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Abstract
Environmental transmission of extremely resistant Toxoplasma gondii oocysts has resulted in
infection of diverse species around the world, leading to severe disease and deaths in human and
animal populations. This review explores T. gondii oocyst shedding, survival, and transmission,
emphasizing the importance of linking laboratory and landscape from molecular characterization
of oocysts to watershed-level models of oocyst loading and transport in terrestrial and aquatic
systems. Building on discipline-specific studies, a One Health approach incorporating tools and
perspectives from diverse fields and stakeholders has contributed to an advanced understanding of
T. gondii and is addressing transmission at the rapidly changing human–animal–environment
interface.
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1. Introduction
Understanding the ecology and epidemiology of disease in the context of ecosystems is
critical for preserving human and animal population health. Over 7 billion people now
depend upon the earth's resources [1], and global environmental change has made disease
migration to new hosts and landscapes a reality rather than a potential threat [2,3].
Anthropogenic activities, in particular, reshape landscapes, climate, and species distributions
and interactions across the globe, with significant potential to alter patterns of pathogen
emergence and spread [4–7]. Habitat conversion, introduction of non-native species, and
increased contact between human, domestic animal, and wildlife populations have been
linked to emerging viral, bacterial, and parasitic diseases [8]. Climate change also has the
potential to alter cycles of disease transmission by influencing vector and host ranges,
pathogen survival, and dynamics of water-borne transmission [8,9]. Of the 1415 organisms
documented as human pathogens, over 60% are believed to have come from domestic or
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wild animal reservoirs [10]. Examining animal, human, or environmental health alone
ignores the vital links between these components.

Historical biological and geographic boundaries of disease transmission will likely continue
to shift significantly with changing environmental conditions, making a more holistic, One
Health approach to pathogen research and management essential. By linking diverse non-
academic stakeholder communities and researchers from different disciplines, the One
Health approach builds a synergistic base from which to study and address the unique health
challenges emerging at the human–animal–environment interface in a changing global
environment [11,12].

Toxoplasma gondii, a globally distributed, zoonotic, protozoan parasite capable of infecting
a wide range of warm-blooded animals [13], provides a broadly applicable example of the
complexity of pathogen transmission among diverse hosts and environments and illustrates
the need for a One Health approach to better understand disease ecology and epidemiology.
Although long-studied in terrestrial landscapes, T. gondii has also emerged as a significant
aquatic pathogen linked to marine mammal infection and water-borne outbreaks of disease
in humans around the world [14]. Oocysts, the exceptionally hardy free-living
environmental stage of the parasite, play a key role in transmission of T. gondii to newly
recognized hosts and ecosystems. As wild and domestic felids are the only known hosts
capable of shedding T. gondii oocysts in their feces [15–17], infection of people and animals
through contaminated terrestrial and aquatic sources emphasizes the need to jointly examine
human, domestic animal, and wildlife populations. While parasitologists, physicians,
veterinarians, ecologists, and molecular biologists have studied T. gondii independently,
understanding how a traditionally terrestrial pathogen is emerging in new environments
requires more integrated knowledge. For T. gondii and other pathogens, creating a more
collaborative approach to research and management from molecular to landscape levels has
enhanced our understanding of health at the human–animal–environment interface.

2. Importance of oocysts in transmission of T. gondii infections
Warm-blooded animals, including humans, are typically infected with T. gondii through one
of three pathways: ingesting oocysts from the environment (through contaminated water,
soil, or food), eating an infected intermediate host with T. gondii cysts in its tissues, or
congenital transmission from infected mothers to offspring [13,18]. Additional potential
routes of transmission, including T. gondii tachyzoite-contaminated sperm and
unpasteurized milk, have been demonstrated, but are thought to be rare sources of infection
[19–21]. Uncommon cases of human infection following blood transfusion or organ
transplantation from T. gondii-infected donors have also been reported [22,23]. However,
oocyst-induced infections are increasingly recognized as a significant route of T. gondii
transmission (Fig. 1) [14,24].

A key feature of oocyst-borne infections is that the majority of human cases with clinical
symptoms were reported in immunocompetent individuals, which contrasts with the
traditional dogma that 90% of acquired cases of toxoplasmosis in healthy hosts are
asymptomatic [25]. Clinical disease from acquired toxoplasmosis has been linked to strain
virulence (as reviewed by [26]), and may be more severe when intermediate hosts acquire
the infection through the oocyst versus tissue stages of T. gondii [27-29]. As reviewed by
Grigg and Sundar [30], a number of studies link oocyst infections to symptomatic disease in
immunocompetent individuals, with signs ranging from mild flu-like illness to more
disseminated and severe outcomes, such as chorioretinitis, neurologic deficits, aborted
fetuses, and even death. While outbreaks associated with consumption of bradyzoite tissue
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cysts in undercooked meat have been reported, the numbers of individuals affected are
minimal as compared with documented oocyst outbreaks [30].

2.1. Terrestrial oocyst transmission
Widespread infection in chickens, grazing livestock, and herbivorous wildlife species from
diverse geographic locations provides evidence of environmental exposure to T. gondii
oocysts [31,32]. Omnivorous animals may acquire T. gondii infection through ingestion of
tissue cysts, but infection from oocyst-contaminated food or water has also been reported
[33]. Additionally, human infection has been repeatedly linked to terrestrial environmental
sources including oocysts in domestic cat (Felis catus) litter boxes and soil as well as
ingestion of contaminated unwashed fruits and vegetables [34–36]. Oocysts have been
recovered from soil under natural conditions [37,38], and epidemiological studies indicate
that there is an increased risk of acquired T. gondii associated with soil exposure (Tables 1
and 2[39]). While differentiating routes of T. gondii acquisition has been historically
difficult, a recently recognized oocyst-specific antigen [27,40,41] applied in a study of
mothers of congenitally infected infants in the United States demonstrated that 78% of these
women (59 of 76), had oocyst-acquired infections [41].

2.2. Water-borne oocyst transmission
Furthering the understanding of T. gondii epidemiology at a level that integrates
environmental, human, and animal factors necessitates novel insight on the ecology of this
parasite in water as well as terrestrial landscapes. Contamination of water with disease-
causing microorganisms is a global health issue, with implications for human and animal
health. Increasing reports of epidemic and endemic waterborne T. gondii infection in
humans have emphasized the zoonotic potential for oocyst-based transmission [14,42].
Outbreaks of clinical toxoplasmosis in humans exposed to oocyst-contaminated water have
been described in both developing and developed countries [43], with numerous additional
reports identifying water as a risk factor for endemic T. gondii infection (Tables 1 and 2).

Some of the strongest support for the importance of oocyst-based transmission comes from
T. gondii morbidity and mortality in aquatic mammals. Infection with T. gondii has been
described for numerous marine mammal species living in near-shore and open ocean waters
around the world, with clinical disease observed in seals, dolphins, whales, sea otters, and
manatees [44–49]. Animals living in freshwater systems are also at risk; over 85% (82 of
95) of free-ranging Amazon River dolphins had antibodies to T. gondii [50]. Widespread T.
gondii infection in aquatic mammals suggests that contamination of terrestrial watersheds
with T. gondii is prevalent, and that sufficient numbers of oocysts are distributed in
freshwater and marine ecosystems to infect and cause disease in both near-shore and pelagic
mammals. T. gondii in marine mammal tissues also presents a public health concern, as
widespread consumption of these animals, especially in indigenous communities, can
provide an additional route of zoonotic transmission [51].

In California, T. gondii is a significant cause of mortality in threatened Southern sea otters
(Enhydra lutris nereis) [52]. Because the only known definitive hosts of T. gondii are felids,
otter infection supports land-to-sea transmission of this parasite through contaminated
freshwater runoff [53]. Although a case of vertical transmission in sea otters has been
reported [54], infection is more likely to occur through eating oocyst-contaminated
invertebrate prey [55] or by direct exposure to oocysts in seawater. Southern sea otters,
though they eat numerous marine prey species, have only rarely been observed to consume
warm-blooded intermediate hosts of T. gondii [56,57]. Filter-feeding marine invertebrates,
such as mussels and oysters, do not appear to become infected, but can concentrate viable T.
gondii oocysts [58,59]. These invertebrates can then serve as transport hosts of the parasite
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and a potential source of infection for otters and other marine predators as well as humans,
underscoring the public health risks of T. gondii in the near-shore marine environment [60].

Marine filter-feeding fish, which are prey species for many pelagic marine mammals, may
also be a source of T. gondii infection. Using PCR and mouse bioassay detection methods,
anchovies and sardines were experimentally shown to filter viable, sporulated oocysts from
T. gondii spiked seawater into their alimentary canals [61]. Whether this process occurs in
nature is unknown, but if migratory filter-feeding fish serve as transport hosts of
Toxoplasma, they could carry oocysts from coastal runoff to diverse marine environments.

3. Keys to oocyst success
Oocysts pose a serious threat to susceptible hosts because of their robust environmental
resistance, low infectious dose for some species, and the lack of methods to reliably detect
oocysts in water and other environmental substrates to identify sources of exposure.
Multiple experiments evaluating the survival of oocysts in soils showed that they may
remain viable for at least 1 year when covered and in cool temperatures (4°C) [38,62–64].
Under warm climate conditions in dry soils from Kansas, USA, oocysts remained viable for
18 months [63]. In fresh or marine waters, oocysts were shown to be viable for at least 4.5
and 2 years, respectively [65] (reviewed by [66]). Although T. gondii oocysts have been
reported to be inactivated by exposure to >60 °C for 1 min [67], higher temperature and
longer duration may be necessary for complete and reliable inactivation. Two chemicals
commonly used to treat water, sodium hypochlorite (chlorine) and ozone, failed to inactivate
all infective oocysts at concentrations well in excess of those used to treat both sewage and
drinking water [68,69]. Furthermore, physical inactivation by ultraviolet (UV) irradiation at
doses ≥500 mJ/cm2, far exceeding doses commonly used to treat water, did not fully
inactivate T. gondii oocysts [70].

Although nearly all warm-blooded animals are susceptible to oocyst-borne infections, the
infectious dose for most species is unknown. Some intermediate hosts, including mice and
pigs, are highly susceptible and become infected at doses as low as 1–10 T. gondii oocysts
[71,72]. Even rats and horses, which appear resistant to clinical disease following infection
with T. gondii oocysts, develop tissue cysts, indicating their potential to serve as sources of
infection for other hosts [73,74].

4. How molecular characteristics contribute to oocyst success
Molecular description of the oocyst has been extremely limited for several reasons: (1) no
method exists for maintaining or expanding oocysts in vitro, therefore, infection of the
definitive felid host is required to produce oocysts; (2) oocysts are refractory to routine
protocols used to isolate nucleic acids and proteins, thus requiring special equipment and
procedures; and (3) live oocysts pose a biohazard risk as they are not readily killed by
laboratory disinfectants [75–77]. However, recent molecular characterization of T. gondii
oocysts provides preliminary clues to the critical proteins that comprise the oocyst wall and
likely confer oocyst resistance to destruction [75,77]. Comprehensive mining of the recently
published oocyst transcriptome and proteome revealed many genes/proteins that were found
to be uniquely expressed in the oocyst stage and appear to be located in the oocyst wall or
otherwise contribute to oocyst resistance. Among these genes/proteins were tyrosine-rich
proteins, T. gondii oocyst wall proteins (OWPs), PAN-domain-containing proteins, and late
embryogenesis abundant domain-containing proteins (LEAs) [75,77].

VanWormer et al. Page 4

Comp Immunol Microbiol Infect Dis. Author manuscript; available in PMC 2013 September 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



4.1. How the oocyst wall confers resistance
Evidence suggests that the oocyst wall is comprised of groups of highly cross-linked
proteins that form a sturdy outer matrix contributing to the oocyst's resistance to destruction.
The T. gondii oocyst wall is a bilayered structure with an outer electron dense layer and an
inner electron lucent layer, both roughly 40 nm thick [78]. Oocyst wall formation takes
place within feline intestinal epithelial cells as the macrogamete develops. The outer layer of
the oocyst wall is reportedly composed primarily of proteins and carbohydrates, providing
structural strength, and the inner wall is primarily lipid, providing protection from chemical
insult [79,80]. Under UV excitation (330–385 nm) the oocyst wall is autofluorescent, and
the wall retains its autofluorescence following bleach treatment and boiling [80]. Because
molecular data on T. gondii oocysts were largely unavailable, predictions for oocyst wall
formation and composition in T. gondii have been made based on what has been described
in two closely related, extensively studied, and environmentally resistant protozoan genera:
Eimeria and Cryptosporidium.

Similarities in oocyst characteristics, including: environmental stability; mechanism of wall
formation; and autofluorescence of oocyst walls under UV excitation, indicate that the T.
gondii oocyst wall is likely very similar to Eimeria spp. A unique feature of the identified
proteins in the Eimeria oocyst wall is tyrosine-richness [81,82] with tyrosine-protein cross-
linkages reported to be responsible for structural robustness and autofluorescence [82].
BLAST searches of the tyrosine-rich proteins identified in Eimeria failed to turn up any
homologs in the predicted genome of T. gondii [75]. However, six tyrosine-rich proteins
(>5% tyrosine) were found to be abundantly expressed in the proteome and transcriptome of
T. gondii oocysts [75,77], suggesting that like Eimeria, T. gondii oocysts contain tyrosine-
rich proteins. Cross-linking via dityrosine bonds has been described in a number of
organisms and is associated with the formation of insoluble and physicochemical resistant
matrices; examples include bacterial spores, fungal cell walls, sea urchin eggs, and coccidian
oocysts [83–87]. The putative location of tyrosine-rich proteins in the walls of the oocysts
and their ability to form bridges across tyrosine residues has yet to be experimentally
investigated.

Oocyst wall proteins (OWPs) in Cryptosporidium spp. are cysteine-rich and predicted to be
stabilized via disulfide bridges [88,89]. Seven homologs to the cysteine-rich family of
OWPs identified in Cryptosporidium spp. are present in the T. gondii genome (designated
TgOWPs 1–7) [89]. Three were recently confirmed in the T. gondii oocyst wall (TgOWPs
1–3), and all were identified in oocysts by mass spectrometry and/or microarray [75,77].
Also abundantly detected in T. gondii oocysts by mass spectrometry were PAN domain-
containing proteins [77]. The structural conformation of PAN-domain containing proteins is
also achieved through disulfide bridges that result in a pattern of folding that creates
recognition and binding sites [90]. The role of these PAN domain-containing proteins has
not yet been investigated in T. gondii oocysts, but they may be of structural significance in
the oocyst wall given their large size and predicted extensive disulfide bridging.

4.2. Other molecules that confer resistance
While it has been presumed that the T. gondii oocyst achieves its resistance to
environmental destruction through structures present in the wall, a group of proteins
designated ‘late embryogenesis abundant domain-containing proteins’ (LEAs) may
comprise another critical dimension to oocyst resistance. Four LEAs were discovered in
oocysts by microarray and mass spectrometry [75,77]. While the function of these proteins
in T. gondii is unknown, LEA proteins have been described in a number of other organisms
including plants, invertebrates, and microorganisms [91]. There is significant diversity in the
LEA families and their respective functions are still under investigation. However, a
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commonly ascribed role is resistance to environmental stresses including drought, high
salinity, and freezing [92].

Molecular characterizations of the oocyst will aid in developing targets for oocyst
inactivation and development of reagents to concentrate and detect oocysts in water and
other environmental substrates. Several methods have been evaluated for detection of T.
gondii in water, soil, and felid feces, including molecular approaches, microscopy, and
mouse bioassays as shown in Table 3 [66]. However, detection of oocysts in terrestrial and
aquatic habitats remains challenging as sensitive, standardized techniques for large-scale
environmental testing are not currently commercially available. The difficulty of detecting
T. gondii oocysts in environmental sources has likely led to underestimation of the
importance of this route of transmission and limited the ability to identify and address high-
risk areas of oocyst exposure.

5. Oocysts at the animal–human–environment interface
Evaluating the role of oocysts in T. gondii transmission cycles requires a broad
understanding that encompasses: the ecology of felids, aquatic mammals, and terrestrial and
marine prey species; chemical and physical properties that determine oocyst resistance;
human influences on domestic animal and wildlife populations; and the impact of
environmental factors, such as land use, climate, and freshwater runoff. Considering the
diverse factors that contribute to T. gondii oocyst loading, survival, and transport facilitates
interdisciplinary research and management approaches to reduce environmental exposure.

5.1. Domestic and wild sources of oocysts
Experimentally, domestic cats typically shed millions to hundreds of millions of oocysts
over a single 1- to 3-week period following initial infection with T. gondii bradyzoite cysts
[76,93]. The route of infection, strain of T. gondii, and cat age may impact the time from
infection to shedding, percentage of infected cats that shed T. gondii, and number of oocysts
shed. Lower prevalence and delayed onset of shedding were reported in cats fed T. gondii
oocysts compared to those infected with tachyzoites or bradyzoites [15]. Although
experimental infection with certain strains of T. gondii yielded higher shedding prevalence
and quantities of oocysts, the limited number of strains tested does not reflect the diverse T.
gondii genotypes circulating in free-ranging populations [16,94–96]. Young cats may shed
higher numbers of oocysts following primary infection, and higher prevalence of shedding
was observed in outdoor pet and feral kittens compared to adults [18,97]. However, older
cats may still play an important role in environmental loading, as oocyst shedding was
detected in naturally infected adult domestic cats (1–18 years old) in diverse geographical
locations [98–100]. Reported shedding prevalences of molecularly confirmed T. gondii
oocysts in pet and feral domestic cat populations ranged from zero to nine percent, with
higher shedding levels observed in feral cats than pet cats [14,99,100].

Even in experimental settings, few reports of prevalence, duration, and frequency of oocyst
shedding in wild felids exist. The prevalence of oocyst shedding by bobcats (Lynx rufus)
was lower than that in domestic cats experimentally infected with the same strain of T.
gondii [15,16]. However, the strain used for infection was isolated from sheep, and the
experimental response of bobcats may not have reflected natural exposure to strains
circulating in wild populations. Asian leopard cats (Prionailurus bengalensis) exposed to T.
gondii strains isolated from domestic and wild animal sources only shed oocysts following
infection with the wild strain [16]. Although the number of oocysts shed by experimentally
infected wild felids has not been quantified, a free-ranging mountain lion (Puma concolor)
in Canada shed 1.25 × 106 oocysts per gram of feces, which is similar to quantities of
oocysts shed by naturally infected domestic cats [14,101]. In the limited reports of T. gondii-
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like oocyst shedding in naturally infected, free-ranging wild felids, shedding prevalences
ranged from 0% to 33%, suggesting that shedding can vary widely among wild felid
populations (Table 4).

Although discussions of oocyst shedding usually focus on fecal excretion following initial
infection of felids, repeat or intermittent oocyst shedding may increase their contribution to
parasite burden in the terrestrial environment. No evidence of persistent oocyst shedding
exists for domestic or wild felids, but repeat shedding may occur under certain conditions.
Chronically infected domestic cats have been experimentally shown to reshed oocysts after
being exposed to novel strains of T. gondii, as well as when receiving immunosuppressive
doses of glucocorticoids or when co-infected with Isospora felis, a common feline parasite
[14,94,102–104]. Interestingly, co-infection with immunosuppressive pathogens, such as
feline immunodeficiency virus (FIV) has not been associated with repeat shedding [105].
Malnutrition was linked to repeat shedding in domestic cats, but similar results were
obtained with well-nourished cats [97]. The repeat shedding observed in these cats may be
due to novel strains of T. gondii used for reinfection rather than nourishment status. Natural
repeat shedding of T. gondii oocysts has been observed in diverse species of captive wild
felids kept in zoos and has been attributed to repeated exposures to the parasite in raw meat
[106]. By impacting nutritional and immune status as well as exposure to I. felis and new
strains of T. gondii, diet also has the potential to influence repeat shedding in free-ranging
felids.

At this time, there is no commercially available vaccine or treatment that can be
administered to felids to prevent or reduce oocyst shedding. Two candidate vaccines were
successful in preventing oocyst shedding in domestic cats that were subsequently challenged
with infective strains [107–110]. However, these vaccines are not feasible for widespread
application because they utilized live tissue cysts maintained in chronically infected mice.

5.2. Environmental transmission – oocyst loading and transport from terrestrial to aquatic
systems

Both anthropogenic and natural conditions strongly influence T. gondii oocyst loading in the
terrestrial environment as well as transmission to freshwater, estuarine, and marine systems
(Table 5). As T. gondii oocysts cannot replicate outside of felid hosts, spatial variation in the
burden of oocysts on land reflects the distribution of T. gondii shedding by these
populations. Native wild felids as well as introduced pet domestic cats and un-owned or
feral domestic cats, have the potential to contribute massive quantities of oocysts to
terrestrial and aquatic habitats [111,112]. The likelihood of oocyst shedding in a given
location is influenced by felid distribution, availability of prey or other food resources, and
human management of domestic and wild felid populations.

The distribution of pet cats and feral domestic cat colonies is closely linked to human
households that supply food and shelter [113]. Even unmanaged, more solitary feral
domestic cats not fed or cared for by humans may have home ranges linked to developed
landscapes, inhabiting urban and agricultural lands in addition to less developed areas [113].
Human activities may also influence the distribution of wild felids, as many species were
reported to be sensitive to habitat fragmentation and avoided areas of high human population
density [114–117]. In protected natural areas with public access, abundance of bobcats
declined with increasing human and domestic dog visitors [118], illustrating that even
temporary human land use activities may influence felid distributions. However, some wild
felids frequently used edge environments or riparian corridors of developed urban and
agricultural areas [119]. Although many wild felids and unmanaged feral cats use a wide
variety of habitats throughout their ranges, habitat choice may be influenced by prey
availability, intra or inter-specific territorial interactions, competition wit other predators for

VanWormer et al. Page 7

Comp Immunol Microbiol Infect Dis. Author manuscript; available in PMC 2013 September 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



access to prey, environmental stress, as well as vegetation and topography [113,120,121].
Research on domestic and wild felid ecology builds the understanding of and ability to
predict loading of T. gondii oocysts in natural environments.

Even within a shared habitat, exposure of wild and domestic felids to T. gondii may increase
or decrease based upon access to prey and dietary preferences. Pet and feral domestic cats
showed different prey consumption patterns, with higher predation levels observed in feral
cat populations [122,123]. Reports of specific prey preferences for both wild and domestic
felids vary drastically both among felid species and populations of a single species living in
different environments [124,125]. In regions where humans, livestock, and wildlife live in
close contact, wild felid prey frequently included domestic livestock such as sheep, goats,
and cattle as well as wildlife [126]. Prey availability and preferences of wild and domestic
felids not only contribute to the distribution of these hosts in the terrestrial landscape, but
may also influence their risk of infection and oocyst shedding, as T. gondii infection levels
varied dramatically in sampled intermediate host species [32,127]. In a meta-analysis of
studies on T. gondii infection in small mammals, reported seroprevalence of infection was
significantly higher in large rodents and rabbits than smaller rodent species [127].
Additional information on local prey populations and dietary preferences of domestic and
wild felids will help to determine the risk of T. gondii infection and oocyst shedding for
diverse felids in a given region. Indirect measures of the abundance of intermediate hosts of
T. gondii, including habitat distribution and precipitation patterns, may facilitate estimates
of prey populations at landscape scales that would be impractical for field investigations
[128–131].

Historic and current human land use and animal management strategies can directly and
indirectly impact wild and domestic felid distribution, and T. gondii oocyst shedding and
transport. Extensive and rapid land use change around the world has converted many natural
habitats to developed urban and agricultural lands [132]. These environments are frequently
used by both pet and feral domestic cats, whose populations will likely expand with
increased development [113,133]. Changing land use may also alter unmanaged feral cat
and wild felid distributions by shifting habitat and the numbers or types of prey in a given
location. Individual pet owner decisions determine the amount of time pet cats spend outside
the home, and therefore the likelihood that they will be exposed to infected intermediate
hosts and defecate outdoors, contributing oocysts to the terrestrial environment. People
feeding stray or feral cats influence the diet and behavior of these animals, and government-
level management decisions also affect loading and transport of oocysts. City and regional
pet and feral cat management policies, including trap-neuter-return programs and mandatory
spay-neuter laws shape numbers and distribution of these felids [134]. National and regional
policies on wildlife hunting and protection have also influenced population sizes of wild
felids [135,136]. Additionally, the California legislature Bill AB2485 directly targeted
oocyst loading and transport by requiring cat litter labels to direct owners to put used litter in
landfills rather than depositing it outside or flushing it through the sewage system where it
might eventually reach the ocean and sensitive marine wildlife [137]. Considering T. gondii
environmental transmission in the context of felid distribution and oocyst shedding, as well
as human landscape and animal management decisions, will facilitate identification and
management of high-risk areas for parasite exposure.

Transport and potential accumulation of T. gondii oocysts in environmental matrices, such
as soil or water, is determined by felid behavior, environmental attributes, and oocyst
surface properties. In addition to affecting sporulation and survival, felid defecation
behaviors can alter the number of oocysts that can be entrained and transported in freshwater
flow. Fewer T. gondii oocysts may be mobilized from feces that are buried under the soil,
and fecal burying behavior can differ greatly among different species and populations of
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felids. Many free-ranging pet domestic cats bury feces, but kittens in Costa Rica, dominant
individuals in feral cat colonies, and unmanaged feral cats left feces exposed [97,138]. In a
zoo setting, mountain lions buried feces and occasionally defecated in water, whereas
bobcats and tigers (Panthera tigris) frequently defecated in water (personal communication,
Lynn Dowling, keeper Folsom Zoo Sanctuary). Semi-captive bobcats have also been
reported to frequently defecate in running streams and/or shallow ponds, and free-ranging
bobcats commonly leave their feces exposed at sites along roads or trails [138,139]. For
some terrestrial carnivores, including mountain lions, the tendency to bury feces may also
change with season or reproductive status [140,141]. Location of defecation can limit or
enhance oocyst transport, with oocysts deposited near waterways more likely to be
transported in freshwater runoff into aquatic environments. In some regions, mountain lions
and bobcats commonly use riparian habitats [119,142], which could increase their
contribution to the number of oocysts reaching aquatic systems. Understanding defecation
behavior for wild and domestic felids in a given environment will help to predict oocyst
deposition, survival, and transport.

Substrate, vegetation, and climate at the site where oocysts are deposited all affect transport.
Permeable soils may allow oocysts and other pathogens to percolate vertically, reducing the
number of oocysts mobilized and carried in freshwater flow to aquatic systems. In contrast,
impervious surfaces, like asphalt and concrete in developed environments can lead to
increased mobilization of contaminants into runoff [143]. Natural fresh and saltwater
wetlands play a vital role in reducing the levels of these contaminants in runoff [144,145],
and vegetation in constructed wetlands and terrestrial vegetation buffers was also effective
in decreasing pathogens in effluent waters [146,147]. Physical attributes of watersheds and
local climate characteristics also impact T. gondii environmental transmission. The slope of
the watershed as well as its size can influence the amount of freshwater runoff and
transported pathogens reaching aquatic systems where humans and animals can be exposed
[148,149]. Freshwater runoff and particle transport are also directly influenced by storm
patterns and the quantity, duration, intensity, and frequency of precipitation in the watershed
[150,151]. Infections and deaths in marine mammals due to terrestrially derived fecal
protozoa and bacteria have been temporally and spatially linked to increased precipitation or
land-based runoff [152,153].

Surface properties of the environmental stages of protozoan pathogens are particularly
relevant for driving their environmental transmission patterns [154]. The surface
electrophoretic mobility (surface charge) and hydrophobicity (affinity to water) are two
properties that influence the behavior of suspended particles in water. T. gondii oocysts were
determined to have a negative charge in fresh water solutions, but their charge was
neutralized in estuarine and seawater [155]. Oocysts were also determined to have a very
low contact angle, indicating that they have a strong affinity to water molecules. The
strongly hydrophilic nature and negative charge of T. gondii oocysts in freshwater could
facilitate their widespread contamination in waterways. The loss of charge observed in
saline waters suggests that enhanced flocculation and subsequent accumulation of T. gondii
oocysts may occur in locations where fresh and marine waters mix, increasing the risk of
exposure to humans and wildlife.

Aggregation studies further support the hypothesis that T. gondii oocysts are likely to
concentrate in estuarine and marine ecosystems [156]. In laboratory studies, attachment of
oocysts with aquatic macroaggregates (i.e. “marine snow”) was observed in fresh, estuarine,
and marine water samples, but was greatest in waters with increased salinity. Concentration
of T. gondii in estuarine or marine aggregates was enriched 3–4 orders of magnitude as
compared with oocyst concentration in surrounding water. Aggregation of oocysts is
significant because attached oocysts are likely to move through an aquatic habitat differently
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and may have an altered ecological role as compared with unattached oocysts. Oocysts
associated with aggregates have increased settling velocities and larger effective surface area
that can facilitate their removal from the water column by emergent vegetation. Distinct
high-risk sites of infection may thus form at locations where contaminated freshwater mixes
with saline waters as aggregates deposit in the benthos or are trapped by vegetation. The
high seroprevalence of T. gondii in California sea otters may be partially accounted for by
the fact that otters spend the majority of their lives within 500 m of the coastline, exactly
where oocyst concentration may be greatest. Furthermore, invertebrates are known to retain
particles that are ingested within aggregates more readily than particles that are freely
suspended in the water column [157]. Thus, the association of T. gondii with aquatic
aggregates may facilitate their uptake into the marine food chain, with eventual ingestion by
a susceptible warm-blooded host, such as a sea otter or human. For decades, oceanographers
have recognized that aquatic aggregates are crucial vehicles for vertical and horizontal
movement of materials in the ocean [158,159]. However, the role of aggregates in the
transport of terrestrially derived zoonotic pathogens is only now starting to emerge, and
future efforts are still needed to characterize when and where T. gondii and other zoonotic
pathogens become a threat to human and animal health in aquatic habitats.

6. Land use and climate change – anthropogenic influences on oocyst
transmission

Oocyst-borne infections with T. gondii may increase in animals and humans as climate and
habitat changes reshape environments worldwide. As most of the human population and
their domesticated animals are distributed along waterways, there has been an associated
increase in the amount of fecal deposition within watersheds that drain into collecting
freshwater bodies, estuaries, and coastlines. The physical forces that drive overland runoff
events and mobilize transport of fecal matter are likely to increase with climatic factors that
are forecasted to change in the coming decades. Across most latitudes, weather simulation
models have projected reduced predictably of storms coupled with increased intensity of
rainfall events, leading to precipitation patterns that are likely to result in a net increase of
land-based runoff [160]. High amounts of rainfall that occur within a shorter duration of
time would provide enhanced force for mobilizing overland runoff, which acts as a conduit
of storm-driven pollutants, including fecal pathogens. In addition, increased runoff can
indirectly exacerbate pollution by overcoming the ability of sewage treatment facilities to
cope with large volumes, leading to treatment failures and discharge of untreated waste to
receiving water bodies.

The potential for permeable soils and terrestrial and aquatic vegetation to reduce overland
transport of fecal pathogens is increasingly threatened by conversion of natural habitats to
developed environments. As one example, degradation of coastal wetlands has resulted in a
net loss of nearly 67% of saltwater marshes in the United States, eliminating water-cleansing
services in coastal regions where human development, and the associated production of fecal
matter, is greatest [161]. Recent work that examined the effect of estuarine wetland
degradation on transport of T. gondii revealed that erosion of wetlands to mudflats could
result in 6 orders of magnitude greater flux of oocysts to coastal waters [144]. Coupled with
wetland destruction, modification to historic flow of waterways through channelization and
increased urban runoff through storm drains will likely increase pathogen transport in
surface waters. Just as landscape change can exacerbate impacts of climate change on
pollution, climate can also facilitate the speed of landscape change. Regions that are
susceptible to sea level rise are predicted to suffer further loss of wetlands in areas where
accretion cannot compensate submergence due the speed of rising sea levels, reduced
delivery of sediment, or because higher grounds have already been converted to urbanized
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or agricultural lands [162]. The combination of landscape change coupled with climate
variability may therefore increase fecal pollution of waterways [163].

The presence of T. gondii oocysts in water is only a health concern if the parasite remains
infectious to susceptible hosts. Persistence of T. gondii in terrestrial and aquatic
environments is closely governed by climatic factors [66]. Humid environments and cooler
temperatures are generally more favorable for oocyst survival [63]. Conversely, extremes in
weather including freezing temperatures or hot and arid conditions are less likely to support
prolonged oocyst viability [64,164]. In regions where long-term data are available, including
the United States, a trend of increasing surface soil moisture was detected [165], a climate
change that could prolong viability of T. gondii oocysts. In middle and higher latitudes, the
duration of time the earth is covered by ice or snow is expected to decline, rendering those
environments more favorable to oocyst survival. Higher latitude and mountainous regions
that to date have reported comparatively lower prevalence of T. gondii infections in humans
[166,167] may experience a rising infection rate if a warmer climate facilitates oocyst
infectivity [168].

In addition to impacting the spatial distribution and potential viability of oocysts, landscape
change may lead to alterations in T. gondii strain pathogenicity, or the likelihood that
humans are exposed to more virulent strains. In French Guiana, virulent strains of T. gondii
were associated with waterborne outbreaks of infection and even mortality in some
immunocompetent adults [169–171]. Unique genotypes of T. gondii in French Guiana were
identified in anthropogenically altered environments, which differed from T. gondii strains
isolated from surrounding natural habitats [172]. Exposure of seronegative persons to a
particularly virulent strain of T. gondii that emerged from strain hybridization may have led
to fatal outbreaks of toxoplasmosis in local communities. The desperate need for livelihood
improvement in many regions of the world will likely lead to increasing encroachment of
people into undeveloped lands, resulting in greater exposure of humans to T. gondii strains
that typically circulate within wild felid populations.

7. Why a One Health modeling approach enhances understanding of T.
gondii oocyst transmission

Currently, there is a notable lack of literature on the relationship between T. gondii oocyst
properties, felid shedding patterns, oocyst transport from terrestrial to aquatic systems, and
climate and habitat change. This knowledge gap illustrates the vital need for a more
integrative method to examine the impacts of environmental change on oocyst-based
infection in human and animal populations. Uniting ecologists, veterinarians, physicians,
epidemiologists, molecular biologists, and physical scientists including hydrologists,
oceanographers, and engineers, as well as local stakeholders and policymakers is critical to
developing models of T. gondii oocyst transmission and management in terrestrial and
aquatic environments.

Previous efforts to model T. gondii transmission have focused predominantly on the
interactions of felids and their prey in maintaining infection. Given the complexity of
multiple predator-prey interactions in natural environments, these models were designed to
simulate transmission in several small habitat patches or on a single farm, and they focused
on a single or few prey species [173,174]. In reality, overlapping wild and domestic felid
populations sharing an environment likely consume a wide diversity of prey species that
would be difficult to incorporate into traditional transmission models. In a unique model
including a domestic cat population, multiple prey species, and direction of hydrologic flow,
water-borne transmission was identified as a critical component of T. gondii infection [175].
While these models provide important insight on parasite transmission dynamics, a broader
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scale approach is still needed to investigate environmental transmission in areas with
multiple felid populations. Watershed-level models integrating human, domestic animal, and
wildlife ecology with oocyst properties, landscape structure, and hydrology offer a new
direction for examining the impacts of environmental change on T. gondii oocyst loading
and transport from terrestrial to aquatic systems. For T. gondii and many other pathogens,
incorporating the tools and perspectives of diverse disciplines through a One Health
approach will provide essential new insights on health from the molecular to landscape
level.
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Fig. 1.
Hardy, free-living Toxoplasma gondii oocysts, which can be transported in freshwater
runoff (blue arrow), likely play a significant role in environmental transmission of T. gondii
in terrestrial and aquatic systems. Domestic and wild felids are the only known source (red
arrow) of T. gondii oocysts. Light gray arrows indicate possible routes of T. gondii
transmission by exposure directly to oocysts or indirectly through food sources.
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Table 2
Epidemiological investigations linking Toxoplasma gondii infection with environmental
exposure to oocysts

Reporting period Location Implicated source No. infected (percent
of tested)

Reference

1985 Ciego de Avila, Cuba Non potable water 284(55.9) [186]

1995 Grenada, West Indies Soil or water 305(57) [187]

1997–1999 Campos dos Goytacazes, Brazil Unfiltered water 823(57.3) [188]

2001 Iauareté, Brazil Unfiltered water 191 (73.5) [189]

2002 Rondonia, Brazil Well or river water 195(73.3) [189]

2003 Cascavel, Brazil Homemade ice 161 (69.7) [190]

2003 Guatamala Well water 215(43) [191]

2003–2004 Democratic Republic of São Tomé and
Príncipe

Unboiled water 375(75.2) [192]

2004 Aydin, Turkey Non bottled water 185(30.1) [193]

2004 Nunavik, Canada Municipal and environmental waters 548(59.8) [194]

2005 Fortaleza, Brazil Homemade ice 666(69.1) [195]

2005 Salvador, Brazil Non-treated piped water 213(17.5) [24]

2009–2010 Thailand Pipe, tap, or rain water 181 (28.3) [196]
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Table 5
Factors influencing Toxoplasma gondii oocyst-based transmission in terrestrial and
aquatic environments

Oocyst loading Oocyst survival Transport of oocysts overland and in
waterways

Distribution of wild and domestic felids

• Human land use and available habitat

• Habitat preferences

• Distribution of prey species

• Human management of felid populations

Terrestrial conditions:

• Soil chemistry and
moisture

• Air temperature and
humidity

Felid defecation behavior:

• Depth of burying

• Proximity of oocyst deposition to
waterway

Felid defecation behavior:

• Depth of burying

Chemical and physical surface properties of
oocysts

Prevalence and frequency of oocyst shedding in wild
and domestic cats

• Felid diet (number and type of prey)

• Prevalence of T. gondii infection in prey

• Exposure to oocysts in the environment

Aquatic conditions:

• Water temperature

Terrestrial conditions:

• Watershed size and slope

• Vegetation

• Substrate (Permeable or impervious
surfaces)

Precipitation patterns:

• Quantity, intensity, frequency, and
duration

Duration and quantity of oocyst shedding by wild and
domestic felids

Aquatic conditions:

• Water chemistry and quality

• Vegetation

• Flow rate
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