome elongation occurs following extended MiD51
induction due to the reduction of Drp1 associationwith peroxi-
somes. Even upon overexpression of Drp1 (fused to GFP), the
signal forGFP-Drp1was not observed at peroxisomes following
MiD51 up-regulation (with 4-OHT) and instead was almost
exclusivelymitochondrial (Fig. 4E). Thus, ectopic expression of
Drp1 is incapable of reversing the fused peroxisome morphol-
ogy (Fig. 4E).
MiD49 and MiD51 Can Recruit Drp1 Independently of Fis1

and Mff—Because MiD49 and MiD51 are not found at peroxi-
someswithMff and Fis1, it is possible thatMiD49/51may func-
tion independently of these proteins atmitochondria. To assess
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this, we asked whether MiD49/51 could recruit Drp1 to an
independent organelle. We used a heterodimerization assay
system based on the FKBP and FRB domains, which form a
complex in the presence of the rapamycin analog A/C Het-
erodimerizer (28, 47). The cytosolic domain of MiD51 lacking
its N-terminal transmembrane anchor (MiD51�TM) was fused
to FKBP along with GFP, whereas the FRB domain was fused to
membrane anchors of proteins targeted to the surface of lyso-
somes (lyso-FRB), peroxisomes (perox-FRB), and, as a control,
mitochondria (FRB-mito) (Fig. 5A). The GFPmoiety has previ-
ously been shown not to hinder MiD51 recruitment of Drp1
(25). Each FRB constructwas cotransfected intoHeLa cells with

the GFP-tagged FKBP-MiD51�TM construct. In the absence
of A/C Heterodimerizer, GFP-tagged FKBP-MiD51�TM was
found in the cytosol and nucleus (Fig. 5B). When cells were
treated with A/CHeterodimerizer for 3 h, the protein was redi-
rected to the appropriate organelle based on the targeting of the
FRB fusion construct as expected (complete targeting of FKBP
fusion proteins to peroxisomes was not seen) (28). Immuno-
staining revealed that in all cases, Drp1 was redirected from the
cytosol to the organelle decorated with FKBP-MiD51�TM-GFP
(Fig. 5B). Although the time frame was short, some cells also
showed the appearance of elongatedmitochondria in A/CHet-
erodimerizer-treated cells, in which Drp1 became sequestered
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(Fig. 5B). As the MiD51 cytosolic domain can recruit Drp1 to
lysosomes, we conclude that other mitochondrial outer mem-
brane proteins such as Mff and Fis1 are not required for this
activity.We next asked whether Fis1 andMff have the ability to
independently recruit Drp1 in a similar way as MiD51. The
soluble domains of Fis1 or Mff (both lacking their individual
C-terminal transmembrane anchors) were expressed as FKBP
fusionsalongwithGFPandtargeted to lysosomesviaexpressionof
lyso-FRB and A/C Heterodimerizer treatment (Fig. 5C). Efficient
targeting could be seen, and mitochondrial morphologies
appeared normal. However, in neither case was strong Drp1
recruitment observed (Fig. 5C). Close inspection of Drp1 recruit-
ment (Fig. 5D) and quantification of colocalization (Fig. 5E)
revealed that there was no significant positive correlation of Drp1
recruitment when GFP or GFP-Fis1 was targeted to lysosomes.
Some recruitment of Drp1 could be observed when Mff was
directed to lysosomes, consistent with a previous report that
plasmamembrane-targetedMff can recruitDrp1 (22). In contrast,
the recruitment of Drp1 to lysosomes was highly effective when
MiD51 was directed to the organelle (Fig. 5E). We conclude that
MiD51 can recruit Drp1 to amembrane surface independently of
other known components of the fissionmachinery.

DISCUSSION

MiD49andMiD51RecruitDrp1 Independently of Additional
Mitochondrial Proteins—In recent years, many studies have
reported mechanisms by which Drp1 is regulated to exert its

membrane constriction and fission activity. One of the major
steps is the recruitment of Drp1 to the appropriate organelle
andmembrane region. In animals, this is achieved by a number
of membrane receptor/effector proteins, including Fis1, Mff,
MiD49, and MiD51. The involvement of Fis1 in Drp1 function
may be indirect, as a number of reports have shown that it is not
required forDrp1 recruitment in culturedmammalian cell lines
(22, 48–50). In yeast, it is now established that Fis1 plays a part
in scaffolding the soluble Drp1 effector protein Mdv1 at the
mitochondrial outer membrane rather than engaging directly
with Drp1 (51–54). Although Mdv1 appears to be confined to
yeast, other Drp1 receptor/effector proteins are found in ani-
mals and plants. How they specifically function in mitochon-
drial fission is still not known.
Recently, Chan and co-workers (23) reported a study ofmito-

chondrial dynamics in MEFs lacking Fis1 and/or Mff. The
authors found some increase in mitochondrial elongation in
contrast to a Fis1 knock-out human cell line (22, 23). This was
more evident in the Mff knock-out cell line, whereas Fis1/Mff
double knock-out MEFs were found to have strongly fused
mitochondrial networks and reduction in Drp1 recruitment to
mitochondria (23). In addition, the authors found that MiD49
and MiD51 overexpression in these cells alleviated the Drp1
recruitment defect (23). Here, we have confirmed this work and
extended it by demonstrating that when MiD51 was mistar-
geted to other organelles, it could also directly recruit Drp1,
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suggesting that additional mitochondrial outermembrane pro-
teins are not required for this activity.During the preparation of
this manuscript, Shaw and co-workers (38) also demonstrated
this by expressing these proteins in yeast. Interestingly, the
degree by which lysosome-targetedMiD51 recruited Drp1 was
greater compared with lysosome-targeted Fis1 or Mff.
Our analysis of MiD49 or MiD51 overexpression revealed

that the appearance of an elongated mitochondrial network is
due to sequestration and inactivation of Drp1 at the mitochon-

drial outer membrane, which causes a fission block, thereby
leading to unopposed fusion events. In addition, it was recently
found that MiD49/51 overexpression causes the accumulation
of the inactive phosphorylated form of Drp1 (at Ser-637) (23).
Whether this is a result of Drp1 sequestration or a direct effect
caused byMiD49/51 action remains to be determined.Wehave
also shown, that fusion events are strictly dependent on the
presence of at least one mitofusin. The evidence that MiD49
and MiD51 are involved in mitochondrial fission rather than
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fusion is further supported by our previous study (25) and by
recent publications from other groups (23, 38).
MiD49 andMiD51May Specifically Regulate Mitochondrial

Fission—The reduction in Drp1-mediated fission was most
profoundly observed by analyzing peroxisome morphology in
MiD49/51-overexpressing cells, with peroxisomal extensions
representing a block in fission events due to reduced levels of
Drp1 at the peroxisomal surface. Related to this, we found that
unlike Mff and Fis1, MiD49 and MiD51 are not targeted to
peroxisomes. Themechanism of organelle promiscuity for Fis1
and Mff most likely lies in the fact that they have C-terminal
anchors. A number of reports have found that the degree of
hydrophobicity, charge, and length of C-terminal anchors can
alter targeting (55–58). In addition, the ability of Fis1 andMff to
interact with proteins of the PEX11 family may facilitate their
localization to peroxisomes (59, 60). In contrast, MiD49 and
MiD51 have an N-terminal membrane anchor, and although
the mechanism of targeting is not clear, the sequence is highly
conserved, suggesting that this is important for organelle selec-
tion. Moreover, we found that the MiD49/51 transmembrane
anchors were not required for Drp1 recruitment activity.
Although Drp1 mediates both peroxisomal and mitochon-

drial fission, there is no evidence to suggest that the activities
are linked, and hence, independently regulatedmechanisms are
required. The formation of mitochondrial constriction sites
appears to be important for mitochondrial fission, with the
wrapping of the endoplasmic reticulum and actin polymeriza-
tion at the mitochondrial surface playing a role in this process
(29, 61). Based on the results presented here, it is also likely that
MiD49 and MiD51 confer a level of specificity in recruiting
Drp1 to the mitochondrial surface independently of Fis1 and
Mff.
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